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The module covers some modern aspects of statistical science. These make use of ideas
in probability and graph theory (theory module 1), but are aimed at modelling and analysis
of data from real complex systems, systems that exhibit uncertainty /randomness/variation/
stochasticity. Methods using these ideas are used successfully in interdisciplinary work in
many fields, from archaeology to zoology (my own recent work has touched on astronomy,
agricultural science, genomics, neuroscience, protein structure, cryptanalysis, biometrics,
medical image analysis, geographical epidemiology,...). There are also connections at a
more theoretical level with models in statistical physics and theoretical chemistry.

The word statistics is used in many senses; a statistic can be a number or a measurable
function of a random variable; statistics can be collections of either, or the discipline itself,
and even that is a bit ambiguous — does it include probability? — does it include artificial
intelligence or machine learning? — does it include all data analysis? We will usually use it
as an abbreviation for statistical inference.

Basic ideas of statistical inference

Inference is about generalising from observed data (numbers, images, signals, text, ...)
to say something about underlying mechanisms. So it is not restricted to summarising or
displaying the data you have. In a sense it is more about the data you might have had, or
the data you will have ‘next time’, so it involves thinking about the ‘mechanism’ generating
the data, and not only the data themselves. This is a philosophical challenge! What does
it mean to say something about underlying mechanisms when data are uncertain? Just as
a given mechanism might have generated data different from the data you have, the data
you have might have been generated from more than one mechanism! So we are not talking
about deduction.

To be a little pretentious about it, what we are trying to answer is the fundamental
question in the philosophy of science. The discipline of statistical inference arose as an
attempt to provide a model for scientific inference (in the presence of uncertainty, i.e. always!)
that is logically sound, mathematically rigorous, and scientifically grounded. Statistics is the
only part of the mathematical sciences where the interface to the ‘real world’ is part of the
subject itself.

2.1 What’s the big idea?

Statistical inference is the ‘inverse of probability theory’.

Suppose we give a particular drug treatment to n patients with a certain medical con-
dition. Let the random variable X be the number who respond positively. Let 6 be the
probability that a randomly chosen patient (one of the n, or one in the future?) will respond
positively.

Probability theory tells us how to get X from 6 — a reasonable model might be to assume



that X is binomially distributed with parameters (n, @), that is

P{X =z} = (Z) 6% (1 — )

Statistical inference is about getting 6 from X. Just as 6 does not determine X, neither
does X determine #, so we might draw conclusions about # of different kinds:

e we can give a ‘best guess’ or estimate of 6 — for example, the number X/n might be a
good guess

e we can give a range of values for 6, for example a confidence interval — the interval

[X/n —1.96y/(X(1 - X)/n), X/n+1.96,/(X(1 — X)/n)] is a common choice

e we can inquire whether there is any evidence against a pre-assumed value for 6 — for
example the value that characterises some other drug therapy — that is, test a hypothesis
about 6.

Let us step back a little from this example. What are the ingredients of this set-up?

1. A model for the mechanism generating the data. It is a probability statement ‘pre-
dicting” data X. It is an assumption, not a fact — its origin will be a question of
scientific judgement, based on understanding of the real mechanism, experience, prece-
dent, physical laws, convenience, ...

2. The model usually involves a parameter 6, whose value is unknown.

3. Both X and 6 may be (very-) high dimensional. Either (but especially X) may be
discrete or continuous.

4. A statistical model, just like any other kind of model, can be useful without being
‘true’.

5. Statistical inference will provide us with
(a) principles for turning the ‘9 — X’ relationship into ‘X — 6’ (we will meet maxi-
mum likelihood and Bayesian analysis)

(b) methods, which are determined by model+principle

(¢) mathematical and computational techniques for deriving and implementing meth-
ods

(d) tools for evaluating the quality of methods (so we can, e.g., say one estimate is
better than another)

(e) tools for criticising models (so the underlying assumptions can be challenged)

2.2 Maximum likelihood

The assumed model gives us a function connecting # and X — as in the example above
P{X =z} = (:) 6*(1 — 0)"=*) — we will write this as p(z|@). Notice two things about this
— we suppress mentioning irrelevant constants like n, and more importantly, we simplify by
omitting the symbol X for the random variable we are talking about. Take care if you do
this!



In classical (frequentist) statistics, when the observed values of the data are substituted
for x, and this function is regarded as a function of # alone, it is called the likelihood function.
Its value at a particular 6 is the probability of getting the data you did get, assuming the
model, for this value of 6.

The principle of maximum likelihood says that we should estimate 6 by the value that
make the data most probable — i.e. the value that maximises p(z|@). It is not correct to call
it the ‘most probable’ value of 6.

Example. If you differentiate p(z|0) = (Z) 0"(1 — 0)"=*) with respect to 6§ (NB not z!) —
or, more simply differentiate log p(z|f) — and set to zero, you find that p(z|@) (or its log) is
maximised at § = x/n. (We should check that it is actually a maximum, either by calculus
or algebraically.) So x/n is the mazimum likelihood estimate of 6 based on these data.

2.3 Repeated sampling

The conceptual basis for evaluating the performance of any statistical method is repeated
sampling. Imagine the experiment /observation that produces X can be repeated indefinitely,
under the same conditions. So we get a sequence of data sets: 1, x9, .... Apply our statistical
method (e.g. maximum likelihood estimation) to each data set, and look at the collection of
results. If we are doing estimation, we expect the collection of estimates (e.g. x1/n, x2/n, . ..)
to cluster around € (we talk about the bias and variance of an estimator to quantify this).
If we are calculating confidence intervals, we expect the intervals to be as short as possible,
but to cover the true 6 with the stated confidence. If we are testing hypotheses, we expect
both error probabilities to be small: that of declaring the hypothesis to be true when it is
false, and that of declaring it to be false when it is true.

All these calculations can be done using probability theory (and calculus and algebra,
typically).

Statistical theory yields various results to guide our choice of principle — e.g. that for a
particular model, an optimal estimator can be found, or that maximum likelihood estimation
performs very well in many circumstances (according to some criterion), but not universally,
ete.

2.4 Bayesian analysis

The key idea in Bayesian analysis is to treat both parameters and data as the same kinds
of object — random variables — and to use the same quantity — probability — to quantify
both kinds of uncertainty, that is the uncertainty you have about X when you know 6, and
the uncertainty in 6 having observed X. This approach completely avoids all the logical
brain-twisting needed to talk about tests of hypotheses and confidence intervals, and allows
inferences to be stated in a pleasingly direct way, by computing the probability distribution
of 6 give the observed value of X — called the posterior distribution, p(6 | X).

There have long been philosophical controversies about whether this view of inference is
acceptable. One issue is whether the two kinds of uncertainty mentioned above really can
be treated ‘the same’. A second issue is that if 6 is (treated as) a random variable, then
it must have a probability distribution even before you observe X — the prior distribution,
p(0). That expresses what you believe about 6 before you have any data. On the positive
side, this allows you to bring in any scientific information you have before conducting your
experiment, in a principled way, and combine it with the information in the data, using



Bayes’ theorem:
0] x) - POPX 1)
Jp(0")p(X | 6)d0"
or simply p(6 | X) o< p(8)p(X | ). On the negative side, some say that it is wrong to allow
the result to be affected by prior information, which may be subjective and differ between
different analysts.

Bayesian analysis has become enormously more accepted in recent years, because of a
combination of (a) realisation that often, although the prior affects results, it may not affect
them very much; (b) computational methods now exist to do Bayesian analysis on a serious
scientific scale; and (c) thanks to these, for complicated models, Bayesian methods are
actually more likely to be implementable than non-Bayesian ones. The rest of this module
has a lot more to say on this point.

2.5 Reading

The basic ideas of statistical inference are found ubiquitously in every intermediate text book
— anything that is both not so basic as to deal only with descriptive statistics and not so
advanced that it sets out the ideas in an unnecessarily abstract way: just explore the library
shelves (especially around QA276) or online catalogue. Covering the Bayesian approach is
not quite so common — for these ideas, best to consult either a book that is explicitly an
introduction to Bayesian statistics (e.g. Bayesian inference in statistical analysis by George
E.P. Box and George C. Tiao or Bayes and empirical Bayes methods for data analysis by
Bradley P. Carlin and Thomas A. Louis), or one that sets out to develop both the classical
and the Bayesian ideas between the same covers (e.g. Statistical inference: an integrated
approach by H.S. Migon and D. Gamerman).



