
1

Software Manual Version 1.0.2

June 18, 2018

(Requires R 3.5 or higher)

Table of Contents Page

 Overview ... 3

 Format of input data 4

 Function calls .. 5

 Required arguments 10

 Additional notes 11

 Example code .. 13

2

In publications, please cite as:

Jackson JW. Diagnostics for confounding of time-varying and other joint exposures. Epidemiology 2016.

27(6):859-869

© John W. Jackson, 2015

Authored by: John W. Jackson

THE STANDARD MIT LICENSE APPLIES:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of

the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

This software relies on R packages written by others. For their descriptions and license information, see:

tidyr https://cran.r-project.org/web/packages/tidyr/index.html

magrittr https://cran.r-project.org/web/packages/magrittr/index.html

ggplot2 https://cran.r-project.org/web/packages/ggplot2/index.html

gridExtra https://cran.r-project.org/web/packages/gridExtra/index.html

scales https://cran.r-project.org/web/packages/scales/index.html

Rmpfr https://cran.r-project.org/web/packages/Rmpfr/index.html

data.table https://cran.r-project.org/web/packages/data.table/

broom https://cran.r-project.org/web/packages/broom/index.html

https://cran.r-project.org/web/packages/tidyr/index.html
https://cran.r-project.org/web/packages/magrittr/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/gridExtra/index.html
https://cran.r-project.org/web/packages/scales/index.html
https://cran.r-project.org/web/packages/Rmpfr/index.html
https://cran.r-project.org/web/packages/data.table/
https://cran.r-project.org/web/packages/broom/index.html

3

Overview

This software implements three diagnostics for confounding that can be used in sequence (see Jackson 2016).

These apply to any study of multivariate exposures e.g. time-varying exposures, direct effects, interaction, and

censoring. The first two diagnostics pertain to the nature of confounding in the data, while the third is meant to

examine residual confounding after applying inverse probability weighting. The third diagnostic can also be

used to examine residual confounding within propensity-score strata (when these are used in place of covariates

in the parametric g-formula). We recommend that the diagnostics be applied to covariates that investigators will

use to control for confounding. We provide tools to help focus each diagnostic on the relevant covariate history

(used to control for confounding).

• Diagnostic 1 is a generalization of a “Table 1” for multivariate exposures (i.e. multiple exposures that

are distinct in timing or character). It examines whether the prior covariate means are the same across

exposure groups, among persons who have followed a particular exposure trajectory up to that point in

time. Like a “Table 1” it is meant to describe whether exposure groups have different distributions of

prior covariates.

• Diagnostic 2 is meant to inform whether or not g-methods are necessary to control for confounding. G-

methods are required if any covariate measurement is associated with a prior exposure after adjusting

for covariates that precede the exposure. Here, the diagnostic describes whether the covariate mean

differs across prior exposure groups, after adjustment for covariates (that precede exposure) through

inverse probability weighting or propensity score stratification.

• Diagnostic 3 is meant to be applied after investigators have applied the earlier diagnostics and have

chosen to use g-methods. The form of Diagnostic 3 is similar to that of Diagnostic 1 in that it is a

generalized “Table 1.” The difference is that it is applied to an inverse probability weighted population,

where the weights are typically designed to remove confounding. It can also be applied to evaluate

residual confounding within levels of time-varying propensity-score strata.

The R-based functions presented here allow users to construct balance tables and trellised plots. They can be

used to diagnose multivariate exposures that are binary or categorical. The functions can also accommodate

right-censoring (including the extension for Diagnostic 2 described in Jackson 2016). While the R-based

functions could in theory be applied to diagnose continuous exposures, it may be better to use a regression

model for this (see sample R code at the end of the example).

The user can request time-specific tables and plots for all times, or a subset of selected times. One can

alternatively request summary metrics that average over non-referent exposure values, propensity-score strata

and/or exposure history, time, and segments of distance, in that order (see Jackson 2016).

To use these functions, users will need a basic understanding of data structures and data manipulation in R. They

will also need to install a few add-on packages that the functions depend on (magrittr, tidyr, dplyr, ggplot2,

scales, and gridExtra). These packages will need to be loaded at the beginning the R session, along with the grid

package that comes with base R (see example at end of document). Note that the software will not run on R

versions below 3.1.2.

Users should be aware that applying these functions to dataframes (datasets) with many observations, follow-up

times, and covariates may require substantial computing memory. The approach we implement here is described

in Jackson 2016 and could be adapted for other software. In addition, output from other software can be

imported and used in the plotting function provided here.

4

Format of Input Data

The software is designed to use data that analysts may readily have on hand in analyses of time-varying

exposures. This includes time-varying exposures, time-varying covariates, time-varying weights (when

applicable), and time-varying propensity-score strata (when applicable). Time-varying exposure history strata

may also be required, and we provide functions to create these from the exposure variables.

These time-indexed variables should be organized into a “wide” data format where each row uniquely indexes a

single subject’s data, so that columns index measurement of each variable at each time. The indices should be

indicated with an underscore suffix followed by the time, e.g. “variable_1”, “variable_2”, “variable_3.” No

other underscores should appear in the variable name. It is fine if variables were measured at different times

(e.g. “varA_1”, “varB_2” “varB_4 “varC_3” “varC_5). The widen()function is provided to assist in this task.

The analysis proceeds as follows:

In a prelimary step, if person-time data needs to be reformatted into “wide” data format, use the

widen()function. Similarly, if exposure history is needed, create time-indexed exposure history variables from

the time-indexed exposure variables via the makehistory_one()or makehistory_two() functions.

1. Restructure this wide dataframe into a “tidy” long dataframe: lengthen() function

By tidy, we mean that a row is uniquely identified by the pairing of exposure and covariate

measurement times. This is will typically result in an extremely long dataframe, and could require

substantial computing memory in R if there are many persons, covariates, and/or follow-up times. See

Note (ii) for a solution to avoid memory issues with large and rich dataframes.

2. From the long dataframe, create a covariate balance table: balance() function

3. Plot the data in the covariate balance table: makeplot() function

Note (i) These steps should be followed in order as lengthen()produces the dataframe required by

balance()which produces the dataframe used by makeplot().

Note (ii) When the data have a large number of observations, covariates, and/or measurement times, memory

issues can be ameliorated by using diagnose()to iteratively apply lengthen() and balance() by

looping over covariates.

Note (iii) One can encode assumptions about which covariates are necessary to adjust for confounding. This is

done by removing covariate history that does not support exchangeability assumptions, through applying the

omit.history()function to the “tidy” dataframe produced by lengthen(), balance(), or

diagnose().

Note (iv) Jackson 2016 proposes two methods for obtaining summary averages over person-time. The code here

implements the standardization approach. However, regression models can be applied to the “tidy” dataframe

produced by lengthen(). See the end of the software manual for sample code.

Note (v) The code can accept a vector of time-indexed censoring indicators (1=censored, 0=otherwise). This can

be used regardless of the source of censoring (i.e. an event or some artificial rule defined by the investigator).

Note (vi) Although the code will still run in the presence of missing data, the results may not be easily

interpretable (especially when there is missing data in the exposures and their history).

Function calls

5

lengthen() returns a dataframe where each record is indexed by the observation identifier, exposure

measurement time, exposure value, covariate name, covariate measurement time, and possibly exposure history

and/or propensity score strata. Weights will appear as additional columns.

lengthen(

input = dataframe in wide format,

diagnostic = diagnostic of interest e.g. 1, 2, or 3,

censoring = use censoring indicators/weights e.g. "yes" or "no",

id = unique observation identifier e.g. "id"

times.exposure = a vector of exposure measurement times e.g. c(0,1,2)

times.covariate = a vector of covariate measurement times e.g. c(0,1,2)

exposure = the root name for exposure measurements e.g. "a",

temporal. covariate = a vector of root names for covariates whose values change over time

 e.g. c("l","m","n","o","p"),

static.covariate = a vector of root names for covariates whose values do not change

 (covariates listed here should not appear in the temporal.covariate

 argument)

history = the root name for history measurements e.g. "h",

weight.exposure = … for exposure weights e.g. "wa",

censor = … for censoring indicators "s",

weight.censor = … for censoring weights e.g. "ws",

strata = … for propensity-score strata e.g. "e",

)

This function is designed to minimize user input by creating the covariate names automatically based on

the covariate and times arguments. In the example above, it would create a lengthened dataframe

based on the following covariate measurements:

c("l_0","m_0","n_0","o_0","p_0",

 "l_1","m_1","n_1","o_1","p_1",

 "l_2","m_2","n_2","o_2","p_2")

Now, it may be that variable “n” is really a static covariate, like sex. In this case, you would only have

“n_0” in the dataset, not “n_1” and “n_2”. To specify a covariate like this, omit it from the

temporal.covariate and instead include it in the static.covariate argument. Note that the software

assumes that static covariates appear in the data with the lowest possible index specified in times. In this

example, specifying “n” as a static covariate would create a lengthened dataframe based on the

following covariate measurements (notice that “n_0” is included but “n_1” and “n_2” are not):

c("n_0",

"l_0","m_0","o_0","p_0",

 "l_1","m_1","o_1","p_1",

 "l_2","m_2","o_2","p_2")

Note that the software will automatically detect and ignore covariate measurements that are not present

within the input dataframe. For example, suppose variables “l” and “m” were only measured at times 0

and 2, and that l_1 and m_1 were not present in the dataframe. The software would, after detecting their

absence, would create automatically lengthened dataframe based on the following covariate

measurements i.e. “l_1”,“m_1” are excluded:

c("l_0","m_0","n_0","o_0","p_0",

 "n_1","o_1","p_1",

 "l_2","m_2","n_2","o_2","p_2")

balance() takes the restructured dataframe output by lengthen() and returns a covariate balance table

(possibly stratified by exposure history and/or propensity-score strata).

6

balance (

input = restructured dataframe

diagnostic = diagnostic of interest e.g. 1, 2, or 3,

approach = adjustment method e.g. "none" or "weight" or "stratify",

censoring = use censoring indicators/weights e.g. "yes" or "no",

scope = report the entire trellis e.g. "all", the diagonal e.g. "recent", or

 a summary e.g. "average",

times.exposure = vector of exposure measurement times e.g. c(0,1,2),

times.covariate = vector of covariate measurement times e.g. c(0,1,2),

sort.order = vector of root names for all covariates listed in the order in which

 they should appear in the table (and also plot) e.g.

 c("n","m","o","l","p"). To display covariates in alphabetical order

 (the default), leave blank or type "alphabetical"

exposure = root name of exposure e.g. "a",

history = …exposure history e.g. "h",

weight.exposure = …IP exposure weights e.g. "wa",

weight.censor = …IP censoring weights e.g. "ws",

strata = …of propensity score strata e.g. "e",

recency = an integer for the relative distance between exposures and covariate

 measurements to focus on (e.g. 0 would represent the same timing).

 the default is 0 for Diagnostics 1 and 3, and 1 for Diagnostic 2,

average.over = summary level for average metrics e.g. standardize over

 "values" or "history" or "time" or "distance",

periods = a list of contiguous segments of relative distance to pool over

 e.g. list(0,1:4,5:10) would yield summaries for three segments,

list.distance = a vector of distances to retain after averaging over time e.g. c(0,2),

ignore.missing.metric = "yes" or "no" depending on whether the user wishes to estimate

averages over person-time when there are missing values of the mean

difference or standardized mean difference. Missing values for the

standardized mean difference can occur when, for example, there is no

covariate variation within levels of exposure-history and measurement times.

If this argument is set to "no" and there are missing values, the average

will also be missing. If set to "yes" an average will be produced that

ignores missing values.

metric = the metric for which the user wishes to ignore missing values as

specified in the ‘ignore_missing_metric’ argument.

sd.ref = “yes” or “no” depending on whether the user wishes to use the standard

deviation of the reference group when calculating the SMD.

 loop = a housekeeping argument the user can ignore. It is automatically set

 when the balance function is called by the diagnose() function

described later. The default is set to "no".

)

makeplot() takes the covariate balance table produced by balance() and returns a trellised plot

described in Jackson 2016.

makeplot (

input = output from balance()

diagnostic = the diagnostic of interest e.g. 1, 2, or 3,

approach = the adjustment method e.g. "none" or "weight" or "stratify,

metric = scale e.g. "D" for mean difference, "SMD" for standardized mean

 difference

censoring = use censoring indicators/weights e.g. "yes" or "no",

scope = report the entire trellis e.g. "all", the diagonal e.g. "recent", or

 a summary e.g. "average",

stratum = the propensity-score stratum to plot

average.over = level of summary for average e.g. "values" or "history" or "time"

 or "distance"

… additional arguments to control plot formatting parameters, see

 Example,

 groupvar = the type of grouping variable "shape" or "colour",

 shape = the variable name to assign a shape scale,

 colour = the variable name to assign a colour scale

)

widen()will transform raw data from “long” format (e.g., person-time format) to a “wide” format suitable for

lengthen().

7

widen(

input = dataset in long format e.g., a person-time format,

output = name for output dataset,

id = unique identifier at the unit (person) level e.g. "id",

time = unique index for each observation within each unit e.g. "time",

exposure = the exposure of interest at time t e.g. "a",

covariate = a vector of covariates at time t e.g. c("l","m","n","o","p"),

history = variable describing exposure history through time t e.g. "h",

weight_exposure = inverse probability weight for exposure, at or through time t e.g. "wa",

weight_censor = cumulative inverse probability weight for censoring through time t e.g. "ws",

censor = censoring indicators at time t e.g. "s",

strata = propensity score strata at time t e.g. "e"

)

makehistory.one()will create a set of exposure history variables for a time-varying exposure.

makehistory.two() will create a set of joint exposure history variables for each of the two time-varying

exposures, properly accounting for their temporal ordering (i.e. exposure “a” precedes exposure “b” at any time

𝑡). The new history variables will use the time-indices in the exposure vectors you supply. See additional notes

at end of software manual for more details.

makehistory.one(

id = unique observation identifier e.g. "id",

input = dataset in wide format,

times = a vector of measurement times e.g. c(0,1,2)

exposure = the root name for exposure "a",

name.history = desired root name for time-indexed history variables e.g. "h",

group = an optional baseline variable upon which to segregate the exposure

history. This argument provides a way to adjust the metrics for a baseline

covariate. For example, in the context of a trial, the grouping variable could

be treatment assignment. In the context of a cohort study, this could be site

e.g. "v".

)

makehistory.two(

id = unique observation identifier e.g. "id",

input = dataframe in wide format,

times = a vector of measurement times e.g. c(0,1,2)

exposure.a = the root name for the first exposure e.g. "a",

exposure.b = the root name for the second exposure e.g."z",

name.history.a =desired root name for the first time-indexed history variables e.g. "ha",

name.history.b = … root name for the second time-indexed history variables e.g. "hb",

group = an optional baseline variable upon which to segregate the exposure

history. This argument provides a way to adjust the metrics for a baseline

covariate. For example, in the context of a trial, the grouping variable could

be treatment assignment. In the context of a cohort study, this could be site

e.g. "v".

)

omit.history() will take the dataframe produced by lengthen() and remove covariate measurements

based on their fixed measurement time or relative distance from exposure measurements (at time 𝑡) i.e. ones that

do not support exchangeability assumptions at time 𝑡. The covariate.name argument is used to name the

covariate whose history you wish to modify. To process the same manipulation for a set of covariates, simply

supply a vector of covariate names to covariate.name. The omission argument determines whether the

covariate history is (i) set to missing for certain covariate measurement times (omission =“fixed” with times=a

vector of integers) or (ii) set to missing only for covariate measurement times at or before a certain distance 𝑘

from exposure measurement times (omission =“relative” with distance=some integer) or (iii) set to missing

only for covariate measurements that share the same timing as exposure measurements (omission

=“same.time”). The removed values are set to missing. For example, using the “fixed” omission option for

covariate “l” at time 2 will set all data on “l” at time 2 to missing, regardless of the exposure measurement time.

In contrast, using the “relative” omission option for covariate “l” with distance 2 will only set to missing data on

8

“l” that is measured two units or more before the exposure measurement time (i.e. 𝑡 − 2, 𝑡 − 3, 𝑡 − 4 and so

on). Last, using the “same.time” omission option for covariate “l” will set to missing all data on “l” that is

measured at the same time as the exposure. Missing data will be ignored when this dataframe is supplied to the

balance() function. They will not contribute to the resulting covariate balance table, nor to plots produced by

makeplot(), nor will they contribute to any summary metrics are estimated by averaging over person-time.

omit.history(

 input = restructured dataframe from lengthen() ,

 omission = type of omission e.g. "fixed" or "relative" or "same.time"

 covariate.name = root name of the covariate e.g. "m",

 distance = the distance between exposure and covariate measurements e.g. 2

 times = a vector of measurement times for the covariate e.g. c(1,2,3)

)

diagnose() is a wrapper function that calls the lengthen() and balance() functions in sequence,

either in one step or iteratively across subsets of covariates and measurement times. In both cases it outputs a

dataset that is suitable for plotting via the makeplot() function. When the user opts to not iterate over

covariates and measurement times, there is no difference between calling the lengthen() and

balance()functions one after the other. However, opting to iterate can be a useful way to process large and

rich dataframes without otherwise requesting as much memory.

diagnose(

input = dataframe in wide format,

diagnostic = diagnostic of interest e.g. 1, 2, or 3,

censoring = use censoring indicators/weights e.g. "yes" or "no",

approach = adjustment method e.g. "none" or "weight" or "stratify",

scope = report the entire trellis e.g. "all", the diagonal e.g. "recent", or

 a summary e.g. "average",

id = unique observation identifier e.g. "id"

times.exposure = a vector of exposure measurement times e.g. c(0,1,2)

times.covariate = a vector of covariate measurement times e.g. c(0,1,2)

exposure = the root name for exposure measurements e.g. "a",

temporal. covariate = a vector of root names for covariates whose values change over time

 e.g. c("l","m","n","o","p"),

static.covariate = a vector of root names for covariates whose values do not change

 (covariates listed here should not appear in the temporal.covariate

 argument)

sort.order = vector of root names for all covariates listed in the order in which

 they should appear in the table (and also plot) e.g.

 c("n","m","o","l","p"). To display covariates in alphabetical order

 (the default), leave blank or type "alphabetical"

history = the root name for history measurements e.g. "h",

weight.exposure = … for exposure weights e.g. "wa",

censor = … for censoring indicators "s",

weight.censor = … for censoring weights e.g. "ws",

strata = … for propensity-score strata e.g. "e",

recency = an integer for the relative distance between exposures and covariate

 measurements to focus on (e.g. 0 would represent the same timing).

 the default is 0 for Diagnostics 1 and 3, and 1 for Diagnostic 2,

average.over = summary level for average metrics e.g. standardize over

 "values" or "history" or "time" or "distance",

periods = a list of contiguous segments of relative distance to pool over

 e.g. list(0,1:4,5:10) would yield summaries for three segments,

list.distance = a vector of distances to retain after averaging over time e.g. c(0,2),

ignore.missing.metric = "yes" or "no" for whether the user wishes to estimate

averages over person-time when the balance metric has missing values. For

example, the standardized mean difference will be missing when there is no

covariate variation within levels of exposure-history and measurement times.

When this argument is set to "no" and there are missing values, the average

will also be missing. If set to "yes" an average will be produced that

ignores missing values.

metric = the metric for which the user wishes to ignore missing values as

specified in the ‘ignore.missing.metric’ argument.

 loop = "yes" to iteratively apply balance() and lengthen() or "no" to process

all covariates and measurement times at once.

)

9

There is an important change in workflow when users wish to use the diagnose() function and also remove

irrelevant covariate history from the balance table calculations and plot. Users who wish to do so will need to

apply the omit.history() function to the dataframe output by diagnose(). If the user wants to remove

covariate history while averaging metrics over time or distance, the user will first have to call the diagnose()

function with the scope argument set to “all”. The user would then apply the omit.history() function as

many times as desired, and then use the apply.scope() function described next to average the metrics over

person-time. This workflow change allows users to ensure that the summary metrics ignore covariate history the

user deems irrelevant to confounding.

apply.scope() is a helper function that will take a dataframe output by balance() or diagnose(),

where the scope argument in those functions was set to “all”, and subset the table to covariate balance metrics

at a certain distance (e.g. a certain recency) or produce estimates that average over person-time. This function is

only useful when a user wishes to focus on proximal covariate balance metrics or produce summary estimates

via diagnose(), but also needs to remove covariate history that is irrelevant to confounding. In this situation,

the user first applies the diagnose() function with the scope argument set to “all”, then applies the

omit.history() function, followed by the apply.scope() function.

apply.scope(input = dataframe output by diagnose() or balance() function,

 diagnostic = diagnostic of interest e.g. 1, 2, or 3,

 approach = adjustment method e.g. "none" or "weight" or "stratify",

scope = report the entire trellis e.g. "all", the diagonal e.g. "recent", or

 a summary e.g. "average",

recency = an integer for the relative distance between exposures and covariate

 measurements to focus on (e.g. 0 would represent the same timing).

 the default is 0 for Diagnostics 1 and 3, and 1 for Diagnostic 2,

 average.over = summary level for average metrics e.g. standardize over

 "values" or "history" or "time" or "distance",

 periods = a list of contiguous segments of relative distance to pool over

 e.g. list(0,1:4,5:10) would yield summaries for three segments,

list.distance = a vector of distances to retain after averaging over time e.g.

 c(0,2),

sort.order = vector of root names for all covariates listed in the order in which

 they should appear in the table (and also plot) e.g.

 c("n","m","o","l","p"). To display covariates in alphabetical order

 (the default), leave blank or type "alphabetical"

ignore.missing.metric = "yes" or "no" depending on whether the user wishes to

estimate averages over person-time when there are missing values of the mean

difference or standardized mean difference. Missing values for the

standardized mean difference can occur when, for example, there is no

covariate variation within levels of exposure-history and measurement times.

If this argument is set to "no" and there are missing values, the average

will also be missing. If set to "yes" an average will be produced that

ignores missing values.

metric = the metric for which the user wishes to ignore missing values as

 specified in the ‘ignore.missing.metric’ argument.

)

10

Required Arguments for Function Calls

For all functions users must specify the diagnostic, approach, scope, and censoring arguments. Depending

on how these are specified, other arguments may be required:

Required arguments for lengthen() by diagnostic, approach, and censoring arguments

Diagnostic Approach Censoring
Additional Required Arguments (in addition to Scope)

1 “none” “no” id, exposure, temporal.covariate or static.covariate, times.exposure,
times.covariate , history

 “yes” (previous) + censor

2 “weight” “no” id, exposure, temporal.covariate or static.covariate, times.exposure,
times.covariate, history, weight.exposure

 “yes” (previous) + censor

 “stratify” “no” id, exposure, temporal.covariate or static.covariate, times.exposure,
times.covariate, strata

 “yes” (previous) + censor

3 “weight” “no” id, exposure, temporal.covariate or static.covariate, times.exposure,
times.covariate, history, weight.exposure

 “yes” (previous) + censor

 “stratify” “no” id, exposure, temporal.covariate or static.covariate, times.exposure,
times.covariate, history, strata

 “yes” (previous) + censor

Required arguments for balance() by diagnostic, approach, and censoring arguments

Diagnostic Approach Censoring Additional Required Arguments (in addition to Scope)

1 “none” “no” exposure, history, times.exposure, times.covariate

 “yes” (previous)

2 “none” “no” times.exposure, times.covariate

 “yes” (previous) + censor

2 “weight” “no” exposure, history, times.exposure, times.covariate, weight.exposure

 “yes” (previous) + censor

 “stratify” “no” exposure, times.exposure, times.covariate, strata,

 “yes” (previous) + censor

3 “weight” “no” exposure, history, times.exposure, times.covariate, weight.exposure

 “yes” (previous) + censor

 “stratify” “no” exposure, history, times.exposure, times.covariate, strata

 “yes” (previous) + censor

Required arguments for makeplot() by diagnostic and approach arguments

Diagnostic Approach Additional Required Arguments (in addition to Scope and Metric)

1 “none” ---

2 “weight” ---

 “stratify” Stratum

3 “weight” ---

 “stratify” Stratum

Note (i) The makeplot()function also requires the metric argument.

Note (ii) For the balance() and makeplot() functions, specifying scope=“average”, will require you to

specify an option for the average.over argument. If you chose average.over=“strata” then you do not need

to choose a value for the stratum argument.

Note (iii) Specifying scope=“recent” will allows you to specify an option for the recency argument in

balance()i.e. compute metrics at a specific exposure-covariate distance of your choosing.

Note (iv) diagnose()has the combined requirements of lengthen() and balance().

11

Additional Notes

Format of initial dataset

o As stated earlier, the input dataset should have one record per observation (wide format) with the timing

of variables indexed by an underscore followed by the time index (underscores should NOT appear

anywhere else in the variable name). Any indexing scheme can be used (e.g.

"var_1","var_4","var_9"), but it may be easiest to assign zero as the baseline index and increase it

by one the unit for each subsequent measurement (e.g. "var_0","var_1","var_2").

o The common referent value—to which all other exposure levels are compared—should be coded as the

lowest value.

o Censored data should contain a vector of time-indexed censoring indicators (1=censored, 0 otherwise)

for the lengthen() function.

Alignment of Censoring weights

o Generally speaking, the code asks for separate exposure and censoring weights. This is so because the

lengthen()function will align censoring weights with exposure times, in the case of Diagnostics1

and 3, or with covariate times in the case of Diagnostic 2.

o The balance()function takes the product of exposure and censoring weights during the estimation

process.

Time-indices for multivariate exposures and point exposures

o The functions provided here were developed for time-varying exposures and treat covariates as if they

precede exposure when they share the same time index. What follows next is a workaround for

multivariate exposures that generally applies when, for some times, exposures precede covariates.

For multivariate joint exposures, some covariates 𝐿 may intercede between the exposures, as in the

example of exposures 𝐴 and 𝑍 in the eAppendix of the Jackson 2016. Specifically, it may be the case

that (i) at each time 𝑡, exposure 𝐴(𝑡) affects covariates 𝐶(𝑡) which affect exposure 𝑍(𝑡), and

(ii) covariates 𝐶(𝑡) affect subsequent exposures 𝐴(𝑡 + 𝑘) and 𝑍(𝑡 + 𝑘) and also the outcome

𝑌. The functions could be used as they are to assess confounding for the second exposure 𝑍 (since both

covariates 𝐿 and 𝐶 precede 𝑍); a workaround to assess confounding for the first exposure 𝐴 would be to

increase, by one unit (or some value appropriate for the data’s indexing scheme), the indices for all

covariates 𝐿 that occur after 𝐴 for any given time 𝑡 (i.e. covariate index → covariate index+1). The

functions can then be used to examine confounding for exposure 𝐴. Another approach for exposure 𝐴

would be to remove the history on 𝐿 measured at the same time as the exposure 𝐴 using

omit.history()on the dataframe produced by lengthen(), but this only works for Diagnostics

1 and 3.

o The code can also be tricked to handle multivariate point exposures by simply adding a subscript “_0”

to each exposure and covariate when using lengthen(), and then specifying “0” for exposure and

covariate times when using balance().

12

Multivariate time-varying exposures or point exposures

When the exposure is multivariate, the idea is to diagnose each exposure separately (see eAppendix of Jackson

2016). From the perspective of using the R-functions, the only difference is to use exposure history based on all

exposures that comprise the multivariate exposure. It is important that such joint exposure history accurately

reflect the ordering of each component exposure. The function makehistory.two() creates an appropriate

joint exposure history for each of two exposures, assuming that exposures in its argument list.exposure.a (e.g.

𝐴) precede those in list.exposure.b (e.g. 𝑍) at any given index as described in the eAppendix of Jackson 2016.

In that example, exposure 𝐴(𝑡) always precedes exposure 𝑍(𝑡) such that the joint history of 𝐴(2) is

𝐴(1), 𝐴(0), 𝑍(0) while the joint history of 𝑍(2) is 𝐴(1), 𝐴(0), 𝑍(1), 𝑍(0). If one exposure does not

precede the other, investigators will still need to use an appropriate joint exposure history and can specify either

order as desired. Note that the exposure history produced by the function makehistory.two()will be

inappropriate if the relative ordering of 𝐴(𝑡) and 𝑍(𝑡) varies over time.

Averaging over person-time

When using the balance() , diagnose(), or apply.scope() functions, specifying

average.over=“average” and average.over=“time” will return balance metrics for each “distance” value. The

output can be subset to specific distances of interest e.g. k=0 and k=2 by supplying a vector to list.distance e.g.

c(0,2) but this is optional. Specifying average.over=“distance”, you can opt to average within segments of

distance using the periods argument (leaving this blank will average over all distance values). The periods
argument requires a list of contiguous numeric vectors e.g. list(0,1:4,5:10). For Diagnostic 3 this would report

metrics at time 𝑡, averages over times 𝑡 − 1 to 𝑡 − 4, and averages over times 𝑡 − 5 to 𝑡 − 10. For Diagnostics 1

and 3 the entire range should lie between 0 and 𝑡. For Diagnostic 2 the entire range should lie between 1 and 𝑡.

Residual confounding for parametric g-formula w/ propensity score stratification

o Jackson 2016 emphasizes Diagnostic 3 to describe residual confounding in a weighted population (for

marginal structural models). This can be accomplished by specifying diagnostic=3 and

approach=“weight”. Any weight can be used.

o In the eAppendix of Jackson 2016, there is an alternative version of Diagnostic 3 that describes residual

confounding within a propensity-score stratified population (for a special case of the parametric g-formula).

This is done by specifying diagnostic=3 and approach=“stratify”. Note that one can average these metrics

over propensity score strata, exposure history, time, and distance (i.e. by specifying scope= “average” and

choosing average.over=“strata” or higher).

Notes on investigator supplied data

These functions can diagnose confounding for a single exposure or each distinct exposure (in a multivariate

exposure) as long as the user provides appropriate history, inverse probability weights, propensity score strata,

and censoring indicators. See Jackson 2016 for details. Note that those particular specifications may not apply to

the user’s causal question (e.g. the user has data where covariates are measured after exposure for every time

point, instead of before exposure). The make.history()functions return nonsense when exposures are

partially missing.

A warning on required arguments

The diagnostic, approach, scope, and censoring arguments for the lengthen(), balance(),

diagnose(), and makeplot() functions are required and must be identical or else the functions will return

errors or incorrect results.

13

Example code

##########################

##LOAD DATA AND PACKAGES##

##########################

#NOTE THAT THIS CODE REQUIRES R VERSION 3.1.2 OR HIGHER

install.packages(c("magrittr","tidyr","dplyr","ggplot2","gridExtra","scales","broom"),dependencies=TRUE)

library(magrittr) #last tested on magrittr v1.5

library(tidyr) #last tested on tidyr v0.6.0

library(dplyr) #last tested on dplyr v0.5.0

library(ggplot2) #last tested on ggplot2 v2.1.0

library(grid) #this comes with base R

library(gridExtra)#last tested on gridExtra v2.0.1

library(scales) #last tested on ggplot2 v0.4.0

library(Rmpfr) #last tested on Rmpfr v0.6-0

library(broom) #last tested on broom v0.4.1

path <- "C:\\"

#for mac use one slash

indata.small <- read.csv(paste(path,"example_sml.csv",sep=""))

#indata.large <- read.csv(paste(path,"example_lrg.csv",sep=""))

source(paste(path,"RFunctions_1_0_8.r",sep=""))

##Example: Diagnostic 3 for a time-varying exposure without censoring

#PRELIMINARY STEP: MAKE EXPOSURE HISTORY

mydata <- indata.small

mydata.history <- makehistory.one(input=mydata,exposure="a",name.history="h",times=c(0,1,2))

#STEP 1: RESTRUCTURE THE DATA

mydata.long <- lengthen(

 input=mydata.history,

 diagnostic=3,

 censoring="no",

 id="id",

 times.exposure=c(0,1,2),

 times.covariate=c(0,1,2),

 exposure="a",

 temporal.covariate=c("l","m","o"),

 static.covariate=c("n","p"),

 history="h",

 weight.exposure="wax"

)

#example of how to remove relative covariate history

mydata.long.omit <- omit.history(input=mydata.long,

 omission="relative",

 covariate.name=c("l","m","o"),

 distance=1

)

#STEP 2: CREATE BALANCE TABLE

mytable <- balance (

input=mydata.long.omit,

diagnostic =3,

approach="weight",

censoring="no",

scope="all",

times.exposure=c(0,1,2),

times.covariate=c(0,1,2),

exposure="a",

history="h",

weight.exposure="wax",

sort.order= c("l","m","o","n","p")

)

#STEP 3: PLOT BALANCE METRIC

myplot <- makeplot (

input=mytable,

diagnostic =3,

approach="weight",

censoring="no",

scope="all",

metric="SMD"

)

#The following formatting arguments for makeplot() are optional (defaults shown).

#label.exposure="A", #exposure label

#label.covariate="C", #covariate label

#lbound=-1, #lower bound for x-axis

#ubound=1, #upper bound for x-axis

14

#ratio=2, #plot aspect ratio

#text.axis.title=8, #title font size

#text.axis.y=6.5, #y-axis (covariate names) font size

#text.axis.x=6.5, #x-axis font size

#text.strip.y=10, #row panel label font size

#text.strip.x=10, #column panel label font size

#point.size=.75, #dot size

#zeroline.size=.1, #thickness of zero line on x-axis

#refline.size=.1, #thickness of reference line on x-axis

#refline.limit.a=-.25, #location for reference line 1 on x-axis

#refline.limit.b=0.25, #location for reference line 2 on x-axis

#panel.margin.size=.75, #space between panels

#axis.title="Mean Difference", #or "Standardized Mean Difference" (x-axis title)

#label.width=15 #width of panel label text (before wrapping text)

#STEP 4: SAVE BALANCE TABLE AND PLOT

#write.csv(mytable,paste(path,"mytable.csv",sep=""))

#ggsave(filename=paste(path,"myplot.pdf",sep=""))

##Example of Regression Approach for Diagnostic 1

library(broom) #need for tidy()

#create balance dataset

mydata.long <- lengthen(input=mydata,

 diagnostic=1,

 censoring="no",

 id="id",

 times.exposure=c(0,1,2),

 times.covariate=c(0,1,2),

 exposure="a",

 temporal.covariate=c("l","m","n","o","p"),

 history="h"

)

##MAKE BALANCE TABLE USING REGRESSION##

#create balance table

mydata.long.reg <- mutate(mydata.long,time=time.exposure,distance=time.exposure-time.covariate,history=h)

output <- mydata.long.reg %>%

 group_by(name.cov) %>% #note, you can include other stratifying variables here or in the model

 filter(time.exposure>=time.covariate) %>%

 do(tidy(lm(formula=value.cov~a+time+distance+history,.))) %>% #same model form used for every covariate

 filter(term=="a1") %>% ungroup()

table.reg <- output %>%

 select(name.cov,estimate) %>%

 rename_("D"="estimate")

print(table.reg)

#write.csv(table.reg,paste(path,"table_regression.csv"))

#NOTE: This code applies the same model parameterization for each covariate (relying on a strong assumption).

COMPARE THAT TO A DIRECT CALCULATION & STANDARDIZATION ###

table.std <- balance(input=mydata.long,

 diagnostic=1,

 approach="none",

 censoring="no",

 scope="average",

 average.over="distance",

 times.exposure=c(0,1,2),

 times.covariate=c(0,1,2),

 exposure="a",

 history="h"

)

print(table.std)

#write.csv(table.std,paste(path,"table_standardization.csv"))

