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Preface 

The Pacific Biological Station (PBS) in Nanaimo, BC, conducts research on Canada’s 
Pacific fish stocks and makes scientific recommendations that influence the management of 
major fisheries in Canada and other nations. Malaspina University-College (MUC), also located 
in Nanaimo, offers courses in Mathematics and Computing Science that train students for 
quantitative research. Over the last few years, I’ve worked collaboratively with Lev Idels (MUC 
Mathematics) and Jim Uhl (MUC Computing Science) on research projects that facilitate 
original research and also provide teaching opportunities for MUC students. This report 
documents work done at PBS on a project to investigate marine reserve models. Lev and I 
received seed funding from MUC (via a Bamfield Research Grant), along with substantial 
student support from PBS (via the Groundfish Research Section). We particularly thank David 
Drakeford (MUC Dean of Science and Technology) and Jeff Fargo (PBS Section Head, 
Groundfish) for their active interest and support. 

We employed the talented MUC student Alex Couture-Beil, who completed the 
requirements for his B.Sc. degree (Computing Science with a minor in Mathematics) in 
December, 2006. He worked on this project while he completed his courses, but we were 
fortunate to retain him through PBS funding for an additional few months. Like other bright 
MUC students, Alex demonstrated a remarkable ability to learn new ideas quickly, to contribute 
creatively to project development, and to implement ideas in software. Partly due to his 
experiences with this research project, he plans to continue with graduate studies in Computing 
Science. 

We designed our research not only to investigate mathematical models of fishery 
reserves, but also to provide software that allows users to explore the resulting ideas. To make 
our results widely available, we used the free distribution of the statistical package R 
(R Development Core Team 2006a). This provides an excellent platform for software 
development in an environment that supports multiple computers and operating systems. An 
associated network of contributed libraries on the Comprehensive R Archive Network (CRAN: 
http://cran.r-project.org) gives access to a wealth of algorithms from many users in various 
fields. The system employs a rigorous testing procedure for all contributed software. Following 
this disciplined approach, we have now developed the R package PBS Modelling that R users 
anywhere can download from the CRAN web site and use to explore the ideas presented here. 

PBS Modelling includes an extensive User’s Guide (Schnute et al. 2006) that explains 
completely how to use the software. It addresses issues that facilitate any modelling process, not 
just the marine reserves considered here. The user guide, combined with this report, represents 
more completely the scope of research accomplished at PBS during the course of this project. 

 
Jon Schnute 
February 2007 
 
 
Cover: Graphics from fishery reserve model simulations. See Section 6. 
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1. Introduction 
The recent meeting of the Intergovernmental Panel on Climate Change (IPCC, Paris, 

January 29 to February 1, 2007; http://www.ipcc.ch/) highlights once again the potential effects 
of human activity on the world’s ecosystems. On a smaller scale, fishery managers face more 
immediate and direct consequences of specific human activities, such as commercial and 
recreational fishing. Like predictions of global warming due to the release of greenhouse gases, 
some scientists also predict the collapse of fish populations due to excessive fishing (Pauly et al. 
2001; Worm et al. 2006). One proposed solution to this problem involves setting aside marine 
reserves – regions closed to fishing. 

Mathematics offers tools that can help us think systematically about the potential costs 
and benefits of a plan to implement marine reserves. Unfortunately, systematic thought can be 
badly flawed if it’s based on wrong assumptions. A mathematical model of a biological system 
represents only a version of reality stemming from the underlying assumptions. At best, it 
provides a guide to thinking about the consequences of a variety of assumptions, and it can do 
this only if a spectrum of alternative assumptions are delineated clearly and explored 
systematically. This report presents such an exploration, based on classical theories of fish 
population dynamics. 

Any model of a marine reserve with an associated fishery must begin with a model of the 
fishery itself. What was going on before the reserve was established? How might things change 
afterward? Policy makers must inevitably address such questions. In a marine environment, it is 
notoriously difficult to figure out what’s going on at all. Consequently, anyone making plans for 
a new management technique has to recognize a high level of uncertainty about the 
circumstances that preceded the change. It might be difficult to demonstrate that the new 
technique produced favourable changes or to detect what those changes might be. 

An exercise like this one must begin by identifying the key issues. In this report, we focus 
particularly on the following questions: 

1. How do populations change inside and outside a reserve after it is established? 

2. How are catches and population levels altered by adjusting the proportion of habitat set aside 
in the reserve and the level of fishing in the region outside the reserve? 

3. What combinations of reserve size and harvest level might be used to achieve social goals, 
such as a long term stable catch? 

4. How are the answers to these questions influenced by the values of key biological 
parameters, like rates of reproduction, mortality, and migration? 

Our mathematical models allow us to explore these questions systematically. We have also 
designed software tools (discussed in the Preface) that enable stakeholders to conduct their own 
explorations, and we include examples that illustrate the possibilities. 

 Although mathematics plays an important role in the material that follows, we’re also 
trying to speak to readers who are not entirely comfortable with mathematical content. We 
encourage such readers to skim over material that seems troublesome, and move quickly to the 
graphical illustrations in section 6. We recognize the exercise for what it is – science fiction. The 
science part comes from mathematics that allows us to explore systematically the consequences 
of particular assumptions. But the results are fictional, because nature definitely doesn’t work 
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according to such simplistic rules. At best, we can hope to discover patterns that might help us 
foresee possible outcomes from setting aside marine reserves. Some results can be rather 
surprising, although perhaps unrealistic. If nothing else, this kind of exploration can be thought 
provoking and fun. We hope our readers join us in this scientific and playful spirit of inquiry. 

2. Fishery Models 
We start with two models of fish populations that conform to common ideas from 

theories of population dynamics. We then apply a simple technique to convert these to reserve 
models, in which a portion of the environment is set aside as a no-fishing zone. We show that 
this extension is consistent. Thus, with appropriate starting conditions, the reserve model 
describes the fishery both before and after the reserve is established. 

Classical fish population models often contain three key parameters, a reproductive 
growth rate r, a mortality rate M, and a carrying capacity K. The parameters r and M signify the 
potential to reproduce enough to compensate for mortality, with a natural constraint that r M> . 
The parameter K represents environmental limits that constrain growth. The fishery models F1 
and F2 in Table 1 encapsulate these ideas, where the associated function ( )g x  represents density 
dependence. The argument 

/t tx N K=  (2.1) 

of the function ( )g x  represents a scaled version of the population tN  of fish at time t, essentially 
a density relative to the carrying capacity K. Technically, ( )g x  can also include a vector θ  of 
parameters other than K, so we sometimes write the function in a conditional form: ( | )g x θ . We 
assume that ( | )g x θ  is a strictly decreasing function of x for any fixed choice of θ . Biologically, 
this corresponds to a reduced rate of reproduction per animal as the population N increases. 

 Model F1 uses a delay differential equation (F1.1) to represent the adult population tN  as 
a function of continuous time t, influenced by the instantaneous natural mortality M and fishing 
mortality tF . We assume that M is a fixed parameter associated with fish biology, but that the 
fishing mortality tF  imposed by the fishery can vary with time. These two sources of mortality 
occur simultaneously and have an immediate influence on the rate of change of abundance 

/dN dt . A nonlinear recruitment process involves the function ( )g x , where a time lag k occurs 
between larval production and adulthood at age k. The delay differential equation (F1.1) 
expresses the combined results of adult mortality, recruitment, and fishing. When 0k = , it 
becomes an ordinary differential equation, in which recruitment occurs simultaneously with 
mortality and fishing. 

 The function ( )g x  in (F1.1) decreases from 1 to zero as x increases upward from 0. The 
specific value (1) /g M r=  in (F1.4) guarantees that tN K=  is a constant solution when no 
fishing mortality occurs ( 0tF = ). This establishes the intended biological meaning for K, a 
natural constant level for a pristine population. The constraint (F1.3) deals with a biological 
limitation mentioned above. To survive at low levels of abundance ( 0tN ≈ ), a population must 
produce enough recruitment to compensate for natural mortality ( r M> ). 
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Table 1. Fishery models based on continuous (F1) or discrete (F2) time t. Parameters include a 
reproductive growth rate r, carrying capacity K, and natural mortality M. Larvae born at time 
t k−  become recruited as adults at the later time t, where recruitment is instantaneous if 0k = . 
Population trajectories are influenced by a time-varying fishing mortality tF . The state variable 

/t tx N K=  defined in (2.1) represents population density per unit of carrying capacity. 
 

Model F1 
t t k

t t k t t
dN NM N rN g F N
dt K

−
−

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 (F1.1) 

( )t
t t k t k t t

dx M x rx g x F x
dt − −= − + −  (F1.2) 

0 M r< <  (F1.3) 

(0) 1 (1) lim ( ) 0
x

Mg g g x
r →∞

= , = , =  (F1.4) 

 
Model F2 

1
t k

t t t t k t t
NN N MN rN g F N
K

−
+ −

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

 (F2.1) 

( )1t t t t k t k t tx x M x rx g x F x+ − −= − + −  (F2.2) 

0 r< , 0 min (1, )M r< <  (F2.3) 

 Model F2 expresses a dynamic system similar to F1, but with discrete time steps 
0,1,2,t = … . Formally, the difference equation (F2.1) comes from (F1.1) and the derivative 

approximation 

1
1

t t t t
t t

t

dN N N N N
dt t

+Δ
+

Δ =

−≈ = −
Δ

, (2.2) 

where the final term “ tN− ” has been moved to the right side of (F2.1). Although models F1 and 
F2 look very similar to each other, the quantities in them have somewhat different 
interpretations. Technically, r, M, and tF  in (F1.1) are rates per unit time that can take arbitrary 
positive values. By contrast, M and tF  in (F2.1) represent dimensionless fractions of the 
population removed by natural and fishing mortality during the unit time step from t to 1t + . 
Quantities from the two models have the natural relationships 

1rr e ′′′ = − , 1 MM e ′−′′ = − , 1 tF
tF e ′−′′= − , (2.3a) 

log(1 )r r′ ′′= + , log(1 )M M′ ′′= − − , log (1 )t tF F ′′′= − − , (2.3b) 

where prime and double prime symbols indicate models F1 and F2, respectively. The constraint 
(F2.3) reflects the fact that M is a fraction in model F2 ( 0 1M< < ). 
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Table 2. Example of a function ( )g x  used to model density dependence in the fishery models F1 
and F2 (Table 1). The parameter γ  (which can be positive, negative, or zero) influences the 
shape of this strictly decreasing function, which satisfies the constraints (F1.4). The function 

( )g x  decreases from 1 to 0 as x increase from 0 to ∞  if 0γ ≥ , or as  x increases through the 
finite interval [0, ]cx  if 0γ < , where cx  is defined in (G.2). Formula (G.3) shows an explicit 
inverse for the function ( )y g x= . 
 

1/

0( | , , ) 1 1
xr Mg x r M x

M r

γγ

γγ
−

→

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= + − ⎯⎯⎯→⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (G.1) 

( | , , ) 0g x r M γ =  if 0γ <  and 
1

1c
rx x

M

γ −
⎡ ⎤⎛ ⎞≥ = −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 (G.2) 

1
0

1 log( | , , )
log1

y yg y r M
Mr
rM

γ

γ γγ
−

−
→

−= ⎯⎯⎯→
⎛ ⎞⎛ ⎞ − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (G.3) 

 In the discussion that follows, we use the notation F* to refer to a model in Table 1, so 
that the asterisk denotes either number 1 or 2. As mentioned earlier, each dynamic equation 
(F*.1) represents a density dependent recruitment response with a strictly decreasing function 

( )g x  scaled so that (0) 1g = . Divide (F*.1) by K to obtain (F*.2), an equation in the density 
variable tx  defined in (2.1). This no longer involves K, and the equivalent trajectories 

1t tx N K= ⇔ =  (2.4) 

solve (F*.1) and (F*.2) when there is no fishing ( 0tF = ). We extend this result in 

Theorem 1. In the absence of fishing mortality ( 0tF = ), both models in Table 1 have the 
constant solution (2.4). Furthermore, even in the presence of fishing, a trajectory tN  scales to the 
carrying capacity K. More precisely, given a particular model and a harvest function tF , suppose 
that itN  is a trajectory with carrying capacity ( 1,2)iK i = , where all other parameters are the 
same. Then if the relationship 

1 1

2 2

t

t

N K
N K

=  (2.5) 

holds during the initial time period ( 0 t k≤ ≤ ), it persists for all future time t k> . 

Proof: The proof isn’t difficult. The densities / ( 1 or 2)it it ix N K i= =  both follow exactly the 
same dynamic equation (F*.2). Furthermore, by assumption (2.5), the densities itx  are equal 
during the initial time period. Consequently, based on the existence and uniqueness of solutions 
for (F*.2), 1 2t tx x=  for all time t. If tx  denotes this common solution, then it i tN K x= , a result 
that proves (2.5) for t k> . Existence and uniqueness follow by mathematical induction for 
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model F2, but are beyond the scope of this paper for model F1. We confine ourselves to the 
biologically meaningful circumstances in which (F*.1) and (F*.2) have solutions that exist and 
are unique for specified initial conditions, as illustrated in Section 6. l 

 Table 2 gives explicit formulas for a function ( )g x  that meet requirements specified in 
(F1.4). It depends on the model parameters r and M, as well as an extra parameter γ  that 
influences the curve shape. The function (G.1) is designed so that γ  can be positive or negative, 
with definite limiting value as 0γ → . If 0γ ≥ , ( )g x  is strictly decreasing with an asymptotic 
limit 0 as x → ∞ . If 0γ < , ( )g x  decreases from 1 to 0 as x increases through the finite interval 
[0, ]cx , where cx  is the critical value defined in (G.2) with ( ) 0cg x = . For larger values of x we 
define ( ) 0g x = , as in (G.2). The function ( )y g x=  has an inverse 1( )x g y−=  given by (G.3), 
where 1(0) cg x− =  if 0γ < . 

We have designed our fishery models explicitly to consider recruitment lags because 
reserves might sometimes be chosen to ensure larval production. For example, Hastings and 
Botsford (1999) examined the possibility that a reserve might provide a steady source of larval 
recruitment into the fishery. Our example in Table 2 follows models proposed by Schnute and 
Richards (2002), with suitable changes here for lagged models. Some special cases of (G.1) 
correspond to classical examples that have played significant roles in the historical development 
of population dynamics. For example, model F1 with no time lag ( 0k = ) and the choice 1γ = −  
in (G.1) corresponds roughly to a production model applied to tuna populations by Schaeffer 
(1954, 1957). Later, Pella and Tomlinson (1969) adopted a similar model with a shape parameter 
γ . Similarly, Ricker (1954, 1975) and Beverton and Holt (1957) proposed models similar to F2 
with 0γ =  and 1γ = − , respectively. 

Our delay differential equation (F1.1) differs in two notable respects from the ordinary 
differential equations in classical fishery literature. First, it distinguishes recruitment from 
natural mortality, processes that were often combined historically. This feature requires us to 
introduce a time delay k that mimics the period of larval development. Second, our version 
requires the constraint that ( ) 0g x ≥ , because recruitment cannot produce negative fish. This 
means that we have to alter classical models in one other respect to account for both mortality 
and recruitment. 

We illustrate this modification with a simple example. Schaeffer’s (1954, 1957) model 

1t t
t t t

dN NrN F N
dt K

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (2.6) 

utilized the differential equation for logistic growth. By contrast, our model (F.1a) with 1γ = −  
becomes 

max 1 1 ,0t t k
t t k t t

dN NMMN rN F N
dt r K

−
−

⎡ ⎤⎛ ⎞= − + + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, (2.7) 

where the function “ max ” assures positive recruitment. When 0k =  and 0M = , the differential 
equation (2.7) reduces to  
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max 1 ,0t t
t t t

dN NrN F N
dt K

⎡ ⎤= − −⎢ ⎥⎣ ⎦
, (2.8) 

a model identical to (2.6) when tN K≤ . Strictly speaking, (2.8) is not a special case of our 
model F1 because it violates the constraint 0M > , but the distinction between (2.6) and (2.8) 
highlights a key point. The classical model (2.6) causes the population to decline ( / 0tdN dt < ) 
whenever abundance exceeds carrying capacity ( tN K> ). In our model (2.7), the population 
constantly experiences natural mortality at the rate M, and a positive recruitment rate must 
compensate for this loss. In the absence of fishing, both models (2.6) and (2.7) predict that 
abundance will move toward carrying capacity, but the dynamical reasons for this prediction are 
different. 

3. Reserve Models 
Imagine a scenario in which a fishery operates throughout a region with carrying capacity 

K, where one of the fishery models in Table 1 applies. Suppose that the region is split into two 
parts with carrying capacities ( 1,2)i iK p K i= = , where 1 2 1p p+ = . We want to use region 1 as a 
reserve without fishing and allow a fishery only in region 2. At the planning stage, we’ve only 
drawn an imaginary boundary in the sea, so our model from Table 1 should remain the same. 
However, when fishing actually stops in the reserve ( 1 0tF = ), our management policy splits the 
population into two groups. Table 3 presents reserve models (R1, R2) that extend the fishery 
models (F1, F2) in Table 1 by describing the population dynamics of linked populations 1tN  and 

2tN  in the reserve and the fishery, respectively. 

The mathematical formalism in Table 3 includes two state variables 

( 1,2)it it
it

i i

N Nx i
K p K

= = =  (3.1) 

that represent the abundance density in region i relative to the available carrying capacity. These 
define two additional state variables: 

1 1 2 2t t tx p x p x= + , 1 2t t ty x x= − , (3.2) 

where tx  and ty  represent an average density and a difference of densities inside and outside the 
reserve. From (3.1), /i it itp x N K= ; consequently the definition (3.2) implies that  

1 2t t
t

N Nx
K
+= , 

so that tx  also represents the density of the total population relative to the total carrying capacity 
K. The transformation (3.2) between 1 2( , )t tx x  and ( , )t tx y  has an inverse: 

1 2t t tx x p y= + , 2 1t t tx x p y= − . (3.3) 

Each reserve model (R*.1) in Table 3 looks identical to the corresponding fishery model 
(F*.1), except for a new term 
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Table 3. Reserve models for continuous (R1) or discrete (R2) time t, based on the fishery models 
in Table 1. These models split the original fishery into two parts, where indices 1i =  and 2i =  
correspond to the reserve and fishing zones, respectively. After the reserve is established, 

1 0tF = . Each model represents two equations (with 1,2i = ), where j denotes the index opposite 
to ( )i j i≠ . The proportion ip  represents the fraction of carrying capacity K in zone i, where 

i iK p K=  and 1 2 1p p+ = . The parameter a sets a scale for the migration rate, as discussed in the 
context of (3.4). Biological realism requires the constraints (R1.3) and (R2.3). State variables 

/it it ix N K=  represent the population density relative to available carrying capacity in zone i. 
 

Model R1 

,
,

i t k jtit it
it i t k it it

i j i

N NdN NM N rN g a F N
dt p K p p

−
−

⎛ ⎞⎛ ⎞
= − + + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (R1.1) 

( ) ( ), ,
it

it i t k i t k jt it it it
i

dx aM x rx g x x x F x
dt p− −= − + + − −  (R1.2) 

0a >  (R1.3) 
Model R2 

,
, 1 ,

i t k jt it
i t it it i t k it it

i j i

N N NN N M N rN g a F N
p K p p

−
+ −

⎛ ⎞⎛ ⎞
= − + + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (R2.1) 

( ) ( ), 1 , ,i t t it i t k i t k jt it it it
i

ax x M x rx g x x x F x
p+ − −= − + + − −  (R2.2) 

1 20 a p p< <  (R2.3) 

( )jt it
ji jt it

j i

N Nm a aK x x
p p

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.4) 

that represents migration from region j to region i, where j i≠ . The migration term (3.4) gives a 
positive movement from region j to region i when the density in region j is higher than in region 
i. The additional parameter 0a >  sets a scale for the migration rate. 

As discussed earlier for parameters r and M, the migration parameter a is a rate for model 
R1 but a dimensionless fraction for model R2. In this case, the relationship comparable to (2.3) is 

1 2
1 2

1 exp aa p p
p p

⎡ ⎤⎛ ⎞′′′ = − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, 1 2
1 2

log 1 aa p p
p p

⎡ ⎤′′′ = − −⎢ ⎥
⎣ ⎦

, (3.5) 

where prime and double prime symbols indicate models R1 and R2, respectively. The biological 
constraints (R1.3) and (R2.3) make these associations consistent with each other. 
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Table 4. Models with only the movement component for continuous (M1) or discrete (M2) time 
t, based on the fishery reserve models in Table 3 with 1 2 0t tM r F F= = = = . Model (M*.1) 
comes from model (R*.2) for the state variables 1 2( , )t tx x . The transformations (3.2)–(3.3) imply 
that model (M*.1) is equivalent to (M*.2) for the state variables ( , )t tx y . The solutions (M*.3) 
follow easily from model (M*.2). Finally, (M*.3) yields the solution (M*.4) for 1 2( , )t tx x in 
model (M*.1). Solutions depend on the initial states 0 1 10 2 20x p x p x= +  and 0 10 20y x x= − . 
 

Model M1 

( )1
2 1

1

t
t t

dx a x x
dt p

= − , ( )2
1 2

2

t
t t

dx a x x
dt p

= −  (M1.1) 

0tdx
dt

= , 
1 2

t
t

dy a y
dt p p

= −  (M1.2) 

0tx x= , 0
1 2

expt
aty y

p p
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 (M1.3) 

1 0 2 0
1 2

expt
atx x p y

p p
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

, 2 0 1 0
1 2

expt
atx x p y

p p
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

 (M1.4) 

 
Model M2 

( )1, 1 1 2 1
1

t t t t
ax x x x
p+ = + − , ( )2, 1 2 1 2

2
t t t t

ax x x x
p+ = + −  (M2.1) 

1t tx x+ = , 1
1 2

1t t
ay y

p p+

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (M2.2) 

0tx x= , 0
1 2

1
t

t
ay y

p p
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (M2.3) 

1 0 2 0
1 2

1
t

t
ax x p y

p p
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

, 2 0 1 0
1 2

1
t

t
ax x p y

p p
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 (M2.4) 

Table 4 gives a rationale for the associations (3.5). The reserve models R* in Table 3 
with 1 2 0t tM r F F= = = =  imply the linear movement models M*, where as usual the asterisk 
can denote either 1 or 2. When expressed in terms of the state variables ( , )t tx y  in (3.2), these 
models take the simple form (M*.2) with explicit solutions (M*.3). The transition (3.3) back to 
density state variables 1 2( , )t tx x  then gives the solutions (M*.4). In particular, the expression 

1 2

exp a
p p

⎡ ⎤′
−⎢ ⎥
⎣ ⎦

 in (M1.4) corresponds to 
1 2

1 a
p p

⎛ ⎞′′
−⎜ ⎟

⎝ ⎠
 in (M2.4). This correspondence implies (3.5). 

Calculations in Table 4 exploit the identity 1 2

1 2 1 2 1 2

1 1 1p p
p p p p p p

++ = = . 
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The movement models in Table 4 have a straightforward biological interpretation. The 
first formulation (M*.1) pertains to the population densities 1 2( , )t tx x  inside and outside the 
reserve. The second formulation (M*.2) shows that the mean density tx  in (3.2) remains constant 
and the density difference ty  declines exponentially, given the constraints (R*.3) on a . 
Mathematically, the transformations (3.2) uncouple the linked system (M*.1) for 1 2( , )t tx x  to 
produce independent equations (M*.2) for ( , )t tx y . The final solution (M*.4) says that both 1tx  
and 2tx  converge to the initial mean density 0x , where a correction proportional to the initial 
density difference 0y  declines exponentially toward 0 as t → ∞ . 

The solutions (M*.4) to models (M*.1) exist even if the constraints (R*.3) are violated. 
For example, (M1.4) grows exponentially if 0a < . Furthermore, (M2.4) remains bounded if 

1 22a p p< , but oscillates for values a  in the range 1 2 1 22p p a p p< < . Examples in section 6 
illustrate some of the possibilities for these seemingly anomalous cases. 

As mentioned in the first paragraph of Section 2, we need to show that the models in 
Table 3 are consistent with their counterparts in Table 1 during the time period prior to the 
reserve. Theorem 1 points to the extra assumption required. If we assume a constant fish density 
relative to local carrying capacity throughout the entire region prior to establishing the reserve, 
then the condition (2.5) applies to any decomposition of the original area. This idea leads to 

Theorem 2. The reserve models R* in Table 3 agree with their counterparts F* in Table 1 if the 
initial populations itN  ( 1, 2i = ) have a uniform density distribution (2.5) during the initial time 
period ( 0 t k≤ ≤ ) and the same harvest function tF  applies in both regions. In particular, the 
total population 1 2t t tN N N= +  follows the relevant model F* in Table 1 and the trajectories 
maintain the constant ratio 

1 2 1 2 1 2: : : : : :1t t tN N N K K K p p= = . (3.6) 

Proof: We focus on the equations (F*.2) and (R*.2) for the densities itx , which are equivalent to 
the models (F*.1) and (R*.1) for the populations itN , given the definitions (3.1). First, consider 
two independent solutions ( 1,2)itx i′ =  to the independent models (F*.2). By assumption, these 
are equal for the initial period and consequently (by Theorem 1) for all time t during which 

1 2t tF F= , that is, 

1 2t t tx x x′ ′ ′= ≡ , (3.7) 

where tx′  is defined by the common value of solutions 1tx  and 2tx . Furthermore, ( 1, 2)itx i′ =  also 

solves (R*.2) because the equality (3.7) implies that the migration term ( )jt it
i

a x x
p

−  vanishes in 

(R*.2), so that (R*.2) reduces to (F*.2). Based on uniqueness of solutions, it follows that the 
solution to (R*.1) is given by 1 1 1t t t tN K x p Kx′ ′= =  and 2 2 2t t t tN K x p Kx′ ′= = ; consequently 

t tN K x′= . This proves (3.6). l 
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As in Theorem 1, existence and uniqueness follow by mathematical induction for model 
R2, but are beyond the scope of this paper for model R1. Again, we confine ourselves to the 
biologically meaningful circumstances in which (R*.1) and (R*.2) have solutions that exist and 
are unique for specified initial conditions, as illustrated in Section 6. 

4. Equilibrium Catch Calculations 
 From the perspective of fishermen, the ultimate value of a fishery lies in the catch 
produced by fishing. This corresponds to the catch rate 

t t tC F N=  (4.1) 

at time t in the context of model F1 or the total catch during the time interval ( , 1)t t +  in the 
context of F2. An equilibrium model, obtained with a constant fishing mortality F, is often used 
to assess the potential of a fishery. Analytically, this produces the model obtained from (F*.1) by 
dropping the index t and (in the continuous-time models) setting / 0tdN dt = . The resulting 
equation is exactly the same for both models F1 and F2. (In F2, a term N cancels from the left 
and right sides of the equation.) 

Table 5. Equilibrium calculations from the fishery and reserve models in Tables 1 and 3. 
 

Catch Rate from Models F1 and F2 
( )F r g x M= −  (EF.1) 

C KF x=  (EF.2) 
1 F MC KF g

r
− +⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (EF.3) 

 
Catch Rate from Models R1 and R2 

( )1
2 1 11 ( )px x r g x M

a
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (ER.1) 

[ ]1 1
2 1 2

2 2

( ) ( )p xF r g x M r g x M
p x

= − + −  (ER.2) 

2 2 2 2C p K F x=  (ER.3) 

1 1
1

1

1p M ag x
p r

− ⎛ ⎞+ < <⎜ ⎟
⎝ ⎠

; 2 10 x x< <  (ER.4) 

Table 5 shows the results of an equilibrium analysis of the fishery models in Table 1. The 
equilibrium version of equation (F*.1) can be solved for F to express the fishing mortality in 
terms of /x N K= , as shown in (EF1). The catch equation (4.1) expresses C in terms of x, with 
the result (EF.2). The state variable x can be eliminated by combining (EF.1) and (EF.2) to give 
the explicit representation (EF.3) for C as a function F. This involves the inverse function 

1( )g y− , where ( )y g x= . Our assumption that ( )g x  is strictly decreasing guarantees that 1( )g y−  
exists for y in the range of ( )g x . Formula (G.3) in Table 2 explicitly shows the inverse for the 
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function defined in (G.1). The functions ( )C F  in (EF.3) can be maximized to obtain harvest and 
catch levels that correspond to the maximum sustainable yield (MSY). From this point of view, 
the level of fishing mortality F serves as a control that can be adjusted to maximize C in the long 
run. 

 Table 5 also shows an equilibrium analysis for the reserve models R* in Table 3. The 
results are not as tidy as those for the fishery models F*, but they are still tractable numerically. 
The equilibrium version of (R*.2) with 1i =  allows us to express 2x  in terms of 1x , as shown in 
(ER.1). Similarly, the equilibrium version of (R*.2) with 2i =  gives the expression (ER.2) for 
the fishing mortality 2F  in region 2 as a function of 1x  and 2x , Finally, the catch equation (4.1) 
gives the catch 2C  in region 2 as a function of 2x  and the fishing mortality 2F . In this analysis, 

2F  serves as one control, and the proportion 1p  of carrying capacity set aside as a reserve serves 
as another. The result (ER.3) allows us to calculate C numerically as a function of 1 2( , )p F . 
Consequently, we can find values of these controls that maximize C . More generally, we can 
evaluate the trade-off between the proportion 1p  in the reserve and the fishing mortality 2F  
allowed outside the reserve. 

 Numerically, the equilibrium calculations (ER.1)–(ER.3) start with a vector of values 1x  
and proceed sequentially through three steps as follows: 

1 2 2 2 x x F C⇒ ⇒ ⇒ . (4.2) 

To start this calculation, we need to choose a range for 1x . We anticipate that the density in the 
reserve should be higher than in the fishery, because no fishing mortality occurs in the reserve. 
The condition 2 1x x<  implies that a quantity contained in large square brackets in equation 
(ER.1) must be less than 1. Explicitly, we require that 

( )1
11 ( ) 1p r g x M

a
− − < . 

This condition, in turn, implies the lower bound (ER.4) for 1x  in (ER*.d) that restricts the 
meaningful range of 1x  for equilibrium calculations. 

Why would we expect a lower bound for 1x ? Imagine a reserve with a very low 
migration rate a into the fishery. Then, even if the fishery captures all the available fish, we 
might still expect the reserve population to move close to carrying capacity ( 1 1x ≈ ), given only a 
minor “leakage” into the fishery. In fact, as 0a → , the lower limit for 1x  in (ER.4) converges 
to 1. 

5. Practical applications and software 
 As stated in the introduction, we’ve developed the models here explicitly to address four 
key questions about the impact of marine reserves. We can now reformulate these questions in 
more technical terms to relate them to the analyses above: 
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1. How do population trajectories ( 1,2)itN i =  change inside and outside a reserve after it is 
established? 

2. How are long term catches 2C  and population levels ( 1,2)iN i =  altered by adjusting the 
proportion 1p  of habitat set aside in the reserve and the level of fishing 2F  in the region 
outside the reserve? 

3. What combinations of reserve proportion 1p  and harvest level 2F  might be used to achieve 
social goals, such as a long term stable catch? 

4. How are the answers to these questions influenced by values of the key biological parameters 
, , , , ,r K M k a  and γ ? 

Question 1 is partly answered by Theorem 2. Within the framework developed here, 
population trajectories remain proportional to local carrying capacity until the harvest policy is 
changed in the reserve. After that, the trajectories diverge, and we can use simulation from the 
equations in Table 3 to mimic that process precisely. We should add, however, that we could 
alter the framework with different assumptions about the distribution of fish between fishery and 
the reserve. For example, we could have assumed that the reserve contains all available breeding 
habitats, and that larvae flow from the reserve to the fishery. Such a structural change would 
substantially alter the models discussed here, which assume a uniform habitat throughout the 
reserve and fishery. 

Questions 2 and 3 are addressed by the equilibrium analyses in Table 5. We’ve designed 
the models to include two policy parameters, the proportion 1p  set aside as a reserve and the 
harvest level 2F  in the fishery. For example, a recipe for the equilibrium calculations based on 
model R1 or R2 is: 

A. Start with a grid of values 1 1( , )p x , with 10 1p< <  and 10 1x< < . 

B. Eliminate points from this grid that violate the constraint (ER.4). 

C. For the remaining legitimate points in the grid, perform the calculations (ER.1)–(ER.3) to 
obtain the results in (4.2). This gives a set of vectors 1 1 2 2 2( , , , , )p x x F C  that represent 
equilibrium states for model R1 or R2. 

D. Use the triplets 1 2 2( , , )p F C , 1 2 1( , , )p F x , and 1 2 2( , , )p F x  to interpolate contour plots that 
relate the catch 2C  and the densities 1x  and 2x  to the control variables 1 2( , )p F . 

Question 4 can be addressed by designing simulations that allow the underlying 
parameters ( , , , , ,K r M k a γ ) to be altered easily. We also use sinusoidal functions  

max min
min

21 sin
2t

F F tF F
n
π− ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
 (5.1) 

to represent time-varying fishing mortality, where a user can specify minimum and maximum 
fishing mortality levels ( min max,F F ) and the number n of time steps in one full cycle. 

 To accomplish the simulation goals outlined above, we decided to use the freely available 
software environment R (R Development Core Team 2006; http://www.R-project.org). Our 
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simulations require an interface that can readily be configured and modified to facilitate 
experimental probing. For this purpose, we first designed and produced an R library 
PBS Modelling (Schnute et al. 2006) that makes it easy to build such an interface, for this project 
and many others as well. Our library, now publicly available on the Comprehensive R Archive 
Network (CRAN, http://cran.r-project.org/), will eventually include this project as a special 
example. In that way, we intend to make our simulations available via the Internet to users 
worldwide. 

 Libraries currently available for R include odesolve, a package for solving ordinary 
differential equations (ODEs). The author (R. Woodrow Setzer) used Fortran code by Linda 
Petzold and Alan Hindmarsh (Lawrence Livermore National Laboratory, Livermore, California) 
that implements advanced algorithms for solving stiff and non-stiff ODEs. The odesolve library 
provides an R wrapper for this well-designed code so that the gradient function can be 
programmed in R. Given suitable code to do this, an R programmer needs only to call a special R 
function in the library that invokes the Fortran algorithm to perform the numerical solution. 

 Prior to our project, no one had made a similar R library for solving delay differential 
equations (DDEs), as required for our models F1 and R1. Thanks to our intrepid programmer and 
coauthor Alex Couture-Beil, this situation has now changed. Alex found modern C/C++ code to 
solve DDEs written by Simon Wood (University of Bath, Bath, UK; home page 
http://www.maths.bath.ac.uk/~sw283/index.html). Following the style of odesolve, Alex built an 
R wrapper for Simon’s code (http://www.maths.bath.ac.uk/~sw283/simon/dde.html) that allows 
the lagged gradient function to be programmed in R. Thanks to Simon’s (enthusiastic) 
permission to use his code in our new package, we plan to post ddesolve on CRAN. This will fill 
a notable gap in the algorithms available for R. Our simulations use odesolve when 0k =  in 
model R1, but switch to ddesolve when 0k > . Using a small lag k, our simulations can be used 
to compare results from these two algorithms. 

6. Worked examples 
 The right panel of Figure 1 illustrates a scenario in which a reserve facilitates population 
recovery from overfishing. In this case, heavy fishing occurs throughout the entire fishery during 
the first 15 years and seriously depletes the initial population. The population remains evenly 
distributed between regions 1 and 2, as anticipated from Theorem 2. A reserve containing 70% 
of available carrying capacity is established in year 15, after which fishing stops in region 1 and 
heavy fishing continues in region 2 with the remaining 30% of carrying capacity. Over several 
decades, the stock slowly recovers and produces steady catches similar to those achieved 
historically during the mid-phase of the initial overfishing period. 

 The GUI in the left panel of Figure 1 shows the tools available in our software for 
exploring such possibilities. It contains three sections – Simulation, Equilibrium, and History. In 
“Simulation”, the user chooses biological parameters and control variables, then presses the 
button marked Plot trajectories  to see how simulated reserve and fishery populations behave over 
time given these choices. Additionally, the button Plot g(x)  displays the density-dependent 
recruitment response, given the parameters ,r M , and γ . 
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Figure 1.  Recovery of a heavily fished population after establishing a reserve. Left: The GUI 
shows all input values (parameters and controls). The selected continuous time model R1 uses 
input values common to both models (white background) and values specific to the continuous 
model (blue background). Corresponding values are computed for the discrete model (yellow 
background) from (2.3) and (3.5). Right: Output trajectories trace various results 
(N = population, dN/dt = instantaneous change in population, F = instantaneous fishing 
mortality, C = instantaneous catch) for the reserve and fishery. Fishing mortality follows the 
sinusoid (5.1) determined by minF , maxF , and the cycle length n . 

 The “Simulation” section of the GUI also offers a choice of two models – Continuous 
(blue shade) and Discrete (yellow shade). Inputs specific to either model are similarly shaded, and 
the equivalent values in the other shade are calculated using transformations (2.3) and (3.5) upon 
execution of a plot. Non-shaded input boxes are common to both models. Biological parameter 
constraints in Tables 1 and 3 can be enforced or not. If the box Enforce Constraints is checked, the 
code resets unsuitable parameter values upon plot execution and displays reset values in the R 
console window. By ignoring constraints, a user can explore scenarios outside the bounds 
normally expected for biological systems. 
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Figure 2.  Equilibrium conditions for a range of values 1 1( , )x p specified in the GUI shown in 
Figure 1. Red triangles in all plots designate the point corresponding to the maximum catch 

maxC . Left: Image plots show levels of 2C , 1x , and 2x , where black circles indicate points with 

max/ 0.975C C ≥ . Horizontal lines delimit the controls minF  and maxF  specified in the 
“Simulation” section of the GUI. Right: A pairs plot illustrates relationships among 

1 2 1 2 2( , , , , )p F x x C , colour-coded by quantiles of 2C . 

The “Equilibrium” section of the GUI has additional inputs for creating a matrix of 
equilibrium values, based on the computations (ER.1)–(ER.4) in Table 5 with specified ranges 
for the vectors 1x  and 1p . The user can visualize the resulting matrix using the buttons Pairs  for 
pairs plots (Figure 2, right), Image  for image plots (Figure 2, left), and Contour  for contour plots 
(not shown here). Values from the matrix that yield the maximum equilibrium catch maxC  appear 
within  the GUI as boxes shaded pink.  

The “History” section of the GUI allows a user to scroll through saved sets of inputs, 
rather like viewing a slide show. It also facilitates the insertion, deletion, and sorting of input 
scenarios, just as slides might be assembled to produce a show. The resulting show can be saved 
as a text file and passed among users to illustrate cases of special interest. The GUI in Figure 1 
(left) uses a generic “history” widget made routinely available in the PBS Modelling package. In 
addition, the software for this report includes a particular history file that assembles the input 
required to produce the figures shown here, along with other examples. Comments in the 
“History” section highlight features of interest, like notes that might accompany a slide. 
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 We return now to the details of the example in Figures 1 and 2. Each of the four 
questions in the Introduction and Section 5 has an explicit answer from the analyses here. 

1. Question: How does establishing a reserve change population trajectories? 
Answer: Figure 1 shows population trajectories before and after 70% of the original fished 
area is set aside as a reserve in year 15. During the initial period, the total population tN  
declines from 50 units to about 10 units, and (as proved in Theorem 2) the populations 1tN , 

2tN  and tN  maintain the constant ratio (3.6). After the reserve is established, it recovers 
slowly to about 40 units, with the recovery driven by a larger population 1tN . 

2. Question: How do the controls 1 2( , )p F  influence the long term catch? 
Answer: Figure 2 explicitly relates the equilibrium catch 2C  to the proportion 1p  of habitat 
set aside in the reserve and the level of fishing 2F  in the region outside the reserve. The 
maximum sustainable catch max 5.19C =  occurs when 1 0.060p = , 2 0.136F = , 1 0.410x = , 
and 2 0.405x = . 

3. Question: How can the controls 1 2( , )p F  be adjusted to achieve social goals? 
Answer: The MSY scenario mentioned in answer to question 2 may not be socially feasible. 
For example, it might be impossible to limit fishing mortality to the low level 2 0.136F = . 
The manager might also consider scenarios with max/ 0.975C C ≥  illustrated by small black 
circles in Figure 2 (left). For instance, in the region of a target F that lies between 0.35 and 
0.55 (horizontal lines in the image plot), a high catch can still be achieved with 1 0.7p ≈ , as 
portrayed in Figure 1. 

4. Question: How do the answers to questions 1, 2, and 3 vary with key biological parameters? 
Answer: The GUI allows a user to explore how the answer to any question varies with chosen 
values of the biological parameters , , , , ,r K M k a  and γ . It also allows a choice between 
models with continuous or discrete time t . 

Given the base case portrayed in Figures 1 and 2, the GUI allows a user to explore other 
possibilities. For example, Figure 3 shows what happens if the recruitment lag k increases from 2 
to 25 years. An influx of recruitment from the preceding 25 years enhances the initial phase of 
fishery recovery. After this, the total population shows long cyclic patterns associated with long 
recruitment lags. This contrasts with the trajectories in Figure 1, which show relatively fast 
response to the sinusoidal fishing mortality 2tF . 

A user might conduct further explorations relevant to particular species. For example, the 
rockfish genera Sebastes typically have low reproductive growth rates r  and low natural 
mortalities M . They also tend to remain associated with reefs and other benthic features, so that 
the movement parameter a  would likely take a low value. Although this report can show only a 
few special cases, the software makes it possible to try many scenarios based on different 
biological systems. 
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Figure 3.  Recovery of a heavily fished population after establishing a reserve. All settings and 
explanations match those in Figures 1 and 2, except that 25k = . Equilibrium results shown in 
Figure 2 remain valid, but the trajectories here differ from those in Figure 1. Left: GUI with 

25k = . Right: Revised trajectories, with less initial decline due to the influx of recruitment from 
the preceding 25 years. 

The density-dependent recruitment function ( | , , )g x r M γ  in Table 2 provides a way to 
represent the population’s response to density effects. As mentioned above in Section 2, specific 
values of γ  define classical models ( 0γ =  for the Ricker and 1γ = −  for the Schaeffer or 
Beverton-Holt.) In general, γ  can take any real value, and Figure 4 portrays the density effect 

( )g x  and recruitment response ( )xg x  for four values of γ . For increasingly negative values γ , 
the population becomes more sensitive to density and less able to exceed the carrying 
capacity K . Alternatively, the population has an increasing ability to expand beyond K  as γ  
takes larger positive values. 
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Figure 4.  Density dependent recruitment response when 0.4r =  and 0.1M = , where the 
function ( )| , ,g x r M γ  is defined in Table 2. All curves pass through a point (square) determined 
by the constraint (F1.4) that (1) /g M r= . Left: Plots of ( )g x  for 2, 1,0,2γ = − − . Right: 
Corresponding plots of ( )xg x , where a red line through the origin has slope /M r . 
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Figure 5. Recovery of a heavily fished population after establishment of a reserve. All settings 
and explanations match those in Figures 1 and  2, except that 8γ = − . Left: The total population 
sometimes exceeds the carrying capacity 100K =  and experiences severe density-dependent 
recruitment failure. Right: Image plots show that the intended harvest levels 2F  between 0.35 
and 0.55 do not correspond to equilibrium levels, given the specified proportion 1 0.7p =  in the 
reserve. 

Figure 5 examines the scenario of a recovering fishery in Tables 1 and 2 when 8γ = − , so 
that the population experiences high density dependence. Time trajectories show two key 
features of the populations 1tN  and 2tN  after the reserve is established. First, they slowly recover 
to levels exceeding those at the start. Second, they experience sharp recruitment failures when 

1tN  and 2tN  exceed the carrying capacities 1K  and 2K . Given the reserve size ( 1 0.7p = ), the 
fishing mortality range ( 20.35 0.55tF≤ ≤ ) remains incompatible with equilibrium conditions 
determined by the biological parameters. The image plot in Figure 5 suggests a better policy. For 
the specified levels of fishing mortality, it would actually improve matters to reduce the the 
reserve proportion 1p  from 0.7 to a value in the range 0.4–0.5. This counterintuitive result stems 
from the (perhaps unrealistically) high level of density dependence when 8γ = − . The density 
plot also shows that the condition 2 0F =  is incompatible with equilibrium. Without fishing, the 
population experiences natural cycles (not shown), as can be observed using the GUI. 
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Figure 6. Trajectories generated using the discrete model (R2.1) with 100K = , 0.5r = , 
0.1M = , 0γ = , 2k = , and 1 0.5p = . Fishing mortality 2tF  follows the sinusoid (5.1) with 

min 0.3F =  and max 0.4F = . Panels represent two values of the movement parameter a. Left: 
0.2a = . Right: 1 22 0.5a p p= = , the highest possible value with bounded solutions (M2.4) to the 

movement model (M2.1). 

The discrete-time model (R2.1) behaves similarly to the continuous model (R1.1), except 
for extreme values of the movement parameter a . Solutions (M2.4) to the discrete movement 
model (M2.1) have (i) non-oscillatory, (ii) bounded oscillatory, and (iii) unbounded oscillatory 
behaviour for values a in the ranges (i) 1 20 a p p≤ ≤ , (ii) 1 2 1 22p p a p p< ≤ , or (iii) 1 2p p a< . Our 
reserve models (R2.1) generally inherit this qualitative behaviour from the movement 
component, although we constrain our solutions so that 1tN  and 2tN  never become negative. 
Figure 6 shows results from (R2.1) for two values of a, where (left) 1 2a p p<  and 
(right) 1 22a p p= . In the latter case, high oscillations between 1tN  and 2tN  produce a relatively 
stable total population 1 2t t tN N N= + . According to this model, the population shifts rapidly 
between the reserve and the fishery at each time step. Probably this is highly unrealistic, but 
strange things sometimes happen in nature. Exercises like this one can alert users to possibilities 
that otherwise might never have been considered.  
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Figure 7. Chaotic long-term trajectories for the discrete model R2 with 100K = , 0.5r = , 
0.1M = , 1γ = − , 2k = , 0.458a = , 1 0.4p = , min 0.3F = , and max 0.4F = . Left: Results for 250 

years. Right: Results for 1,000 years. 

Figure 7 illustrates another extreme result from the discrete model (R2.1). In this case, a 
fairly sensitive density response ( 1γ = − ) interacts with a high value of the movement parameter 

1 20.458 2 0.48a p p= < =  to produce an interesting long term chaotic pattern. High production 
levels occur episodically for variable periods of time. Similar patterns sometimes appear in ocean 
production data or even financial data from the stock markets. Our deterministic model might 
potentially be used to generate pseudo-random variables with desired temporal properties. This 
example touches on the science fiction concepts mentioned in the Introduction. Ideas conceived 
in one context may produce surprising results that have potential applications in entirely different 
fields. 

7. Discussion 
Our models represent fishery reserves rather simplistically in terms of four fundamental 

processes: birth, natural mortality, fishing mortality, and the movement of fish between two 
regions. Mortality and movement follow linear models, with rates proportional to the available 
populations. The mortality components imply simple exponential decay, and Table 4 gives 
explicit solutions to the movement component of the model. Nonlinear behaviour enters the 
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analysis only in the birth component of the model, as illustrated in the right-hand panels of 
Figure 4. Nonlinear properties of the function ( )xg x  give the population a limiting size, where 
abundance tends toward the carrying capacity K  in the absence of fishing. We allow a time lag 
of k years between the birth of larval fish and their appearance as adults at age k. (Note that our 
notation is case sensitive; K and k have entirely different meanings.) 

Despite their relative simplicity, our models demonstrate chaotic behaviour for certain 
parameter values. This result can be anticipated for discrete-time models with shape parameters 

1γ <  that correspond to dome-shaped curves in Figure 4 (right panels). In such cases, recursive 
functions (like the Ricker function ( | )xg x γ  with 0γ = ) in the basic fishery model (F2.1) have 
known chaotic properties (Kuznetsov 1995, p. 114; Schnute 2006). We have extended this result 
to reserve models (R2.1), where the movement parameter a  interacts with γ  and other 
parameters. Chaotic behaviour stems partly from oscillating solutions (M2.4) to the movement 
component of a reserve model, as illustrated in Figures 6 and 7. 

We handle uncertainty only in the naïve sense of exploring how different parameter 
values influence a deterministic model. Because stochastic error can’t readily be introduced into 
delay-differential equations, a modern fishery model would more typically use only a discrete-
time formulation with stochastic error at each time step. This could include error in each of the 
underlying processes: birth, mortalities, and movement. The parameters ( , , , ,K r M aγ ), which 
are assumed constant here, might also be modelled as random variables. 

We could also change key structural assumptions, such as the spatial distribution of 
larvae or the age composition of the population. We could formulate the model in terms of 
biomass, rather than abundance, and include another model component related to fish growth. 
We could increase the number of regions and explore consequences of setting aside different 
areas as reserves. Any such change could potentially give substantially different conclusions 
from those described here. 

We have not addressed the important issue of response by fishermen to a restricted area 
of fishing. In our models, a user can easily test hypothetical control variables ( 1 2, tp F ), but this 
exploration glosses over important social issues related to compliance and enforcement. For 
example, poachers might catch fish illegally in the reserve, or fishermen might not respect the 
measures needed to restrict fishing mortality. Extensions of the model could investigate such 
scenarios by adding functions that predict responses by fishermen and the general public to new 
reserve policies. An objective function tuned to social goals might also be used to assess 
formally the model results. 

In practice, our models would need to be customized for a particular context, and 
stakeholders would need to become directly involved. Simulations like those illustrated here 
could facilitate the development of policies that will be implemented successfully. Management 
starts with planning, and the R software described here offers a freely available tool for 
designing interactive studies of fishery reserves and other ecological systems. 



 – 23 – 

References1 

Beverton, R.J.H., and Holt, S.J. (1957) On the dynamics of exploited fish populations. UK 
Ministry of Agriculture, Fisheries and Food. Fisheries Investigation Series 2, No 19. 

Gaines, S.D., Gaylord, B., and Largier, J.L. 2003. Avoiding current oversights in marine reserve 
design. Ecological Applications 13: S32-S46. 

Gerber, L.R., Botsford, L.W., Hastings, A., Possingham, H.P., Gaines, S.D., Palumbi, S.R., and 
Andelman, S. 2003. Population models for marine reserve design: a retrospective and 
prospective synthesis. Ecological Applications 13: S47-S64. 

Halpern, B.S.  2003. The impact of marine reserve: do reserves work and does reserve size 
matter? Ecological Applications 13: S117-S137. 

Halpern, B.S. and Warner, R.R. 2002. Marine reserves have rapid and lasting effects. Ecology 
Letters 5: 361-366. 

Hastings, A., and Botsford, L.W. 1999. Equivalence in yield from marine reserves and traditional 
fisheries management. Science 284: 1537–1538. 

Kuznetsov, Y.A. 1995. Elements of applied bifurcation theory. Applied Mathematical Sciences, 
Vol. 112. Springer-Verlag. New York. 515 pp. 

Pauly, D., Palomares, M.L., Froese, R., Sa-a, P., Vakily, M., Preikshot, D., and Wallace, S. 2001. 
Fishing down Canadian aquatic food webs. Canadian Journal of Fisheries and Aquatic 
Sciences 58: 51-62. 

Pella, J.J., and Tomlinson, P.K. 1969. A generalized stock production model. Inter-American 
Tropical Tuna Commission Bulletin, 13(3): 419–496.  

R Development Core Team. 2006. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL 
http://www.R-project.org. 

Ricker, W.E. 1954. Stock and Recruitment. Journal of the Fisheries Research Board of Canada 
11: 559-623. 

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. 
Bulletin of the Fisheries Research Board of Canada, No. 191. 382 pp. 

Shea, K., et al. 1998. Management of populations in conservation, harvesting and control. Trends 
in Ecology and Evolution, 13(9): 371-375. 

Schaefer, M.B. 1954. Some aspects of the dynamics of populations important to the management 
of the commercial marine fisheries. Inter-American Tropical Tuna Commission Bulletin, 
1: 25–56.  

Schaefer, M.B. 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern 
tropical Pacific Ocean. Inter-American Tropical Tuna Commission Bulletin, 2: 245–285.  

Schnute, J.T. 2006. Curiosity, recruitment, and chaos: a tribute to Bill Ricker’s inquiring mind. 
Environmental Biology of Fishes 75: 95–110. 

                                                 
1 For the reader’s convenience, we include some useful references that are not explicitly cited in the text. 



 – 24 – 

Schnute, J.T., Boers, N.M., and Haigh, R. 2003. PBS software: maps, spatial analysis, and other 
utilities. Canadian Technical Report of Fisheries and Aquatic Sciences 2496. viii+82 pp. 

Schnute, J.T., Boers, N.M., and Haigh, R. 2004. PBS Mapping 2: user’s guide. Canadian 
Technical Report of Fisheries and Aquatic Sciences 2549. viii+126 pp. 

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2006. PBS Modelling 1: User’s Guide. Canadian 
Technical Report of Fisheries and Aquatic Sciences 2674: viii + 114 p. 

Schnute, J.T., and Richards, L.J. 2002. Surplus production models. Chapter 6, p. 105–126. 
In: Hart, P.J.B., and J.D. Reynolds. Handbook of Fish Biology and Fisheries, Volume 2: 
Fisheries. Blackwell Science Ltd. Oxford, UK. 

Worm, B., Barbier, E,B., Beaumont, N., Duffy, J.E., Folke, C.F., Halpern, B.S.,  Jackson, J.B.C., 
Lotze, H.K., Micheli, F., Palumbi, S.R., Sala, E., Selkoe, K.A., Stachowicz, J.J., and 
Watson, R. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314: 
787-790. 

 


