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Problem Statement

Interval estimation on p is not simple and there seems to be no
agreement on which is best

Intervals when there are 0% or 100% passes tend to be too short

• A standard adjustment for “parameter at a boundary” assumes 2 *
log(likelihood ratio) is a mixture of chi-squares

• For binomial confidence intervals, this is equivalent to using χ2
1−α/2

in place of χ2
1−α

• How well does this work?
• Can we find something better that is almost as simple?
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Binomial Log-Likelihood

The binomial log-likelihood is given by

`(p, x, n) = log

(
n

x

)
+ x log(p) + (n − x) log(1 − p)

where n is the number of independent Bernoulli trials, x is the
number of successes out of n, and p is the probability of success

The Maximum Likelihood Estimate (MLE) of p is given by

p̂ =
x

n
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Confidence Intervals

Interval estimates of p are difficult to achieve due to the
discreteness and skewness (for p 6= 0.5) of the binomial
distribution

Many methods have been devised to estimate confidence
intervals on p

• Likelihood methods: generalized linear models, likelihood ratio,
asymptotic

• Bayesian
• Inversion methods: Wilson, Agresti-Coulls, Fleiss, Clopper-Pearson

The asymptotic method is woefully poor but still part of most
standard statistics curricula
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Confidence Intervals Based On Likelihood Ratio

The likelihood ratio test statistic is define by

Λ(p0, p̂, x, n) = `(p̂, x, n) − `(p0, x, n) ∼ χ2
1,

where
p̂ =

x

n
is the MLE and p0 is the probability of success under the null
hypothesis

Inverting L, we obtain a confidence interval on p:

LCL = arg max
0<p<1

{
Λ(p, p̂, x, n) − 0.5χ2

1

}

UCL = arg min
0<p<1

{
Λ(p, p̂, x, n) − 0.5χ2

1

}
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Estimating The Likelihood Ratio Confidence Interval

The method requires an iterative root-finding algorithm to fin d
the lower and upper confidence bound

Probability of Success (p)
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We will refer to this interval estimate as “LRT”
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Coverage Probability

Coverage probability determines the expected value of any
interval estimate over the binomial density function

C(p, x, n) =

n∑

x=0

I(LCL < p < UCL)

(
n

x

)
px(1 − p)n−x

where p is the true probability of success, and ( LCL, UCL) is an
interval estimate of p
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Properties of C(p, x, n)

Should be close to the level of confidence (1 − α)

Oscillates due to the discreteness and skewness of the binomi al
distribution

There are 2 · n discontinuities (jumps) which exist at the each
confidence interval endpoint
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Coverage Probability For Several Methods

The LRT
method has the
best coverage
probability

• The standard
(asymptotic)
method is
absolutely the
worst

• The compli-
mentary
log-log is not
symmetrical Probability of Success (p)

E
xp

ec
te

d 
C

ov
er

ag
e

0.85

0.90

0.95

0.0 0.2 0.4 0.6 0.8 1.0

Standard Approx
n = 10

Comp. Log−Log
n = 10

0.0 0.2 0.4 0.6 0.8 1.0

Logistic
n = 10

Likelihood Ratio
n = 10

Standard Approx
n = 25

Comp. Log−Log
n = 25

Logistic
n = 25

0.85

0.90

0.95

Likelihood Ratio
n = 25

0.85

0.90

0.95

Standard Approx
n = 50

Comp. Log−Log
n = 50

Logistic
n = 50

Likelihood Ratio
n = 50

Standard Approx
n = 100

0.0 0.2 0.4 0.6 0.8 1.0

Comp. Log−Log
n = 100

Logistic
n = 100

0.0 0.2 0.4 0.6 0.8 1.0

0.85

0.90

0.95

Likelihood Ratio
n = 100

9/17 Yield, Performance, Profitability



Confidence Intervals At The Boundaries

Coverage of intervals
when x = 0 or n is not
optimal

• Expected coverage is
much less than 1 − α
for p close to the
interval end

• Adjusting the α
downward improves
coverage by
increasing the interval
length

Probability of Success (p)
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Adjusting Confidence Intervals At The Boundaries

Changing the
signficance probability
from 0.05 to 0.025
improves the coverage

• Still not optimal as the
discontinuity is too
large

• Coverage is too high
because length of
intervals when x 6= 0
or n seem to be too
long
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Optimal Coverage

Minimize the squared area between the expected coverage and
the desired level of confidence

α0 = arg min
0<α<1

∫ 1

0

[C(p, x, n) − (1 − α)]2 dp

Minimizing latter objective function can be achieved by adju sting
α for all x or simply for x = 0 and n

• Adjusting only the boundary intervals is computationally fairly fast
for relatively small n

• Adjusting all the intervals can be slow even for small n
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Coverage Using Optimal “ α0”

Using an optimal “ α0”
improves coverage

Example with n = 10

• Adjusting boundary
intervals only, α0 is
0.023 when x = 0 or 10

• Adjusting all intervals,
α0 is 0.012 for the
boundary intervals but
monotonically
increasing to 0.095
when x = 5

Optimal Probability Coverage for n = 10
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Adjustments To Significance Probabilities

Optimal confidence level asymptotes around 0.14 for x = 0 or n

Binomial Sample Size
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Summary

Using the LRT confidence interval produces the best coverage
but are not computable by hand

Confidence intervals for p when the observed number of
successes are close to 0 or n are too short using a constant level
of confidence

There is no solution independent of n for adjusting a confidence
intervals at the boundaries

Final recommendation:

• Use the LRT confidence interval (see next slide for software)
• For x = 0 or n set α between 0.015 and 0.025
• For obtaining all confidence interval adjustments use the binom

package in
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The binom package

An package for constructing confidence intervals on the
probability of success in a binomial experiment via several
parameterizations

• Bayes, LRT, probit, logit, cloglog
• Coverage plotting
• Optimal coverage
• Sample size calculation and Power curves
• Tcl/Tk interface for Power curves
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