
Tutorial 3: Geometry Optimisation of Vitamin C Molecule

Problem Statement

The focus of this tutorial is to depart from problem classes involving the search for functions to represent
data, and demonstrate how ROptimus can be flexibly applied to arbitrary problem classes provided that they
are formulated in accordance with ROptimus specifications. Additionally, this tutorial will illustrate that
ROptimus can act as an optimisation kernel while calling external programs to execute a significant amount
of the necessary computation for the optimisation process.

In this tutorial, ROptimus will be used, as an illustrative example, to 3D geometry optimise a molecular
structure. Specifically, ROptimus will be used to determine the optimal values of two dihedral angles in the
L-ascorbic acid (Vitamin C) molecule such that the molecule is in its ground state energy conformation.
Vitamin C was selected to be the studied molecule because it has more than one freely rotating carbon-carbon
bond and the potential for intramolecular hydrogen bonding due to the presence of multiple hydroxyl groups.
Moreover, Vitamin C is not a particularly large molecule. Due to these circumstances, Vitamin C can serve
as a non-trivial case (as opposed to simpler molecules like ethane for instance), but one that does not require
several days or weeks of calculations to arrive to optimal solutions (the optimisation procedures below took
roughly 14-18 hours to terminate).

This is the molecular structure of Vitamin C, with the numbering of non-hydrogen atoms provided from the
scheme used in geometry specification:

The major geometric features that drive the overall state of the molecule are the two C-C bonds in this
structure: the bond joining carbon 3 and 6, and the bond joining carbon 6 and 10. The ground state
conformation of Vitamin C will likely be a conformation such that steric clashes are minimised while also
allowing for close proximity and right orientation between hydrogen bond donor and acceptor atoms. In the
following sections, we formalise this optimisation problem and use ROptimus to arrive at the solution.

Defining ROptimus Inputs

As in the previous tutorials, we must first rigorously define the parameters that we are optimising. Let us
begin by defining a dihedral angle as it will be used to our molecular geometry: a dihedral angle is the angle
between two intersecting planes, where each plane is specified by 3 atoms of which 2 are common between
both planes. Thus, a total of 4 atoms are needed to specify a dihedral angle. The conformation of Vitamin
C with respect to its two freely rotating C-C bonds can be specified via two dihedral angles. Let ψ be the
dihedral angle defined by the atoms numbered 1, 3, 6 and 7 and let φ be the dihedral angle defined by the
atoms numbered 7, 6, 10 and 11. Having defined these two angles, we can now define the parameter set K

29

as a numeric vector of length 2 whose entries are ψ and φ. We will arbitrarily initialise ψ and φ to have
value 180. The corresponding Vitamin C conformation is illustrated below using a 3D structure and Newman
projections along the two rotatable carbon-carbon bonds:

In the 3D structure, grey denotes carbon, red denotes oxygen and white denotes hydrogen atoms.
K <- c(PHI=180, PSI=180)

Now we will specify a model function m() that will operate on K. Starting from an arbitrary molecular
conformation, altering the value of K will likely cause certain clashes or non-optimal interactions between
atoms in the molecule that are not used in the definition of the angles ψ and φ. As such, after receiving an
input set of parameters K, m() will have to alter the 3D location of constituents atoms while holding K fixed to
arrive at the most stable geometry for the input K. Here, unlike in previous tutorials, to accomplish this task

30

m() will call an external program MOPAC. MOPAC is a program for semiempirical quantum mechanics (QM)
calculations, and can perform constrained and unconstrained geometry optimisations to arrive at a stationary
state (note that calling MOPAC for a single initial geometry instance does not guarantee a global minimum
will be found). MOPAC takes as input the specification of an initial molecular geometry in addition to an
indication of which molecules the program is able to displace (or angles it can alter) and outputs a nearby
local minimum molecular conformation with its corresponding energy in kcal/mol. For this optimisation
problem, the input to MOPAC will be structured as a Z matrix, a common form for describing a molecular
conformation which consists of using lengths, angles and dihedral angles with respect to previously defined
atoms to define new atoms in the conformation.

The function m() will construct a Z matrix for Vitamin C using the input dihedral angles K and default values
for the remaining geometric relationships needed to define the molecule. m() will then call MOPAC with the
newly constructed Z matrix, specifying that all relationships may be altered by QM optimisation, except the
input dihedral angles K. Finally, m() will return the energy calculated by MOPAC via PM6 Hamiltonian.

Note that to avoid non-convergence issues when calling MOPAC, m() returns a default energy value of −100
kcal/mol if a call to MOPAC does not terminate within 10 seconds (over-simplifications just for the sake of
this illustrative example). Also, note that although m() requires no additional data on top of K to operate,
m() must still be defined to take an input DATA in accordance with ROptimus specifications. Lastly, note
that a local installation of MOPAC (2016) is required to execute this optimisation procedure. Below is the
definition of m():
m <- function(K, DATA){

notconvergedE = -100.00
this should be your local path to MOPAC
mopac.cmd = "/home/group/prog/mopac2016/MOPAC2016.exe"
clean = TRUE

MOPAC semiempirical QM input file preparation, with given PHI and PSI
dihedral angles.

geo <- c(
"RHF PM6 EF GEO-OK MMOK T=10 THREADS=1",
"Vitamin C with two controllable dihedral angles psi(7,6,3,1) and phi(11,10,6,7)",
" ",
"O 0.00000000 0 0.0000000 0 0.0000000 0 0 0 0",
"H 0.98468620 1 0.0000000 0 0.0000000 0 1 0 0",
"C 1.43651250 1 110.7230618 1 0.0000000 0 1 2 0",
"H 1.10751723 1 103.6603154 1 -167.5282722 1 3 1 2",
"H 1.10658657 1 110.2236860 1 -51.3620456 1 3 1 2",
"C 1.53950336 1 112.8074046 1 -123.2791585 1 3 4 5",
paste0("O 1.42824262 1 103.4315186 1 ",K["PSI"]," 0 6 3 1"),
"H 0.99584949 1 109.9022382 1 -165.7055126 1 7 6 3",
"H 1.11472171 1 108.4417082 1 75.1535637 1 6 7 8",
"C 1.54244170 1 109.4042184 1 -120.8240216 1 6 7 9",
paste0("O 1.46313669 1 105.7792445 1 ",K["PHI"]," 0 10 6 7"),
"H 1.11252563 1 112.8336666 1 -114.5813834 1 10 6 11",
"C 1.51686608 1 113.4849244 1 -112.8332453 1 10 12 11",
"O 1.34410484 1 125.3617342 1 179.6090511 1 13 10 11",
"H 1.03381724 1 110.9736522 1 -13.3419919 1 14 13 10",
"C 1.36084908 1 124.8906459 1 167.6242325 1 13 14 15",
"O 1.35614887 1 131.9374989 1 -0.0333000 1 16 13 14",
"H 1.00338885 1 109.4220239 1 0.3798200 1 17 16 13",
"C 1.49109250 1 118.0837177 1 -179.7749947 1 16 17 18",

31

"O 1.18961787 1 136.9144035 1 -0.6060924 1 19 16 17",
" "

)

Submitting the MOPAC optimisation job, where all the spatial parameters
are relaxed except the pre-set PHI and PSI angles. The job is run requesting
maximum 10 seconds of time limitation. Most (if not all) complete within
half a second. Cases with unrealistic clashes will likely take much longer,
hence the job will be interrupted and notconvergedE value will be returned
for the energy evaluation.
random.id <- as.character(sample(size=1, x=1:10000000))
write(geo, file=paste0(random.id,".mop"))
system(paste0(mopac.cmd," ",random.id,".mop"))

if(file.exists(paste0(random.id,".arc"))){
e.line <- grep("HEAT OF FORMATION",

readLines(paste0(random.id,".arc")),
value=TRUE)

e.line <- strsplit(e.line," ")[[1]]
O <- as.numeric(e.line[e.line!=""][5])

} else {
O <- notconvergedE

}

if(clean){
file.remove(grep(random.id, dir(), value=TRUE))

}

return(O) # heat of formation in kcal/mol
}

Next, we define the function u() which returns an energy E and a quality Q of the candidate solution. Since
the m() will already output a value for the physical energy of the candidate Vitamin C conformation, u()
can simply set E to be the same return value of m(). We will make u() set Q to be the negative of the return
value of m() such that candidate conformations with lower energies produce higher values of quality Q. Again,
although u() does not require any additional data to accomplish this functionality, it must nevertheless be
written to optionally accept an input parameter DATA.
u <- function(O, DATA){
result <- NULL
result$Q <- -O
result$E <- O
return(result)

}

Finally, we define the alteration function r(). r() will randomly select either ψ or φ to alter. Thereafter, r()
randomly increases or decreases the selected angle by 2 degrees. r() will also ensure that ψ, φ ∈ [−180.0, 180.0]
throughout the optimisation process.
r <- function(K){
K.new <- K
Setting the alteration angle to 2 degrees:
alter.by <- 2
Randomly selecting a term:
K.ind.toalter <- sample(size=1, x=1:length(K.new))

32

Altering that term by either +alter.by or -alter.by
K.new[K.ind.toalter] <-
K.new[K.ind.toalter] + sample(size=1, x=c(alter.by, -alter.by))

Setting the dihedral angles to be always within the -180 to 180 range.
if(K.new[K.ind.toalter] > 180.0){
K.new[K.ind.toalter] <- K.new[K.ind.toalter] - 360

}

if(K.new[K.ind.toalter] < -180.0){
K.new[K.ind.toalter] <- K.new[K.ind.toalter] + 360

}

return(K.new)
}

The process of determining the energy of a conformation corresponding to a given set of angles ψ, φ is the
most computationally intensive part of this optimisation formulation. Having defined the necessary inputs for
Optimus(), it should be apparent that this calculation will entirely be handled by MOPAC. This ability to
serve as an optimisation kernel and flexibly be knitted to an external program is one of the many strengths
of ROptimus.

Defining a Benchmark Solution

Before calling Optimus(), we have established a benchmark solution to be used to independently evaluate
the ability of ROptimus to arrive to correct ψ and φ combination. In order to explore the energy landscape
associated with the parameter space of ψ and φ, a PM6 optimisation was performed on 10 conformers picked
from the wells pf a more comprehensive potential energy surface scanning through MM2 molecular mechanics
force field (the details of PM6 and MM2 are not important for the purposes of this tutorial). This resulted in
the identification of 7 energy minima, shown in the table below (listed in increasing order by energy):

Table 7: Seven conformational minima calculated for Vitamin C
with PM6.

E (kcal/mol) PHI PSI
Conformation 1 -233.206 92.58 74.19
Conformation 2 -232.877 50.60 -172.79
Conformation 3 -231.800 -169.67 -41.23
Conformation 4 -230.822 47.43 -166.61
Conformation 5 -230.274 -172.20 -54.45
Conformation 6 -225.214 -75.69 -104.44
Conformation 7 -224.875 -73.31 155.02

We will assume that the above listed conformations comprehensively represent most, if not all, of the possible
minima in the parameter space of ψ and φ. Under this assumption, Conformation 1 should be considered
as the ground state conformation of Vitamin C. The accuracy of the results produced by ROptimus can
thus be judged by comparing them to the data listed in the above table. It is important to recognize that
the “resolution” of ψ and φ when being optimised by ROptimus is set to 2 degrees due to the manner in
which r() was defined. As such, results produced by ROptimus that are within plus or minus 2 degrees of a
reference conformation should be tolerated.

33

Acceptance Ratio Simulated Annealing ROptimus Run

For the Acceptance Ratio Annealing run, we will set NUMITER to 100 000 because each optimsation step is
more costly due to the relatively computationally expensive calls to MOPAC. Moreover, we will set CYCLES
to 2. Although this shortens the length of an annealing cycle to 50 000 steps (whereas 100 000 steps per
cycle has been kept constant over the previous tutorials), having more than 1 annealing cycle is likely more
beneficial than insisting on a cycle lasting 100 000 steps as opposed to 50 000.
Optimus(NCPU=4, OPTNAME="vitamin_4_SA",

NUMITER=100000, CYCLES=2, DUMP.FREQ=50000, LONG=FALSE,
OPT.TYPE="SA",
K.INITIAL=K, rDEF=r, mDEF=m, uDEF=u, DATA=NULL)

Table 8: 4-core Acceptance Ratio Simulated Annealing results from
ROptimus runs.

E (kcal/mol) PHI PSI
CPU 1 -232.874 50 -172
CPU 2 -232.353 -158 30
CPU 3 -232.874 50 -172
CPU 4 -232.874 50 -172

CPUs 1, 3 and 4 all arrived at a conformation defined by {φ = 50, ψ = −172}, with an energy of −232.874
kcal/mol. The below 3D structure and Newman projections depict this solution:

34

This conformation is equivalent to benchmark Conformation 2. Thus, in this example, Acceptance Ratio
Simulated Annealing was able to find the Vitamin C conformation with the second lowest energy in the
parameter space. This performance is strong, especially given that the limited steps and cycles executed, and
that the energy difference between Conformation 1 and Conformation 2 is only −0.329 kcal/mol.

The graphs below illustrate the system psuedo temperature and observed acceptance ratio for the last 20 000
optimisation iterations executed by CPU 3.

80000 85000 90000 95000 100000

0.
00

4
0.

00
6

0.
00

8
0.

01
0

System Pseudo Temperature (CPU 3)

Step

Te
m

pe
ra

tu
re

35

80000 85000 90000 95000 100000

0
20

40
60

80
10

0

Observed Acceptance Ratio (CPU 3)

Step

A
cc

ep
ta

nc
e

ra
tio

s
(%

)

Acceptance Ratio Replica Exchange ROptimus Run

Let us now consider the Replica Exchange version of ROptimus on 12 processors with the variable ACCRATIO
defined as in the previous tutorials.
ACCRATIO <- c(90, 82, 74, 66, 58, 50, 42, 34, 26, 18, 10, 2)

Just as in the Acceptance Ratio Simulated Annealing run, we will set NUMITER to 100 000. Furthermore, we
will set EXCHANGE.FREQ to 500 such that the number of iterations between subsequent exchanges between
replicas is 200 as it was in Tutorial 2. For the same reasons as in Tutorial 2, we will set STATWINDOW to 50
for the Replica Exchange run.
Optimus(NCPU=12, OPTNAME="vitamin_12_RE",

NUMITER=100000, EXCHANGE.FREQ=500, STATWINDOW=50, DUMP.FREQ=50000, LONG=FALSE,
OPT.TYPE="RE", ACCRATIO=ACCRATIO,
K.INITIAL=K, rDEF=r, mDEF=m, uDEF=u, DATA=NULL)

Table 9: 12-core Acceptance Ratio Replica Exchange results from
ROptimus run.

Replica Acceptance Ratio E (kcal/mol) PHI PSI
CPU 1 90 -229.2359 -164 -178
CPU 2 82 -229.2359 -164 -178
CPU 3 74 -233.1453 82 84
CPU 4 66 -233.1979 90 76
CPU 5 58 -229.2359 -164 -178
CPU 6 50 -232.8742 50 -172
CPU 7 42 -233.1947 94 74
CPU 8 34 -229.2359 -164 -178
CPU 9 26 -229.2359 -164 -178
CPU 10 18 -227.6394 180 158
CPU 11 10 -229.2359 -164 -178
CPU 12 2 -229.2359 -164 -178

36

Of the 12 replicas, CPU 4 recovered the conformation with the lowest energy (−233.1979), defined by
{φ = 90, ψ = 76}. The below 3D structure and Newman projections depict this solution:

This solution corresponds to reference Conformation 1, the global minimum energy state for Vitamin C. Thus,
for this optimisation problem, under the limits of the set number of steps and cycles, the Replica Exchange
version of ROptimus outperformed Acceptance Ratio Annealing by succeeding in finding the global minimum
of the energy landscape.

If we compare the solution found by CPU 4 to benchmark Conformation 1, it is evident that the value
for φ found by ROptimus lies slightly outside of the plus or minus 2 degree window that was discussed
earlier. Contrarily, CPU 7 finds a solution {φ = 94, ψ = 74} which does lie strictly within the resolution
window. Despite this, the solution of CPU 4 has a slightly lower energy (−233.1979) than the solution of
CPU 7 (−233.1947) and so represents a better solution. Finally, notice that Replica 6 recovered the same
conformation that was identified by Acceptance Ratio Simulated Annealing ROptimus.

37

The below graphs illustrate the system pseudo temperature and observed acceptance ratio for the first 20 000
optimisation iterations executed by CPU 4 (66% acceptance ratio replica).

0 5000 10000 15000 20000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

System Pseudo Temperature (CPU 4 − 66% Acceptance Ratio)

Step

Te
m

pe
ra

tu
re

0 5000 10000 15000 20000

0
20

40
60

80
10

0

Observed Acceptance Ratio (CPU 4 − 66% Acceptance Ratio)

Step

A
cc

ep
ta

nc
e

ra
tio

s
(%

)

When the optimisation process is first initialised, it is very unlikely that the input initial temperature is
conducive to the target acceptance ratio. As such, the adaptive thermoregulation alters the system pseudo-
temperature considerably and rapidly to align the observed acceptance ratio with the target acceptance ratio,
as can be seen in the above two graphs. Moreover, as stated in the previous tutorial, an exchange between
two replicas often has a similar effect of introducing a parameter configuration that is not conducive to the
current system pseudo temperature, which necessitates significant temperature adjustments. Accordingly,
sharp increases or decreases in the system pseudo temperature and significant changes in the value around
which the observed acceptance ratio oscillates in the graph above likely indicate steps at which an exchange
involving replica 4 occurred.

38

Summary

We are now familiar with how to structure a more complex optimisation problem, involving an external
program, to be solved with ROptimus as a kernel. On the particular example of geometry optimisation here,
we saw that the Simulated Annealing mode of ROptimus was able to find the second lowest local minimum
(under restricted number of annealing cycles), while the Replica Exchange mode recovered the global energy
minimum.

Table 10: Summary of solutions.

Energy (kcal/mol) PHI PSI
Ground State Reference -233.2060 92.58 74.19
ROptimus (AR Simulated Annealing) -232.8740 50.00 -172.00
ROptimus (AR Replica Exchange) -233.1979 90.00 76.00

39

	Tutorial 3: Geometry Optimisation of Vitamin C Molecule
	Problem Statement
	Defining ROptimus Inputs
	Defining a Benchmark Solution
	Acceptance Ratio Simulated Annealing ROptimus Run
	Acceptance Ratio Replica Exchange ROptimus Run
	Summary

