A Common Database Interface (DBI)

R-Databases Special Interest Group
r-sig-do@stat.math.ethz.ch

26 August 2002 (Updated 16 June 2003)

Contents

1 Version

2

3

Introduction

DBI Classes and M ethods

31 ClassDBlIGhjectt
32 ClassDBIDriVer it e e e e
33 ClassDBl Connection e,
34 ClassDBIResult,

4 Data Type Mappings

5 Utilities

6 Open Issuesand Limitations

7 Resources

Abstract
This document describes a common interface between the S language (in its

R and S-Plus implementations) and database management systems (DBMS). The
interface defines a small set of classes and methods similar in spirit to Perl’s DBI,
Java's JDBC, Python's DB-API, and Microsoft’s ODBC.

1 Version

o 01Ol w N

©

10

11

This document describes version 0.1-6 of the database interface API (application pro-
gramming interface).

mailto:r-sig-db@stat.math.ethz.ch

2 Introduction

Thedatabase interface (DBI) separatesthe connectivity tothe DBM Sinto a“front-end”
and a “back-end”. Applications use only the exposed “front-end” API. The facilities
that communi cate with specific DBMS (Oracle, PostgreSQL, etc.) are provided by “de-
vicedrivers’ that get invoked automatically by the Slanguage evaluator. Thefollowing
exampleillustrates some of the DBI capabilities:

Choose the proper DBMS driver and connect to the server

drv <- dbDriver("ODBC")
con <- dbConnect(drv, "dsn", "usr", "pwd")

The interface can work at a higher |evel inporting tables
as data.franes and exporting data.frames as DBMS tabl es.

dbLi st Tabl es(con)

dbLi st Fi el ds(con, "quakes")

i f (dbExi stsTabl e(con, "new results"))
dbRenoveTabl e(con, "new results")

dbWiteTabl e(con, "new results", new. output)

The interface allows |ower-level interface to the DBMS
res <- dbSendQuery(con, paste(
"SELECT g.id, g.mrror, g.diam e.voltage",
"FROM geom table as g, elec_neasures as e",
"WHERE g.id = e.id and g.nmrrortype = 'inside ",
"ORDER BY g.diant))
out <- NULL
whi | e(! dbHasConpl et ed(res)) {
chunk <- fetch(res, n = 10000)
out <- c(out, doit(chunk))

}

Free up resources
dbC ear Resul t (res)
dbDi sconnect (con)
dbUnl oadDri ver (drv)

(only the first 2 expressions are DBM S-specific — al others are independent of the
database engine itself).

Individual DBI drivers need not implement all the features we list below (we indi-
cate those that are optional). Furthermore, drivers may extend the core DBI facilities,
but we suggest to have these extensions clearly indicated and documented.

The following are the elements of the DBI:

1. A set of classes and methods (Section 3) that defineswhat operationsare possible
and how they are defined, e.g.:

e connect/disconnect to the DBMS

e create and execute statementsin the DBMS

e extract results/output from statements

e error/exception handling

e information (meta-data) from database objects
¢ transaction management (optional)

Some things are left explicitly unspecified, e.g., authentication and even the
guery language, athough it is hard to avoid references to SQL and relational
database management systems (RDBMYS).

2. Drivers

Driversare collection of functionsthat implement the functionality defined above
in the context of specific DBMS, e.g., mSQL, Informix.

3. Datatype mappings (Section 4.)

Mappings and conversions between DBMS data types and R/S objects. All
drivers should implement the “basic” primitives (see below), but may chose to
add user-defined conversion function to handle more generic objects (e.g., fac-
tors, ordered factors, time series, arrays, images).

4, Utilities (Section 5.)

These facilities help with details such as mapping of identifiers between S and
DBMS (e.g.," " isillega in R/Snhames, and " . " isused for constructing com-
pound SQL identifiers), etc.

3 DBI Classesand Methods

The following are the main DBI classes. They need to be extended by individual
database back-ends (Sybase, Oracle, etc.) Individua drivers need to provide methods
for the generic functionslisted here (those methods that are optional are so indicated).

Note: Although R releases prior to 1.4 do not have a formal concept of classes,
we will use the syntax of the S Version 4 classes and methods (available in R releases
1.4 and later as library net hods) to convey precisely the DBI class hierarchy, its
methods, and intended behavior.

TheDBI classesare DBl Cbj ect ,DBI Dri ver,DBI Connecti onandDBI Resul t .
All thesearevirtual classes. Driversdefine new classesthat extendthese, e.g., PgSQLDr i ver,
PgSQLConnect i on, and so on.

DBl Obj ect : Virtual class® that groupsall other DBI classes.

1A virtual class allows us to group classes that share some common characteristics, even if their imple-
mentations are radically different.

DBI (bj ect

T

/

_DBIDriver DBI Connecti on DBl Resul t
PgSQLDri ver PgSQLConnecti on PgSQLResul t
QODBCDx i ver QODBCConnect i on ODBCResul t
MySQLDri ver MySQLConnect i on M/SQLResul t

Figure 1. Class hierarchy for the DBI. The top two layers are comprised of virtual
classes and each lower layer represents a set of driver-specific implementation classes
that provide the functionality defined by the virtual classes above.

DBl Dri ver: Virtua classthat groupsall DBMS drivers. Each DBMS driver extends
thisclass. Typically generator functionsinstantiate the actual driver objects, e.g.,
PgSQL() , HDF5() , Ber kel eyDB() .

DBI Connect i on: Virtua class that encapsulates connectionsto DBMS.

DBI Resul t: Virtual classthat describesthe result of aDBMS query or statement.

[Q: Should we distinguish between a simple result of DBMS statements e.g., as
del et e from DBMS queries (i.e., those that generate data).]

The methods f or mat , pri nt, show, dbGet | nf o, and summar y are defined
(and implemented in the DBI package) for the DBl Obj ect base class, thus available
to al implementations; individual drivers, however, are free to override them as they
seefit.

format (x, ...): producesaconcisecharacter representation (label) for the DBl Obj ect
X.

print(x, ...)/show x): printsaone-lineidentification of the object x.

sumrar y(obj ect, ...): producesa concise description of the object. The de-

fault method for DBl Obj ect simply invokesdbGet | nf o(dbQbj) and prints
the name-value pairs one per line. Individual implementationsmay tailor this ap-
propriately.

dbGet I nf o(dbObj, ...): extractsinformation(meta-data) relevant for the DBI Cbj ect
dbQbj . It may return alist of key/value pairs, individual meta-dataif supplied
inthe call, or NULL if the requested meta-datais not available.

Hint: Driver implementationsmay chooseto allow an argument what to specify
individual meta-data, e.g.,dbGet | nf o(drv, what = "max. connections").

In the next few sub-sections we describe in detail each of these classes and their
methods.

3.1 ClassDBI Obj ect

This class simply groups all DBI classes, and thus all extend it.

3.2 ClassDBI Dri ver

This class identifies the database management system. It needs to be extended by
individual back-ends (Oracle, PostgreSQL, etc.)

The DBI provides the generator dbDri ver (" dri ver Name") which simply
invokes the function dr i ver Name(), which in turn instantiates the corresponding
driver object.

TheDBI Dri ver class defines the following methods:

driverNane(): initializesthe driver code. The name dr i ver Name refersto the
actual generator functionfor the DBMS, e.g., RPgSQL() , RODBC() , HDF5() .
Thedriver instance object isused with dbConnect (seepage 6) for opening one
or possibly more connectionsto one or more DBMS.

dbLi st Connections(drv, ...): listof current connectionsbeing handled by
thedr v driver. May be NULL if there are no open connections. Drivers that do
not support multiple connections may return the one open connection.

dbGet I nf o(dbOhj, ...): returnsalist of name-valuepairsof information about
the driver.
Hint: Useful entries could include

nane: thedriver name (e.g., " RODBC", " RPgSQL");
dri ver. version: version of thedriver;
DBl . ver si on: theversionof the DBI that thedriver implements, e.g.," 0. 1- 2";

client.version: of theclient DBMS libraries (e.g., version of thel i bpq
library in the case of RPgSQL);

max. connecti ons: maximum number of simultaneous connections;

plus any other relevant information about the implementation, for instance, how
the driver handles upper/lower case in identifiers.

dbUnl oadDri ver ("dri ver Nane") (optional): freesall resources(loca andre-
mote) used by the driver. Returnsalogical to indicateif it succeeded or not.

3.3 ClassDBI Connecti on

This virtual class encapsulates the connection to a DBMS, and it provides access to
dynamic queries, result sets, DBM S session management (transactions), etc.

Note: Individual driversarefreeto implement single or multiple simultaneous con-
nections.

The methods defined by the DBl Connect i on classinclude:

dbConnect (drv, ...): creates and opens a connection to the database imple-
mented by the driver dr v (see Section 3.2). Each driver will define what other
arguments are required, e.g., "dbnamne" or "dsn" for the database name,
"user",and" passwor d" . It returnsan object that extendsDBI Connect i on
in adriver-specific manner (e.g., the MySQL implementation could create an ob-
ject of class My SQLConnect i on that extends DBI Connect i on).

dbDi sconnect (conn, ...): closesthe connection, discards all pending work,
and frees resources (e.g., memory, sockets). Returnsalogical indicating whether
it succeeded or not.

dbSendQuery(conn, statenent, ...): submitsonestatementtotheDBMS.
It returnsa DBl Resul t object. This object is needed for fetching datain case
the statement generates output (see f et ch on page 8), and it may be used for
guerying the state of the operation; see dbGet | nf o and other meta-data meth-
ods on page 9.

dbGet Query(conn, statenent, ...): submit, execute, and extract output
in oneoperation. Theresulting object may beadat a. f r ane if thest at enent
generates output. Otherwise the return value should be a logical indicating
whether the query succeeded or not.

dbGet Exception(conn, ...): returnsalistwithelementser r Numanderr Msg
with the status of the last DBMS statement sent on a given connection (this in-
formation may also be provided by the dbGet | nf o() meta-data function on
the conn object.

Hint: The ANSI SQL-92 defines both a status code and an status message that
could be return as members of the list.

dbGet | nfo(dbObj, ...): returnsalist of name-value pairs describing the state
of the connection; it may return one or more meta-data, the actual driver method
allowsto specify individual pieces of meta-data (e.g., maximum number of open
results/cursors).

Hint: Useful entries could include

dbnane: the name of the database in use;

db. ver si on: the DBMS server version (e.g., "Oracle 8.1.7 on Solaris’;
host : host where the database server resides;

user: user name;

passwor d: password (isthis safe?);

plus any other argumentsrelated to the connection (e.g., thread id, socket or TCP
connection type).

dbLi st Resul ts(conn, ...): list of DBl Resul t objects currently active on
the connection conn. May be NULL if no result set is active on conn. Drivers
that implement only one result set per connection could return that one object
(noneed to wrap it in alist).

Note: The following are convenience methods that simplify the import/export of
(mainly) data.frames. The first five methods implement the core methods needed to
at t ach() remote DBMSto the Ssearch path. (For details, see[2, 3].)

Hint: For relational DBMS these methods may be easily implemented using the
core DBl methodsdbConnect ,dbSendQuer y, andf et ch, dueto SQL reflectance
(i.e., oneeasily getsthis meta-data by querying the appropriate tables on the RDBMS).

dbLi st Tabl es(conn, ...): returnsacharacter vector (possibly of zero-length)
of object (table) names available on the conn connection.

dbReadTabl e(conn, nane, ...): importsthedatastored remotely in theta
ble nane on connectionconn. Usethefield r ow. nanes asther ow. nanes
attribute of the output data.frame. Returnsadat a. f r ane.

[Q: should we spell out how row.names should be created? E.g., use a field
(with unigue values) as row.names? Also, should dbReadTabl e reproduce a
data.frame exported withdbW i t eTabl e?]

dbW it eTabl e(conn, nane, value, ...): writethe object val ue (per-
haps after coercing it to data.frame) into the remote object namne in connection
conn. Returns alogical indicating whether the operation succeeded or not.

dbExi st sTabl e(conn, name, ...): doesremoteacbjectnamne exissonconn?
Returns alogical.

dbRenoveTabl e(conn, name, ...): removes remote object name on con-
nection conn. Returns a logical indicating whether the operation succeeded or
not.

dbLi st Fi el ds(conn, nane, ...): returnsacharacter vector listing thefield

names of the remote table nane on connection conn (see dbCol unml nf o()
for extracting datatype on atable).

Note: The following methods deal with transactions and stored procedures. All
these functions are optional.

dbComni t (conn, ...) (optional): commits pending transaction on the connec-
tion and returns TRUE or FAL SE depending on whether the operation succeeded
or not.

dbRol | back(conn, ...) (optional): undoes current transaction on the connec-
tion and returns TRUE or FAL SE depending on whether the operation succeeded
or not.

dbCal | Proc(conn, storedProc, ...)(optional): invokes a stored proce-
dureinthe DBMS and returnsa DBl Resul t object.

[Stored procedures are not part of the ANSI SQL-92 standard and vary substan-
tially from one RDBM S to another.]

3.4 ClassDBIl Resul t

This virtual class describes the result and state of execution of a DBMS statement
(any statement, query or non-query). The result set r es keeps track of whether the
statement produces output for R/S, how many rows were affected by the operation,
how many rows have been fetched (if statement is a query), whether there are more
rowsto fetch, etc.

Note: Individual drivers are free to allow single or multiple active results per con-
nection.

[Q: Should we distinguish between results that return no data from those that return
data?]

Theclass DBl Resul t defines the following methods:

fetch(res, n, ...): fetchesthenextn elements(rows) fromtheresult setr es
and return them as a data.frame. A value of n=- 1 is interpreted as “return all
elements/rows’.

dbCl earResul t (res, ...): flushes any pending data and frees al resources

(local and remote) used by the object r es on both sides of the connection. Re-
turnsalogical indicating success or not.

dbGet I nf o(dbCbj, ...): returnsaname-vaue list with the state of the result
Set.
Hint: Useful entries could include

st at ement : acharacter string representation of the statement being executed;

rows. af f ect ed: number of affected records (changed, deleted, inserted, or
extracted);

r ow. count : number of rows fetched so far;

has. conpl et ed: hasthe statement (query) finished?

i s.sel ect: alogical describing whether or not the statement generates out-
put;

plus any other relevant driver-specific meta-data.

dbCol uml nfo(res, ...): producesadataframethat describesthe output of a
query. The data.frame should have as many rows as there are output fieldsin the

result set, and each column in the data.frame should describe an aspect of the
result set field (field name, type, etc.)

Hint: The data.frame columns could include

fiel d. name: DBMSfield label;
field.type: DBMSfield type (implementation-specific);
dat a. t ype: corresponding R/S datatype, e.g.," i nt eger";

preci si on/scal e: (asin ODBC terminology), display width and number of
decimal digits, respectively;

nul | abl e: whether the corresponding field may contain (DBMS) NULL val-
ues,

plus other driver-specific information.

dbSet Dat aMappi ngs(fl ds, ...) (optional): definesaconversionbetweenin-
ternal DBMS data types and R/S classes. We expect the default mappings (see
Section 4) to be by far the most common ones, but users that need more control
may specify a class generator for individual fields in the result set. [This topic
needs further discussion.]

Note: The following are convenience methods that extract information from the
result object (they may be implemented by invoking dbGet | nf o() with appropriate
arguments).

dbGet St at enent (res, ...) (optional): returnsthe DBMS statement (asachar-
acter string) associated with theresultr es.

dbGet RowsAf f ect ed(res, ...) (optional): returnsthe number of rowsaffected
by the executed statement (number of records deleted, modified, extracted, etc.)

dbHasConpl et ed(res, ...)(optional): returnsalogical that indicateswhether
the operation has been completed (e.g., are there more records to be fetched?).

dbGet RowCount (res, ...) (optional): returns the number of rows fetched so
far.

4 Data Type Mappings

The data types supported by databases are different than the data typesin R and S,
but the mapping between the “primitive” types is straightforward: Any of the many
fixed and varying length character types are mapped to R/S " char act er . Fixed-
precision (non-1EEE) numbers are mapped into either doubles (" nuneri c") or long
("integer"). Notice that many DBMS do not follow the so-called | EEE arithmetic,
so there are potential problems with under/overflows and loss of precision, but given
the R/S primitive types we cannot do too much but identify these situations and warn
the application (how?).

By default dates and date-time objects are mapped to character using the appropri-
ate TO.CHAR function in the DBMS (which should take care of any locale informa-
tion). Some RDBM S support the type CURRENCY or MONEY which should be mapped
to " nuneri c" (again with potential round off errors). Large objects (character, bi-
nary, file, etc.) also need to be mapped. User-defined functions may be specified to do
the actual conversion (as has been done in other inter-systems packages 2).

Specifying user-defined conversion functions still needs to be defined.

5 Utilities

The core DBI implementation should make availableto al drivers some common basic
utilities. For instance:

dbGet DBI Ver si on: returnsthe version of the currently attached DBI as a string.

dbDat aType(dbQbj, obj, ...): returnsastringwith the (approximately) ap-
propriate data type for the R/S object obj . The DBI can implement this follow-
ing the ANSI-92 standard, but individual drivers may want/need to extend it to
make use of DBM S-specific types.

make. db. nanes(dbQhj, snanes, ...): mapsR/Snames(identifiers)to SQL
identifiersreplacing illegal characters(as™ . ") by thelegal SQL " .

SQLKeywor ds(dbQbj, ...): returns a character vector of SQL keywords (re-
served words). The default method returns the list of . SQL92Keywor ds, but
drivers should update this vector with the DBM S-specific additional reserved
words.

i sSSQLKeywor d(dbQbj, name, ...): foreachelementin the character vector
namne determine whether or not it isan SQL keyword, as reported by the generic
function SQLKeywor ds. Returns a logical vector parallel to the input object
name.

6 Open Issuesand Limitations

There are a number of issues and limitations that the current DBI conscientiously does
not address on the interest of simplicity. We do list here the most important ones.

Non-SQL: Isitredistic to attempt to encompass non-relational databases, like HDF5,
Berkeley DB, etc.?

Security: alowing users to specify their passwords on R/S scripts may be unaccept-
able for some applications. We need to consider alternatives where users could
store authentication on files (perhaps similar to ODBC'sodbc. i ni) with more
stringent permissions.

2 Duncan Temple Lang has volunteered to port the data conversion code found in R-Jave, R-Perl, and
R-Python packages to the DBI

10

Exceptions: the exception mechanism is a bit too simple, and it does not provide for
information when problems stem from the DBMS interface itself. For instance,
under/overflow or loss of precision as we move numeric datafrom DBMSto the
more limited primitivesin R/S.

Asynchronous communication: most DBMS support both synchronous and asyn-
chronous communi cations, alowing applications to submit a query and proceed
while the database server process the query. The application is then notified (or
it may need to poll the server) when the query has completed. For large com-
putations, this could be very useful, but the DBI would need to specify how to
interrupt the server (if necessary) plus other details. Also, some DBMS require
applications to use threads to implement asynchronous communication, some-
thing that neither R nor S-Plus currently addresses.

SQL scripts: the DBI only defines how to execute one SQL statement at atime, forc-
ing users to split SQL scriptsinto individual statements. We need a mechanism
by which users can submit SQL scripts that could possibly generate multiple
result sets; in this case we may need to introduce new methods to loop over
multiple results (similar to Python’snext Resul t Set).

BLOBS/CLOBS: large objects (both character and binary) present some challenges
both to R and S-Plus. It is becoming more common to store images, sounds, and
other data types as binary objectsin DBMS, some of which can be in principle
quite large. The SQL-92 ANSI standard allows up to 2 gigabytes for some of
these objects. We need to carefully plan how to deal with binary objects.

Transactions: transaction management is not fully described.

Additional methods. Do we need any additional methods? (e.g., dbLi st Dat abases(conn),
dbLi st Tabl el ndi ces(conn, nane),howdowelistal availabledrivers?)

Bind variables: theinterfaceis heavily biased towards queries, as opposed to general
purpose database development. In particular we made no attempt to define “ bind
variables’; thisis a mechanism by which the contents of R/S objects are implic-
itly moved to the database during SQL execution. For instance, the following
embedded SQL statement

/[* s */
SELECT * fromenp_table where enp_id = :sanpl eEnpl oyee

would take the vector sanpl eEnpl oyee and iterate over each of its elements
to get the result. Perhaps the DBI could at some point in the future implement
this feature.

7 Resources

The idea of a common interface to databases has been successfully implemented in
various environments, for instance:

11

Java's Database Connectivity (JDBC) (www.javasoft.com).
In C through the Open Database Connectivity (ODBC) (www.genix.net/unixODBC).
Python’s Database Application Programming Interface (www.python.org).
Perl’s Database Interface (dbi.perl.org).

References

[1] David Axmark, Michael Widenius, Jeremy Cole, and Paul DuBois. MySQL

Reference Manual. htt p: // www. mysql . com docunent ati on/ nysql,
2001.

[2] John M. Chambers. Data management in S. Technical report, Bell Labs, Lucent

Technologies, htt p: / / st at . bel | - | abs. conf st at/ doc, 1991. 3.3

[3] John M. Chambers. Database classes. Technical report, Bell Labs, Lucent Tech-

nologies, ht t p: / / stat . bel | -1 abs. conl st at / Sbook, 1998. 3.3

[4] Peter Dagaard. The R-Tcl/Tk interface. In Proceed-

ings of the Distributed Satistical Computing 2001 \Wbrkshop,
http://ww. ci.tuw en. ac. at/ Conf erences/ DSC- 2001, 2001.
Vienna University of Technology.

[5] Alligator Descartes and Tim Bunce. Programming the Perl DBI. O’ Reilly, 2000.

[6] Paul DuBois. MySQL. New Riders, 2000.

[7] JonEllis, LindaHo, and Maydene Fisher. JIDBC 3.0 Specification. Sun Microsys-

(8]

(9]

(10]

(11]

(12]

tems, Inc, htt p: //j ava. sun. com’ Downl oad4, 2000.

Torsten Hothorn, David A. James, and Brian D. Ripley. R/S interfaces to
databases. In Proceedings of the Distributed Satistical Computing 2001 Work-
shop, http://ww. ci.tuw en. ac. at/ Conf er ences/ DSC- 2001,
2001. Vienna University of Technology.

X/Open Company Ltd. X/Open SQL and RDA Specification. X/Open Company
Ltd., 1994.

Microsoft Inc, htt p://wwv. m crosoft. conf data/ odbc/. Microsoft
ODBC, 2001.

Erich Neuwirth and Thomas Baier. Embedding R in stan-
dard software, and the other way around. In Proceed-

ings of the Didtributed Satistical Computing 2001 Workshop,
http://ww. ci.tuw en. ac. at/ Conf erences/ DSC- 2001, 2001.
Vienna University of Technology.

George Reese. Database Programming with JDBC and Java. O’Reilly, second
edition, 2000.

12

http://www.javasoft.com/products/jdbc/index.html
http://www.genix.net/unixODBC
http://www.python.org/topics/database
http://dbi.perl.org
http://www.mysql.com/documentation/mysql
http://stat.bell-labs.com/stat/doc
http://stat.bell-labs.com/stat/Sbook
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://java.sun.com/Download4
http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.microsoft.com/data/odbc/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

(13]

(14]
(19]

(16]

B. D. Ripley and R. M. Ripley. Applications of R clients and servers.
In Proceedings of the Distributed Statistical Computing 2001 Wbrkshop,
http://ww. ci.tuw en. ac. at/ Conf erences/ DSC- 2001, 2001.
Vienna University of Technology.

Brian D. Ripley. Using databaseswith R. R News, 1(1):18-20, January 2001.

R Development Core Team. R Data Import/Export.
http://ww.r-project. org, 2001.

Duncan Temple Lang. Embedding S in other languages and environments.
In Proceedings of the Distributed Statistical Computing 2001 Wbrkshop,
http://ww. ci.tuw en. ac. at/ Conf erences/ DSC- 2001, 2001
Vienna University of Technology.

13

http://www.ci.tuwien.ac.at/Conferences/DSC-2001
http://www.r-project.org
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

	Version
	Introduction
	DBI Classes and Methods
	Class DBIObject
	Class DBIDriver
	Class DBIConnection
	Class DBIResult

	Data Type Mappings
	Utilities
	Open Issues and Limitations
	Resources

