
R2HTML LIBRARY: FORMATTING HTML OUTPUT ON THE FLY OR BY USING A TEMPLATE SCHEME

R2HTML Library: Formatting HTML
Output on the Fly or by Using a Template
Scheme

Eric Lecoutre

Statistics are not only theory and methodology, but
also computing and communication. Applied statis-
tician knows they have to pay attention to the last
step of an analysis: the report. A very elegant way
to handle the final report with R is to use the won-
derfull Sweave system [1] in tools package: not only
it allows professional quality reports by using LATEX
but also it stores used code within the document,
which is very usefull when coming back to the analy-
sis some times after. Nevertheless, this solution is not
applicable to every case, as the user may not know
LATEX or may need an other format to communicate
with his client. In effect, in many cases, the client
is waiting for a report he may edit to add some de-
tails. RTF format is ideal for this communication, asi
it could be open on many systems and allows some
formatting enhancements (bold, tables, ...). Never-
theless, it’s not easy to produce and dont allow to
embed graphs. An other universal format which
can desserve our communication goal is HTML: it
is light, readable on any plattform, editable, and al-
lows graphs. Moreover, it could easily be exported
to other formats.

This documents describes the R2HTML package which
provide some support for writing formatted HTML
output. Alhtough having some knowledge about
HTML is preferable to personalize outputs, the user
may use this package to obtain results without this
knowledge. We will build different web pages, the
reader could found them at the following address:
http://www.stat.ucl.ac.be/ISpersonnel/lecoutre/R2HTML/.

Introduction to HTML and R2HTML

package

In accordance with the W3 Consortium, HTML is the
lingua franca for publishing hypertext on the World
Wide Web. It is a non-proprietary format based
upon SGML, and can be created and processed by
a wide range of tools, from simple plain text edi-
tors - you type it in from scratch - to sophisticated
WYSIWYG authoring tools. HTML uses tags such as
 and to structure text into headings, para-

graphs, lists, hypertext links etc. Opening tags local-
ize the beginning of the application of format (:
begin bold), format which ends with the correspond-
ing closing tag (for bold text).

Thus, in order to write basic HTML documents, the
only required knowledge is the list of existing tags
and their functionality. Then, here is the structure of
a (rather basic) HTML document:

<html>
<h1>My first HTML page </h1>
<p>This is some basic text with a

bold word.</p>
<p>It uses h1, and p tags which allows to create

a title and to define a paragraph</p>
</html>

Now, we have a very easy way to obtain our first
webpage from R: simply use cat function to write
text to a external file. In the following example, see
how we call severall times cat function with append
argument set to TRUE to add information to the page.

> htmlfile = file.path(tempdir(),

+ "page1.html")

> cat("<html><h1>My first HTML page from R</h1>",

+ file = htmlfile)

> cat("\n
Hello Web World!",

+ append = TRUE, file = htmlfile)

> cat("\n</html>", append = TRUE,

+ file = htmlfile)

There now, we have all that we want to advance to
the next step. The library R2HTML is simply a list of
wrapper fonctions that calls cat in such a way to
write HTML codes. The main functions are:

• HTML() Main generic function for which sub-
functions are defined for all classic classes (ma-
trix, lm, summary, ...).

• HTMLbr() Insert a
 HTML tag, a break re-
turn code to start a new line.

• HTMLhr() Insert a <hr> HTML tag, a horizontal
rule to separate pieces of text.

• HTMLInsertGraph() Insert a HTML tag
to add an existing graph to the report. The
graph should have been created before in a
suitable web format such as GIF, JPEG or PNG.

1

http://www.stat.ucl.ac.be/ISpersonnel/lecoutre/R2HTML/

R2HTML LIBRARY: FORMATTING HTML OUTPUT ON THE FLY OR BY USING A TEMPLATE SCHEME

Basically, the R2HTML library contains a generic
HTML() function which behaves like internal cat().
Common arguments are append and file, which de-
fault value is set by the hidden variable .HTML.file.
Thus, it is convenient to begin to set the value of this
variable, such as we can omit the file argument there-
after:

> .HTML.file = file.path(tempdir(),

+ "page2.html")

> HTML(as.title("Title of my report"),

+ append = FALSE)

> HTMLhr()

> HTML("3 dimensions identity matrix")

> HTML(diag(3))

Generating a HTML output on the
fly

The first way to use R2HTML library is to generate an
automatic HTML output during an interactive ses-
sion. This is specially convenient for courses, as stu-
dents can keep a log of the commands they asked for
and their output, with graphs incorporated. To man-
age a dynamic session, two commands are present:

• HTMLStart()

• HTMLStop()

Here is a sketch of the way those commands work
behind. When calling HTMLStart(), severall actions
are performed:

• Three HTML files are written in the temporary
directory of the session. The main (index.html)
refers to the two others, by incorporating them
within HTML frames. It allows to have at the
left part of the screen the commands, and at the
right one the corresponding outputs.

• A new environment, called HTMLenv is cre-
ated, where some internal variables are stored.
Those variables allows to store path to the out-
put files, and to know which action has been
done with the latest command.

• A new fix function is assigned to global envi-
ronment, masking the internal one. When call-
ing "new" fix, a boolean is set to TRUE in the
HTMLenv environment, to know that the last ac-
tion was to edit a function.

• addTaskCallback is called, adding a task to
each submitted command. This task, handled
by the function ToHTML (not user visible) is the

main part of the thing, as it exports the last ma-
nipulated object. In this function, one tests if
the boolean indicates that a function has been
edited, and exports this one if this is the case.
When doing so, a new file is created, so that
at the end one can keep all the versions of the
function at the different steps of work.

• Finally, as a side effect, the prompt is changed
to HTML> in order to know that output are cur-
rently redirected.

From now on, every command is treated two times:
once it is evaluated, the results goes on through
ToHTML function which writes it to the HTML output.

As there is no convenient way to know when a graph
has been performed (or modified) and as it’s not
wanted to export every graph, the user has to ex-
plicitely ask for the insertion of the current active
graph to the output, by calling HTMLplot() function.

When desired, a call to the function HTMLStop()
stops the process and remove all temporary created
variables.

This examples only work in a interactive session with
the RGUI. Simply copy the portion of code and paste
it.

> HTMLStart(filename = "dynamic",

+ echo = TRUE)

*** Output redirected to directory: C:\DOCUME~1\lecoutre\LOCALS~1\Temp\Rtmp28524
*** Use HTMLStop() to end redirection.[1] TRUE

HTML> sqrt(pi)

[1] 1.772454

HTML> x = rnorm(10)

HTML> x^2

[1] 1.484002e+00 1.992549e+00
[3] 1.319326e+00 9.624633e-01
[5] 1.995133e+00 5.706354e-05
[7] 2.737246e-01 2.105211e-03
[9] 3.308138e-01 1.293306e-01

HTML> myfunction = function(x) return(summary(x))

HTML> cat("\n### try to fix the function: fix(myfunction)")

try to fix the function: fix(myfunction)

HTML> myfunction(x)

Min. 1st Qu. Median Mean
-0.3596 0.1365 0.7781 0.6872
3rd Qu. Max.
1.2010 1.4120

2

R2HTML LIBRARY: FORMATTING HTML OUTPUT ON THE FLY OR BY USING A TEMPLATE SCHEME

HTML> plot(x)

HTML> HTMLplot()

[1] TRUE

HTML> HTMLStop()

[1] "C:\\DOCUME~1\\lecoutre\\LOCALS~1\\Temp\\Rtmp28524/dynamic_main.html"

Creating personalised reports

Let’s begin with a simple analysis

For the user who knows some basics on HTML, the
package R2HTML offers all necessary stuff to developp
fast routines to create one own reports. Nevertheless,
without knowing HTML codes, we can still easily
create reports. What we propose here is a so-called
template approach. Let’s imagine we have to per-
form a daily analysis which output consists in some
summary tables and graphs.

First, we gather all the stuff necessary to write the re-
port in a list object. An easy way is to create a user
function MyAnalysis which output this list. More-
over, we assign a user-defined class for this object.

> MyAnalysis = function(data) {

+ table1 = summary(data[,

+ 1])

+ table2 = mean(data[, 2])

+ dataforgraph1 = data[,

+ 1]

+ output = list(tables = list(t1 = table1,

+ t2 = table2), graphs = list(d1 = dataforgraph1))

+ class(output) = "MyAnalysisClass"

+ return(output)

+ }

Then, we provide a new HTML function, based on the
structure of our output object and corresponding to
it’s class:

> HTML.MyAnalysisClass = function(x,

+ file = "report.html", append = TRUE,

+ directory = getwd(), ...) {

+ file = file.path(directory,

+ file)

+ cat("\n", file = file,

+ append = append)

+ HTML.title("Table 1: summary for first variable",

+ file = file)

+ HTML(x$tables$t1, file = file)

+ HTML.title("Second variable",

+ file = file)

+ HTML(paste("Mean for second variable is: ",

+ round(x$tables$t2,

+ 3), sep = ""),

+ file = file)

+ HTMLhr(file = file)

+ png(file.path(directory,

+ "graph1.png"))

+ hist(x$graphs$d1, main = "Histogram for 1st variable")

+ dev.off()

+ HTMLInsertGraph("graph1.png",

+ Caption = "Graph 1 - Histogram",

+ file = file)

+ cat(paste("Report written: ",

+ file, sep = ""))

+ }

If we want to write create the report, we simply have
to do the following:

> data = matrix(rnorm(100), ncol = 2)

> out = MyAnalysis(data)

> setwd(tempdir())

> HTML(out, file = "page3.html")

Report written: C:/DOCUME~1/lecoutre/LOCALS~1/Temp/Rtmp28524/page3.html

The interest if that we store all the analysis raw mate-
rial with on object, and that we dissociate the process
that creates the report. If we keep all our objects, it’s
easy to modify the HTML.MyAnalysisClass function
and to generate again all reports.

Template scheme to complete the report

What we write before is not a real HTML
file, as it even doesn’t contain standard headers
<html><head>...</head><body>... and so on. We
see two differents ways to handle this, each one hav-
ing it’s advantages/disadvantages. For this person-
alisation, it’s mandatory to have some knowledge of
HTML.

At first, we could have a pure R approach, by adding
to our report two functions, such as:

> MyReportBegin = function(file = "report.html",

+ title = "My Report Title") {

+ cat(paste("<html><head><title>",

+ title, "</title></head>",

+ "<body bgcolor=#D0D0D0>",

+ "<img=logo.gif>", sep = ""),

+ file = file, append = FALSE)

+ }

> MyReportEnd = function(file = "report.html") {

+ cat("<hr size=1></body></html>",

+ file = file, append = TRUE)

+ }

3

REFERENCES REFERENCES

> MyReport = function(x, file = "report.html") {

+ MyReportBegin(file)

+ HTML(x, file = file)

+ MyReportEnd(file)

+ }

Then, instead of calling HTML function directly, we
consider it at an internal function and we rather call
MyReport.

> out = MyAnalysis(data)

> MyReport(out, file = "page4.html")

Report written: C:/DOCUME~1/lecoutre/LOCALS~1/Temp/Rtmp28524/page4.html

The advantage is that we can even personalize the
head and the footer of our report depending on R
variables such as the name of the data or whatever
we want.

If we dont need to go that further and only need hard
coded contents, we can build the report based on two
existing files header.html and footer.html, which
could be modified to suit our needs. To work prop-
erly, the following piece of code supposes that those
two files exist in the working directory:

> MyReport = function(x, file = "report.html",

+ headerfile = "header.html",

+ bottomfile = "footer.html") {

+ header = readLines(headerfile)

+ cat(paste(header, collapse = "\n"),

+ file = file, append = FALSE)

+ HTML(x, file = file, append = TRUE)

+ bottom = readLines(bottomfile)

+ cat(paste(bottom, collapse = "\n"),

+ file = file, append = TRUE)

+ }

Going a step further with CSS

Cascading Style Sheets (CSS) compensates for some
laks of HTML language. CSS add to each standard
HTML element it’s own style, which is defined in an
external file. Thus, when the house-style book of the
report has to change, it is enough to modify the defi-
nition of classes in an only spot to change the look of
all reports - past or to come - that rely on the defined
classes.

The use of cascading style sheets allow:

• a homogeneous look for all generated reports

• to change the look of a bunch of reports at one
time

• to have lighter reports, as formatting instruc-
tions are separated

• a faster download and viewing of reports

All details about CSS specification could be
found on the World Wide Web consortium:
http://www.w3.org/Style/CSS/.

All the functions of the package R2HTML rely on CSS
and a sample CSS file, R2HTML.CSS, which is used
by HTMLStart is provided. In order to work prop-
erly, the CSS file has to be present in the same
directory than the report and we simply have to
add the following line to it <link rel=stylesheet
type=text/css href=R2HTML.css>. The function
HTMLCSS() performs this job. This is a good idea to
systematically begin a report with this, as CSS files
are very powerfull. Thus, and finally, our reporting
function becomes:

> MyReport = function(x, file = "report.html",

+ CSSfile = "R2HTML") {

+ MyReportBegin(file)

+ HTMLCSS(file = file, CSSfile = CSSfile)

+ HTML(x, file = file)

+ MyReportEnd(file)

+ }

Summary

The R2HTML package provides functions to export all
base R objects to HTML. We describe here a simple
mechanism to use this functions to write HTML re-
ports for statistical analysis performed with R. The
mechanism is flexible and allow customizations in
many ways, mainly by using a template approach
(separating the body of the report from the wrapper -
header and footer) and by using an external CSS file.

Availability

The R2HTML package is available from CRAN (e.g.,
http://cran.us.r-project.org).

References

[1] Friedrish Leisch. Sweave: Dynamic generation
of statistical reports using litterate data analysis.
Compstat 2002 Proceddings in Computational Statis-
tics, pages 575–580, 2002.

4

http://www.w3.org/Style/CSS/

