
formatR: Format R Code Automatically

Yihui Xie∗

April 2, 2012

The package formatR (Xie, 2012a) was designed to help users tidy (reformat) their source code.
This vignette serves as a showcase of the function tidy.source(), and a broader introduction can be
found in https://github.com/yihui/formatR/wiki/.

1 The workhorse tidy.source()

The main function in this package is tidy.source(), which can take a file as input, parse it and write the
formatted code to the console or a file.

library(formatR)
usage(tidy.source, width = 0.73)

tidy.source(source = "clipboard", keep.comment = getOption("keep.comment",
TRUE), keep.blank.line = getOption("keep.blank.line",
TRUE), keep.space = getOption("keep.space", FALSE),
replace.assign = getOption("replace.assign", FALSE),
reindent.spaces = getOption("reindent.spaces", 4),
output = TRUE, text = NULL, width.cutoff = getOption("width"),
...)

There are five options which can affect the output: keep.comment, keep.blank.line, keep.space,
reindent.spaces and replace.assign. They are explained in the help page; see ?tidy.source. For
example, if we do not want to keep the blank lines in the code, we can first specify a global option
like this:

options(keep.blank.line = TRUE) # not really need to do so; default is TRUE

The option width will affect the width of the output, e.g. we can specify a narrow width:

options(width = 85)

Here are some examples taken from the help page:

library(formatR)
use the ’text’ argument
src = c(" # a single line of comments is preserved", "1+1", "if(TRUE){",

"x=1 # inline comments", "}else{", "x=2;print(’Oh no... ask the right bracket
to go away!’)}",

∗Department of Statistics, Iowa State University. Email: xie@yihui.name

1

https://github.com/yihui/formatR/wiki/
mailto:xie@yihui.name

"1*3 # one space before this comment will become two!", "2+2+2 # ’short
comments’",

" ", "lm(ỹ x1+x2) ### only ’single quotes’ are allowed in comments", "\t\t##
tabs/spaces before comments: use keep.space=TRUE to keep them",

"’a character string with \t in it’", "# note tabs will be converted to spaces
when keep.space=TRUE",

"1+1 ## comments after a long line",
paste("## here is a",

paste(rep("long", 20), collapse = " "), "comment"))

Source code

cat(src, sep = "\n")

a single line of comments is preserved
1+1
if(TRUE){
x=1 # inline comments
}else{
x=2;print(’Oh no... ask the right bracket to go away!’)}
1*3 # one space before this comment will become two!
2+2+2 # ’short comments’

lm(y~x1+x2) ### only ’single quotes’ are allowed in comments
tabs/spaces before comments: use keep.space=TRUE to keep them
’a character string with in it’
note tabs will be converted to spaces when keep.space=TRUE
1+1 ## comments after a long line
here is a long comment

Format and replace = with <-

tidy.source(text = src[1:6], replace.assign = TRUE)

a single line of comments is preserved
1 + 1
if (TRUE) {

x <- 1 # inline comments
} else {

x <- 2
print("Oh no... ask the right bracket to go away!")

}

Preserve leading spaces

2

tidy.source(text = src[1:2], keep.space = TRUE)

a single line of comments is preserved
1 + 1

Discard blank lines

note the 11th line (was a blank line)!
tidy.source(text = src, keep.blank.line = FALSE)

a single line of comments is preserved
1 + 1
if (TRUE) {

x = 1 # inline comments
} else {

x = 2
print("Oh no... ask the right bracket to go away!")

}
1 * 3 # one space before this comment will become two!
2 + 2 + 2 # ’short comments’
lm(y ~ x1 + x2) ### only ’single quotes’ are allowed in comments
tabs/spaces before comments: use keep.space=TRUE to keep them
"a character string with \t in it"
note tabs will be converted to spaces when keep.space=TRUE
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

1 + 1 + 1 + 1 ## comments after a long line
here is a long long long long long long long long long long long long long long
long long long long long long comment

Reindent code

tidy.source(text = src, reindent.spaces = 2)

a single line of comments is preserved
1 + 1
if (TRUE) {
x = 1 # inline comments

} else {
x = 2
print("Oh no... ask the right bracket to go away!")

}
1 * 3 # one space before this comment will become two!
2 + 2 + 2 # ’short comments’

lm(y ~ x1 + x2) ### only ’single quotes’ are allowed in comments
tabs/spaces before comments: use keep.space=TRUE to keep them
"a character string with \t in it"
note tabs will be converted to spaces when keep.space=TRUE

3

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
1 + 1 + 1 + 1 ## comments after a long line

here is a long long long long long long long long long long long long long long
long long long long long long comment

Discard comments

tidy.source(text = src, keep.comment = FALSE)

1 + 1
if (TRUE) {

x = 1
} else {

x = 2
print("Oh no... ask the right bracket to go away!")

}
1 * 3
2 + 2 + 2
lm(y ~ x1 + x2)
"a character string with \t in it"
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

1 + 1 + 1 + 1

2 Applications

This package has been used in a few other R packages. For example, Rd2roxygen (Wickham and Xie,
2011) uses formatR to reformat the code in the usage and examples sections in Rd files, since the code
generated by roxygen2 is not well-formatted; pgfSweave (Bracken and Sharpsteen, 2011) can tidy the
Sweave code chunks when the Sweave option tidy is TRUE (just like the code in this vignette).

About this vignette

You might be curious about how this vignette was generated, because it looks different from other
Sweave-based vignettes. The answer is knitr (Xie, 2012b). The real vignette is in LYX, which can be
found here:

system.file("doc", "formatR.lyx", package = "formatR")

Instructions on how to use knitr with LYX can be found at https://github.com/yihui/lyx.

References

Bracken C, Sharpsteen C (2011). pgfSweave: Quality speedy graphics compilation and caching with Sweave.
R package version 1.2.1, URL http://CRAN.R-project.org/package=pgfSweave.

Wickham H, Xie Y (2011). Rd2roxygen: Convert Rd to roxygen documentation and utilities to improve
documentation. R package version 1.0-7, URL https://github.com/yihui/Rd2roxygen.

4

https://github.com/yihui/lyx
http://CRAN.R-project.org/package=pgfSweave
https://github.com/yihui/Rd2roxygen

Xie Y (2012a). formatR: Format R Code Automatically. R package version 0.4, URL https://github.
com/yihui/formatR/wiki.

Xie Y (2012b). knitr: A general-purpose package for dynamic report generation in R. R package version
0.4.1, URL http://yihui.name/knitr/.

5

https://github.com/yihui/formatR/wiki
https://github.com/yihui/formatR/wiki
http://yihui.name/knitr/

	1 The workhorse tidy.source()
	2 Applications

