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The package geoR provides functions for geostatistical data analysis using the software R. This
document illustrates some (but not all !) of the capabilities of the package. 

The objective is to familiarise the reader with the geoR’s commands and show some of the plots
which can be produced. 
The commands used here are simply basic examples of the package handling. We did not attempt to
perform a definitive data analysis. Typically, default arguments are used for the function calls and
the user is encouraged to inspect other function arguments. For example, to see all the available
arguments for the function variog type: 

args(variog)

We refer to the geoR documentation for more details on the functions included in geoR. 

1. STARTING A SESSION AND LOADING DATA

After starting an R session, load geoR with the command: 

library(geoR) # require(geoR) 

If the installation directory for the package is the default location for R packages, type: 

library(geoR, lib.loc="PATH_TO_geoR") 

where "PATH_TO_geoR" is the path to the directory where geoR was installed. If the package
is loaded correctly the following message will be displayed: 

--------------------------------------------
geoR: functions for geostatistical analysis
geoR version 1.1-0 is now loaded
--------------------------------------------

Typically, data are stored as an object (a list) of the class "geodata". An object of this class
contains at least the coordinates of data locations and the data values. We refer to the
documentation for the functions as.geodata and read.geodata for more information on
how to import/convert data and on the definitions of the class "geodata". 



For the examples included in this document we use the data set s100 included in the geoR
distribution. This data set can be loaded by typing: 

data(s100) 

2. EXPLORATORY TOOLS

1. Plotting data locations and values 

The function plot.geodata shows a 2 x 2 display with data locations (top plots) and
data versus coordinates (bottom plots). For an object of the class "geodata" the plot is
produced by the command: 

plot(s100) 

 

Notice that the top-right plot is produced using the package scaterplot3d. If this
package is not installed a histogram of the data will replace this plot. 

The function points.geodata produces a plot showing the data locations.
Alternatively, points indicating the data locations can be added to a current plot. There
are options to specify point sizes, patterns and colors, which can be set to be
proportional to the data values or specified quantiles. 



Some examples of graphical outputs are illustrated by the commands and corresponding
plots as shown below. We start saving the current graphical parameters. 

par.ori <- par(no.readonly = TRUE) 

par(mfrow = c(2,2)) 
points(s100, xlab = "Coord X", ylab = "Coord Y") 
points(s100, xlab = "Coord X", ylab = "Coord Y", pt.size =
"rank.prop") 
points(s100, xlab = "Coord X", ylab = "Coord Y", cex.max = 1.7, col =
gray(seq(1, 0.1, l=100)), pt.size = "equal") 
points(s100, pt.sizes = "quintile", xlab = "Coord X", ylab = "Coord
Y") 
par(par.ori) 

 

2. Empirical variograms 

Empirical variograms are calculated using the function variog. There are options for
the classical or modulus estimator. 
Results can be returned as variogram clouds, binned or smoothed variograms. 

cloud1 <- variog(s100, option = "cloud", max.dist=1)
cloud2 <- variog(s100, option = "cloud", estimator.type = "modulus",
max.dist=1)
bin1 <- variog(s100, uvec=seq(0,1,l=11))
bin2 <- variog(s100, uvec=seq(0,1,l=11), estimator.type= "modulus") 



par(mfrow=c(2,2))
plot(cloud1, main = "classical estimator")
plot(cloud2, main = "modulus estimator")
plot(bin1, main = "classical estimator")
plot(bin2, main = "modulus estimator")
par(par.ori) 

 

Furthermore, the points of the variogram clouds can be grouped into classes of distances
("bins") and displayed with a box-plot for each bin. 

bin1 <- variog(s100,uvec = seq(0,1,l=11), bin.cloud = T)
bin2 <- variog(s100,uvec = seq(0,1,l=11), estimator.type = "modulus",
bin.cloud = T)

par(mfrow = c(1,2))
plot(bin1, bin.cloud = T, main = "classical estimator")
plot(bin2, bin.cloud = T, main = "modulus estimator")
par(par.ori) 



 

Theoretical and empirical variograms can be plotted and visually compared. For
example, the figure below shows the theoretical variogram model used to simulate the
data s100 and two estimated variograms. 

bin1 <- variog(s100, uvec = seq(0,1,l=11))
plot(bin1)
lines.variomodel(list(nugget = 0, cov.pars = c(1,0.3), max.dist = 1,
cov.model = "exp"), lwd = 3)
smooth <- variog(s100, option = "smooth", max.dist = 1, n.points =
100, kernel = "normal", band = 0.2)
lines(smooth, type ="l", lty = 2)
legend(0.4, 0.3, c("empirical", "exponential model", "smoothed"), lty
= c(1,1,2), lwd = c(1,3,1))

 

Directional variograms can also be computed by the function variog using the



arguments direction and tolerance. For example, to compute a variogram for the
direction 60 degrees with the default tolerance angle (22.5 degrees) the command would
be: 

vario60 <- variog(s100, max.dist = 1, direction=pi/3) 

For a quick computation in four directions we can use: 

vario.4 <- variog4(s100, max.dist = 1) 
plot(vario.4, lwd=2) 

 

3. PARAMETER ESTIMATION

Model parameters can be estimated by using: 

least squares fit of empirical variograms: with options for ordinary (OLS) and weighted
(WLS) least squares 
likelihood based methods: with options for maximum likelihood (ML) and restricted
maximum likelihood (REML) 

Bayesian methods are also implemented and will be presented in Section 5. 

The nugget effect parameter can be estimated or set to a fixed value. The same applies for
smoothness, anisotropy and transformation parameters. Options for taking trends into account
are also included. Trends can be specified as polynomial functions of the coordinates and/or
linear functions of given covariates. 

The commands below shows models fitted by different methods with options for fixed or
estimated nugget parameter. Features not illustrated here include estimation of trends,
anisotropy, smoothness and Box-Cox transformation parameter. 



# Fitting models with nugget fixed to zero
ml <- likfit(s100, ini = c(0.5,0.5), fix.nugget = T)
reml <- likfit(s100, ini = c(0.5,0.5), fix.nugget = T, method = "RML")
ols <- variofit(bin1, ini = c(0.5,0.5), fix.nugget = T, weights="equal")
wls <- variofit(bin1, ini = c(0.5,0.5), fix.nugget = T) 

# Fitting models with a fixed value for the nugget 
ml.fn <- likfit(s100, ini = c(0.5,0.5), fix.nugget = T, nugget = 0.15)
reml.fn <- likfit(s100, ini = c(0.5,0.5), fix.nugget = T, nugget = 0.15,
method = "RML")
ols.fn <- variofit(bin1,ini = c(0.5,0.5), fix.nugget = T, nugget = 0.15,
weights="equal")
wls.fn <- variofit(bin1, ini = c(0.5,0.5), fix.nugget = T, nugget = 0.15) 

# Fitting models estimated nugget
ml.n <- likfit(s100, ini = c(0.5,0.5), nug = 0.5)
reml.n <- likfit(s100, ini = c(0.5,0.5), nug = 0.5, method = "RML")
ols.n <- variofit(bin1, ini = c(0.5,0.5), nugget=0.5, weights="equal")
wls.n <- variofit(bin1, ini = c(0.5,0.5), nugget=0.5) 

# Now, plotting fitted models against empirical variogram
par(mfrow = c(1,3)) 

plot(bin1, main = expression(paste(tau^2 == 0, " (fixed)")))
lines(ml, max.dist = 1)
lines(reml, lwd = 2, max.dist = 1)
lines(ols, lty = 2, max.dist = 1)
lines(wls, lty = 2, lwd = 2, max.dist = 1)
legend(0.5, 0.3, legend = c("ML", "REML", "OLS", "WLS"), lty = c(1,1,2,2),
lwd = c(1,2,1,2)) 

plot(bin1, main = expression(paste(tau^2 == 0.15, " (fixed)")))
lines(ml.fn, max.dist = 1)
lines(reml.fn, lwd = 2, max.dist = 1)
lines(ols.fn, lty = 2, max.dist = 1)
lines(wls.fn, lty = 2, lwd = 2, max.dist = 1)
legend(0.5, 0.3, legend = c("ML", "REML", "OLS", "WLS"), lty = c(1,1,2,2),
lwd = c(1,2,1,2)) 

plot(bin1, main = expression(paste("estimated ", tau^2)))
lines(ml.n, max.dist = 1)
lines(reml.n, lwd = 2, max.dist = 1)
lines(ols.n, lty = 2, max.dist = 1)
lines(wls.n, lty =2, lwd = 2, max.dist = 1)
legend(0.5, 0.3, legend = c("ML", "REML", "OLS", "WLS"), lty = c(1,1,2,2),
lwd = c(1,2,1,2)) 

par(par.ori) 



Summary methods have been written to summarize the resulting objects. 
For example, for the model with estimated nugget fitted by maximum likelihood, typing: 

ml.n 

will produce the output: 

likfit: estimated model parameters:
   beta   tausq sigmasq     phi 
 0.7766  0.0000  0.7517  0.1827 

likfit: maximised log-likelihood = -83.5696

whilst a more detailed summary is obtained with: 

summary(ml.n)

Summary of the parameter estimation
-----------------------------------
Estimation method: maximum likelihood 

Parameters of the mean component (trend):
  beta 
0.7766 

Parameters of the spatial component:
   correlation function: exponential
      (estimated) variance parameter sigmasq (partial sill) =  0.7517
      (estimated) cor. fct. parameter phi (range parameter)  =  0.1827
   anisotropy parameters:
      (fixed) anisotropy angle = 0  ( 0 degrees )
      (fixed) anisotropy ratio = 1

Parameter of the error component:
      (estimated) nugget =  0



Transformation parameter:
      (fixed) Box-Cox parameter = 1 (no transformation)

Maximised Likelihood:
   log.L n.params      AIC      BIC 
-83.5696   4.0000 -87.5696 -92.7799 

Call:
likfit(geodata = s100, ini.cov.pars = c(0.5, 0.5), nugget = 0.5)

Two kinds of variogram envelopes can be computed by simulation and are illustrated in the
next figure. The plot on the left-hand side shows envelopes based on permutation of the data
values across the data locations. The envelopes shown on the right-hand side are based on
simulations from a given set of model parameters, in this example the parameter estimates
from the WLS variogram fit. 

env.mc <- variog.mc.env(s100, obj.var=bin1)
env.model <- variog.model.env(s100, obj.var=bin1, model=wls)
par(mfrow=c(1,2))
plot(bin1, envelope=env.mc)
plot(bin1, envelope=env.model)
par(par.ori)

 

Profile likelihoods (1-D and 2-D) are computed by the function proflik. Here we show the
profile likelihoods for the covariance parameters of the model without nugget effect
previously fitted by likfit. 

WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-CONSUMING
prof <- proflik(ml, geodata = s100, sill.val = seq(0.48, 2, l=11),
range.val = seq(0.1, 0.52, l=11), uni.only = FALSE)
par(mfrow=c(1,3))



plot(prof, nlevels=16)
par(par.ori) 

4. CROSS-VALIDATION

The function xvalid performs cross-validation either using the leaving-one-out strategy or on
a different det of locations proviced by the user. For the first data points are removed one by
one and predicted by kriging using the remaining data. The commands belows illustrates
cross-validation for the models fitted by maximum likelihood and weighted least squares. In
the first two calls the model parameters remains the same for the prediction at each location.
In the next two calls the model parameters are re-estimated each time a point is removed from
the data-set. Graphical results are shown for one of the cross-validation results. 

xv.ml <- xvalid(s100, model=ml)
xv.wls <- xvalid(s100, model=wls)
WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-CONSUMING
xvR.ml <- xvalid(s100, model=ml, reest=TRUE)
xvR.wls <- xvalid(s100, model=wls, reest=TRUE, variog.obj=bin1)

par(mfcol = c(5,2), mar=c(3,3,.5,.5), mgp=c(1.5,.7,0))
plot(xv.wls, s100)
par(par.ori) 



 

5. SPATIAL INTERPOLATION

Conventional geostatistical spatial interpolation (kriging) can be performed with options for: 
Simple kriging 



Ordinary kriging 
Trend (universal) kriging 
External trend kriging 

There are additional options for Box-Cox transformation (and back transformation of the
results) and anisotropic models. Simulations can be drawn from the resulting predictive
distributions if requested. 

As a first example consider the prediction at four locations labeled 1, 2, 3, 4 and indicated in
the figure below. 

plot(s100$coords, xlim=c(0,1.2), ylim=c(0,1.2))
loci <- matrix(c(0.2, 0.6, 0.2, 1.1, 0.2, 0.3, 1.0, 1.1), ncol=2)
text(loci, as.character(1:4), col="red")
polygon(x=c(0,1,1,0), y=c(0,0,1,1), lty=2)

 

The command to perform ordinary kriging using the parameters estimated by weighted least
squares with nugget fixed to zero would be: 

kc4 <- krige.conv(s100, locations = loci, krige = krige.control(cov.pars =
wls$cov.pars))

The output is a list including the predicted values (kc4$predict) and the kriging variances
(kc4$krige.var). 

Consider now a second example. The goal is to perform prediction on a grid covering the area
and to display the results. Again, we use ordinary kriging. The commands are: 

# defining the grid
pred.grid <- expand.grid(seq(0,1, l=51), seq(0,1, l=51))



# kriging calculations
kc <- krige.conv(s100, locations = pred.grid, krige =
krige.control(cov.pars = ml$cov.pars))
# displaying predicted values
image(kc, loc = pred.grid, coords = s100$coords, col=gray(seq(1,0.1,l=30)))

 

6. BAYESIAN ANALYSIS

Bayesian analysis for Gaussian models is implemented by the function krige.bayes. It can
be performed for different "degrees of uncertainty", meaning that model parameters can be
treated as fixed or random. 

As an example consider a model without nugget and including uncertainty in the mean, sill
and range parameters. Prediction at the four locations indicated above is performed by typing
a command like: 

WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-CONSUMING
bsp4 <- krige.bayes(s100, loc = loci, prior = prior.control(phi.discrete =
seq(0,5,l=101), phi.prior="rec"), output=output.control(n.post=5000)) 

Histograms showing posterior distribution for the model parameters can be plotted by typing: 

par(mfrow=c(1,3), mar=c(3,3,.5,.5), mgp=c(2,1,0))
hist(bsp4$posterior$sample$beta, main="", xlab=expression(beta), prob=T)
hist(bsp4$posterior$sample$sigmasq, main="", xlab=expression(sigma^2),
prob=T)
hist(bsp4$posterior$sample$phi, main="", xlab=expression(phi), prob=T)
par(par.ori) 



Using summaries of these posterior distributions (means, medians or modes) we can check
the "estimated Bayesian variograms" against the empirical variogram, as shown in the next
figure. Notice that it is also possible to compare these estimates with other fitted variograms
such as the ones computed in Section 3. 

plot(bin1, ylim = c(0,2))
lines(bsp4, max.dist = 1.2)
lines(bsp4, max.dist = 1.2, summ = "median", lty = 2)
lines(bsp4, max.dist = 1.2, summ = "mean", lwd = 2, lty = 2)
legend(0.5, 0.3, legend = c("posterior mode", "posterior median",
"posterior mean"), lty = c(1,2,2), lwd = c(1,1,2)) 

 



The next figure shows predictive distributions at the four selected locations. 
Dashed lines show Gaussian distributions with mean and variance given by results of ordinary
kriging obtained in Section 4. 
The full lines correspond to the Bayesian prediction. The plot shows results of density
estimation using samples from the predictive distributions. 

par(mfrow=c(2,2), mar=c(3,3,.5,.5), mgp=c(1.5,.7,0))
for(i in 1:4){
kpx <- seq(kc4$pred[i] - 3*sqrt(kc4$krige.var[i]), kc4$pred[i]
+3*sqrt(kc4$krige.var[i]), l=100)
kpy <- dnorm(kpx, mean=kc4$pred[i], sd=sqrt(kc4$krige.var[i]))
bp <- density(bsp4$predic$sim[i,])
rx <- range(c(kpx, bp$x))
ry <- range(c(kpy, bp$y))
plot(cbind(rx, ry), type="n", xlab=paste("Location", i), ylab="density",
xlim=c(-4, 4), ylim=c(0,1.1))
lines(kpx, kpy, lty=2)
lines(bp)}
par(par.ori) 

 

Consider now, under the same model assumptions, obtaining simulations from the predictive
distributions on a grid of points covering the area. The commands to define the grid and



perform Bayesian prediction are: 

pred.grid <- expand.grid(seq(0,1, l=31), seq(0,1, l=31))
WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-CONSUMING
bsp <- krige.bayes(s100, loc = pred.grid, prior =
prior.control(phi.discrete = seq(0,5,l=51)),
output=output.control(n.predictive=2)) 

Maps with the summaries and simulations of the predictive distribution can be plotted as
follows. 

par(mfrow=c(2,2))
image(bsp, loc = pred.grid, main = "predicted", col=gray(seq(1,0.1,l=30)))
image(bsp, val ="moments.variance", loc = pred.grid, main = "prediction
variance", col=gray(seq(1,0.1,l=30)))
image(bsp, val = "simulation", number.col = 1, loc = pred.grid, main = "a
simulation from\nthe predictive distribution", col=gray(seq(1,0.1,l=30)))
image(bsp, val = "simulation", number.col = 2,loc = pred.grid, main =
"another simulation from \n the predictive distribution",
col=gray(seq(1,0.1,l=30)))
par(par.ori) 



7. Simulation of Gaussian Random Fields

The function grf generates simulations of Gaussian random fields on regular or irregular sets
of locations Some of its functionality is illustrated by the next commands. 

sim1 <- grf(100, cov.pars=c(1, .25))
points.geodata(sim1, main="simulated locations and values") 
plot(sim1, max.dist=1, main="true and empirical variograms") 



sim2 <- grf(441, grid="reg", cov.pars=c(1, .25)) 
image(sim2, main="a \"smallish\" simulation", col=gray(seq(1, .1, l=30))) 

 

sim3 <- grf(40401, grid="reg", cov.pars=c(10, .2), met="circ") 



image(sim3, main="simulation on a fine grid", col=gray(seq(1, .1, l=30))) 

 

NOTE: see the package RandomFields for more on simulation of Gaussian Random Fields. 
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