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Abstract

Expressions for the evaluation of the profiled log-likelihood or pro-
filed log-restricted-likelihood of a linear mixed model, the gradients
and Hessians of these criteria, and update steps for an ECME algo-
rithm to optimize these criteria are given in Bates and DebRoy (2004).
A representation of linear mixed models using positive semidefinite
symmetric matrices and dense matrices is given in Bates (2004). In
this paper we present details of that representation and those compu-
tational methods in the lme4 package for R.

1 Introduction

General formulae for the evaluation of the profiled log-likelihood and profiled
log-restricted-likelihood in a linear mixed model are given in Bates and De-
bRoy (2004) and the use of a sparse matrix representation for such models
is described in Bates (2004). The purpose of this paper is to describe the
details of the implementation of this representation and those computational
methods in the lme4 package for R.

Because we concentrate on the computational methods and the represen-
tation, the order and style of presentation will be based on the sequence of
calculations, not on the sequence in which the results would be derived. We
will emphasize“what”and not“why”. For the“why”, refer to the papers cited
above.
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In §2 we describe the form and representation of the model. The calcu-
lation of the criteria to be optimized by the parameter estimates and related
quantities is discussed in §3. Details of the calculation of the ECME step and
the evaluation of the gradients of the criteria are given in §6 and those of the
Hessian in §7. In §8 we give the details of an unconstrained parameterization
for the model and the transformation of our results to this parameterization.

2 Form and representation of the model

We consider linear mixed models of the form

y = Xβ + Zb + ε ε ∼ N (0, σ2I), b ∼ N (0, σ2Ω−1), ε ⊥ b (1)

where y is the n-dimensional response vector, X is an n × p model matrix
for the p dimensional fixed-effects vector β, Z is the n× q model matrix for
the q dimensional random-effects vector b that has a Gaussian distribution
with mean 0 and relative precision matrix Ω (i.e., Ω is the precision of b
relative to the precision of ε), and ε is the random noise assumed to have
a spherical Gaussian distribution. The symbol ⊥ indicates independence of
random variables. The matrix X has full column rank and Ω is positive
definite.

The random effects vector b and the columns of Z are divided into k
outer blocks associated with grouping factors fi, i = 1, . . . , k in the data.
Because so many of the expressions that we will use involve the grouping
factors and quantities associated with them, we will reserve the letter i to
index the grouping factors and related quantities. We will not explicitly state
the range of i, which will always be i = 1, . . . , k.

The outer blocks in b and the columns of Z are further subdivided into
mi inner blocks of size qi where mi is the number of levels of fi (i.e. the
number of distinct values in fi). Each grouping factor has associated with
it an n × qi model matrix Zi. The full model matrix Z is derived from the
grouping factors fi and these submodel matrices Zi.

Random effects in different outer blocks are independent. Within each of
these blocks, the inner blocks of random effects are independent and identi-
cally distributed with mean 0 and qi × qi variance-covariance matrix σ2Ω−1

i .
Thus Ω is block diagonal in k blocks of size miqi × miqi and each of these
blocks is itself block diagonal in mi blocks, each of which is the positive defi-
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nite symmetric qi× qi matrix Ωi. We call this a repeated block/block diagonal
matrix.

2.1 Model specification and representation

Like most model fitting functions in the S language, the lme function in
the lme4 package uses a formula/data specification. The formula specifies
how to evaluate the response y and the fixed-effects model matrix X in
the data frame provided as the data argument. An additional argument
named random specifies the names of the grouping factors and the formulae
for evaluation of the model matrices Zi.

Standard optional arguments, such as na.action and subset, are passed
through to the model.frame function that returns the model frame in which
to evaluate all the formulae of the model. The drop.unused.levels optional
argument is set to TRUE so that unused levels in any factors are dropped
during creation of the model frame. Thus there is no ambiguitiy regarding
the number of levels mi of each of the fi. Every level in each of the fi must
occur at least once in the model frame.

2.1.1 Pairwise crosstabulation

We begin by ordering the grouping factors so that m1 ≥ m2 ≥ · · · ≥ mk and,
if k > 1, forming their pairwise crosstabulation. This is the crossproduct
matrix, T = Z̃TZ̃, for the variance components model determined by these
grouping factors. (In a variance components model q1 = q2 = · · · = qk = 1
and each of the Z̃i is the n× 1 matrix of 1s. The ith outer block of columns
in Z̃ is the set of indicator columns for the levels of fi. The name “variance
components” reflects the fact that, in this model, each of the Ωi, which are
scalars, is the relative precision of the component of the variation in the
response attributed to factor fi.)

In fact it is not necessary to form and store T . All that we need are the
locations of the nonzeros in the off-diagonal blocks of the representation

T =


T(1,1) T T

(2,1) . . . T T
(k,1)

T(2,1) T(2,2) . . . T T
(k,2)

...
...

. . .
...

T(k,1) T(k,2) . . . T T
(k,k)

 . (2)
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(Because the ith outer block of columns in Z̃ is a set of indicators, the
diagonal blocks will themselves be diagonal and their patterns of nonzeros
are trivial.) The blocks in the strict lower triangle, T(i,j), i > j are stored
as a list of compressed, sparse, column-oriented matrices (see Appendix A
for details). Only the column pointers and the row indices of these sparse
matrices are used..

These off-diagonal blocks are easily calculated because the integer rep-
resentations of the factors fi and fj form the row and column indices in
a (possibly redundant) triplet representation of T(i,j). All that we need to
do is convert the triplet representation to the compressed, sparse, column-
oriented representation. This common conversion is easily accomplished with
standard software.

We check whether each of the matrices T(j,j−1), j = 2, . . . , k has exactly
one nonzero in each column. If so, the grouping factors form a nested sequence
in that each level of factor fi occurs with exactly one level of factor fj, i < j ≤
k. In the compressed, sparse, column-oriented format it is easy to determine
the number of nonzeros in each column because these are the successive
differences in the column pointers.

If the grouping factors form a nested sequence (and a single grouping
factor is trivially a nested sequence) there is no need for further symbolic
analysis. If not, which is to say that we have multiple, non-nested grouping
factors, we continue the symbolic analysis for the unit lower triangular factor
L̃ in the LDL form of the Cholesky decomposition of T (Davis, 2004).

This symbolic analysis is performed on rows of blocks in the lower triangle
of L̃, where the blocks of L̃ correspond to those of T

L̃ =


I 0 . . . 0

L̃(2,1) L̃(2,2) . . . 0
...

...
. . .

...

L̃(k,1) L̃(k,2) . . . L̃(k,k)

 . (3)

We emphasize that we are only determining the positions of the nonzeros in
the blocks of L̃, not performing an actual decomposition. (The decomposition
would fail for k > 1 because T is only positive semidefinite, not positive
definite. It is composed of multiple blocks of indicators and the row sums
within each block are always unity.)

Because T(1,1) is diagonal, the block in the (1, 1) position of L̃ will be
both diagonal and unit, which is to say that it is the identity matrix of size
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m1. A consequence of the (1, 1) block being the identity is that the structure
of the first column of blocks of L̃ is the same as the corresponding block of
T . That is, the nonzeros in L̃(j,1) are in the same positions as those in T(j,1)

for 1 < j ≤ k.
The off-diagonal nonzero positions in L̃(2,2) are determined from the union

of the off-diagonal nonzeros positions in T(2,2), of which there are none, and

those in L̃(2,1)L̃
T
(2,1) = T(2,1)T

T
(2,1). The number of nonzeros in L̃(2,2) can be

changed by permuting the levels of f2, which causes a permutation of the
rows of the blocks T(2,i) and the columns of the blocks T(i,2). We deter-
mine a fill-reducing permutation of the levels of f2 using routines from the
Metis (Karapis, 2003) graph-partitioning package applied to the incidence
graph of T(2,1)T

T
(2,1). (This is the graph of m2 nodes in which nodes s and t

are connected by an edge if and only if
{

T(2,1)T
T
(2,1)

}
s,t

is nonzero.) We apply

this permutation to the columns of all blocks T(i,2) and the rows of all blocks
T(2,i).

The symbolic analysis function from the LDL package applied to T(2,1)T
T
(2,1)

(after permuting the rows of T(2,1)) provides the positions of the nonzeros in

L̃(2,2), from which we determine the positions of the nonzeros in L̃−1
(2,2). The

positions of the nonzeros in L̃(3,2) are those of T(3,2)L̃
−1
(2,2). The next step in

the iteration is to form the union of the nonzero positions of L̃(3,2)L̃
T
(3,2) and

the nonzero positions in T(3,1)T
T
(3,1) from which we determine a fill-reducing

permutation for the levels of f3. The process is continued until a fill-reducing
permutation for the levels of fk and the structure of L̃(k,k) and L̃−1

(k,k) are de-
termined.

As part of the symbolic analysis of each diagonal block, the elimination
tree (Davis, 2004) of the block is determined and stored as an integer array of
length mi. It is straightforward to check the number of terminal nodes in this
tree. If the elmination tree for L̃(i,i) is found to have only one terminal node

then L̃−1
(i,i) will be dense. Furthermore, all subsequent diagonal blocks will

be dense so there is no purpose in checking for a fill-reducing permutation of
the levels of fj, i < j ≤ k, and the symbolic analysis can be terminated.

2.1.2 Allocating storage

In the numeric representation of the model we will write the augmented model
matrix of size n× (p+1) obtained by appending y to X as X̃ = [X, y]. We
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can allocate the storage for the sparse matrix representation of the model
using the results of the symbolic analysis and the numbers of columns in the
model matrices, qi, i = 1, . . . , k and (p + 1).

We will store Ω, ZTZ, ZTX̃, X̃TX̃ and components RZZ , R̃ZX and
R̃XX of the Cholesky decomposition[

ZTZ + Ω ZTX̃

X̃TZ X̃TX̃

]
= RTR where R =

[
RZZ R̃ZX

0 R̃XX

]
. (4)

in one of four possible formats: as a dense matrix, as a block/block sparse
matrix, as a block/block diagonal matrix, or as a repeated block/block diag-
onal matrix.

For example, we have already indicated that Ω is repeated block/block
diagonal so we store it in the Omega slot as a list of k symmetric matrices of
sizes qi × qi (only the upper triangles of the symmetric matrices are used).

The matrices ZTX̃ and X̃TX̃, and the decomposition components R̃ZX ,
and R̃XX matrices are stored as dense matrices in slots named ZtX, XtX, RZX
and RXX, respectively.

The matrix ZTZ is stored in a symmetric, sparse column-oriented format
like that of T in (2) except that ZTZ has both inner and outer blocks. The
k × k grid of outer blocks (ZTZ)(i,j) is determined by the grouping factors.
These outer blocks correspond to the blocks T(i,j) in T . The diagonal outer
block (ZTZ)(i,i) is itself block diagonal in mi blocks of size qi × qi. We store
the upper triangles of these inner blocks in an array of size qi × qi × mi.
Block (ZTZ)(i,j) for j < i ≤ k is subdivided into inner blocks of size qi × qj

corresponding to the levels of grouping factors i and j. Because an inner
block of (ZTZ)(i,j) is nonzero if and only if the corresponding element of
T(i,j) is nonzero, we can use the column pointers and row indices from T(i,j)

for (ZTZ)(i,j) with the convention that they index the inner blocks, not the
individual elements, of (ZTZ)(i,j). The inner blocks are stored in a dense
array of dimension qi × qj × n(i,j) where n(i,j) is the number of nonzeros in
T(i,j). This is the block/block sparse matrix format.

Instead of calculating RZZ we calculate the LDL form

ZTZ + Ω = LDLT (5)

where L is block/block unit lower triangular (i.e. block/block lower triangu-
lar with all the inner diagonal blocks in the ith outer diagonal block being
the qi × qi identity matrix) and D is block/block diagonal.
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Just as the column pointers and row indices of the blocks of T can be
used for the outer blocks of ZTZ, we can use the column pointers and row
indices of L̃, which we have determined in the symbolic analysis, for the outer
blocks of

L =


I 0 . . . 0

L(2,1) L(2,2) . . . 0
...

... 0
L(k,1) L(k,2) . . . L(k,k)

 . (6)

That is, the same structure as L̃(i,j) applies to the blocks L(i,i), 1 < i ≤ k,

L(i,i), 1 < i ≤ k, and L(i,j), 1 ≤ j < i ≤ k except that each nonzero in L̃(i.j)

corresponds to a block of size qi × qj in L(i.j).
From the symbolic analysis we also have the column pointers and row in-

dices for L̃−1
(i,i), corresponding to the diagonal outer blocks of L−1. We allocate

storage for these diagonal outer blocks only. Note that L−1 is block/block
unit lower triangular just like L. Because the inner diagonal blocks of these
matrices are always the identity, these inner blocks are not explicitly stored.
Neither L(1,1) = I nor (L−1)(1,1) = I require any storage to be allocated.

We have used fill-reducing permutations of the levels of the grouping
factors fj, j = 2, . . . , k. These can decrease, sometimes dramatically, the
amount of storage required for the L̃(i,i) but generally they do not result

in compact storage of L̃−1
(i,i). In the worst case the matrix L̃−1

(2,2) will be
dense or nearly dense, resulting in a storage requirement of approximately
q2
2m2(m2 + 1)/2 elements for the array holding the numeric values for the

(2, 2) outer block of L−1.
The matrix D is block/block diagonal. It is stored as a list of k arrays of

sizes qi × qi ×mi.
After allocating the storage we evaluate y, X and the Zi then update

the contents of the XtX, ZtX, and ZtZ slots. We allocate the storage and
update the contents of the storage in separate steps so we can update the
numeric values without reallocating storage during iterative algorithms for
fitting generalized linear mixed models or nonlinear mixed models.

3 Evaluation of the objective

If prior estimates of the Ωi are available, we set the Omega slot accordingly.
Otherwise we form initial estimates from the matrices Zi, as described in

7



Pinheiro and Bates (2000, ch. 3). We then begin iterative optimization of
the estimation criterion with respect to the Ωi or with respect to the uncon-
strained parameter θ that determines the Ωi, as described in §8.

In this section we will describe the steps in evaluating the objective func-
tion (i.e. the function to be optimized w.r.t. the Ωi or w.r.t. θ) given the
current values of the Ωi. Recall that after setting values of the Ωi we form
the Cholesky decomposition (4)[

ZTZ + Ω ZTX̃

X̃TZ X̃TX̃

]
= RTR where R =

[
RZZ R̃ZX

0 R̃XX

]
.

and X̃ incorporates both X and y. In some cases it will be convenient
to consider X and y separately and we will write the components of the
Cholesky decomposition as if they wereZTZ + Ω ZTX ZTy

XTZ XTX XTy
yTZ yTX yTy

 = RTR where R =

RZZ RZX rZy

0 RXX rXy

0 0 ryy


(7)

even though they are stored in the form of (4).
Recall also that RZZ is calculated and stored in the LDL form. Instead

of storing the symmetric positive definite inner blocks of the block/block
diagonal D, we calculate and store their upper Cholesky factors. We write
the block/block diagonal matrix of upper Cholesky factors as D1/2 and its
transpose as DT/2. (Note that transposing a block/block diagonal matrix
only requires transposing the inner blocks.) The quantity log |D| is evaluated
as the sum of the logarithms of the squares of the diagonal elements of the
inner diagonal blocks of D1/2.

The next step in the factorization is to solve for R̃ZX in

RT
ZZ R̃ZX = LDT/2R̃ZX = ZTX̃ (8)

using blocked sparse matrix techniques (see Appendix B), storing the result
in the RZX slot. Finally, dense matrix operations are used to downdate the
densely stored X̃TX̃ and obtain the upper Cholesky factor R̃XX that satisfies

R̃T
XX R̃XX = X̃TX̃ − R̃T

ZX R̃ZX , (9)

and provides log
(
|RXX |2

)
and ryy .
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The status slot is a pair of logical values called factored and inverted.
It is set to (TRUE, FALSE) indicating that the factorization is current and
that it has not been inverted.

In a separate calculation the logarithm of the determinant

log |Ω| =
k∑

i=1

mi log |Ωi| (10)

is evaluated from the Cholesky factors of the Ωi. The function to be mini-
mized w.r.t. θ, called the profiled deviance, is

f(θ) = log |D| − log |Ω|+ n

[
1 + log

(
2πr2

yy

n

)]
(11)

for ML estimation or

fR(θ) = log |D|+ log
(
|RXX |2

)
− log |Ω|+ (n− p)

[
1 + log

(
2πr2

yy

n− p

)]
(12)

for REML.

3.1 Inverting the factorization

Evaluatation of the objective function does not require inversion of the fac-
torization nor does evaluation of many other quantities of interest, such as
the conditional variance estimates σ̂2 = r2

yy/n and σ̂2
R = r2

yy/(n − p), the

conditional fixed effects estimates, β̂, which satisfy RXX β̂ = rXy , and the

conditional modes of the random effects, b̂, which satisfy

D1/2LTb̂ = rZy −RZX β̂ (13)

However, if we wish to evaluate the ECME step or the gradient and/or
the Hessian of the objective, it is convenient to invert some parts of the
decomposition. We invert the dense upper triangular matrix R̃XX in place,
producing R−1

XX in the first p rows and columns, 1/ryy in the (p + 1, p + 1)

position, and −β̂/ryy in the first p rows of the p+1st column. We also invert
each of the triangular inner blocks of D1/2 in place producing D−1/2. The
inverses of the outer blocks on the diagonal of L are also determined and
stored separately. (In general the diagonal outer blocks cannot be inverted
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in place. The number of nonzero inner blocks in the inverse of an outer block
on the diagonal can be different from the number of nonzero inner blocks
in the outer diagonal block itself.) Notice that this last operation is trivial
in the case of a single grouping factor or multiple, nested grouping factors
because all the outer diagonal blocks in L are identity matrices.

The matrix R̃ZX R̃−1
XX is evaluated as a dense matrix product then each

column of −L−TD−1/2
(
R̃ZX R̃−1

XX

)
is evaluated using blocked sparse matrix

operations (see Appendix B for details) and stored in the RZX slot. The first
p columns of the result, which are −L−TD−1/2RZXR−1

XX , are used to create
products involving the matrix Vb, which is the unscaled, conditional, REML
variance-covariance of the random effects

Vb =
[
I 0

]([RT
ZZ 0

RT
ZX RT

XX

] [
RZZ RZX

0 RXX

])−1 [
I
0

]
=
[
I 0

] [R−1
ZZ −R−1

ZZRZXR−1
XX

0 R−1
XX

] [
R−T

ZZ 0
−R−T

XXRT
ZXR−T

ZZ R−T
XX

] [
I
0

]
=
[
R−1

ZZ −R−1
ZZRZXR−1

XX

] [ R−T
ZZ

−R−T
XXRT

ZXR−T
ZZ

]
= R−1

ZZR−T
ZZ + R−1

ZZRZXR−1
XXR−T

XXRT
ZXR−T

ZZ

=
(
ZTZ + Ω

)−1
+ R−1

ZZRZXR−1
XXR−T

XXRT
ZXR−T

ZZ

=
(
ZTZ + Ω

)−1
+ L−TD−1/2RZXR−1

XXR−T
XXRT

ZXD−T/2L−1

(14)

The p + 1st column is −b̂/ryy .
The status flag is changed to (TRUE, TRUE) indicating that the factor-

ization is current and that it is the inverted components that are stored in
the RZX, RXX, and Dfac slots and that the LIx slot if current.

4 Examples

To illustrate this representation and these operations we consider some ex-
amples of common types of mixed effects models.

4.1 Single grouping factor

The Early data set in the lme4 package is from a longitudinal study on an
early childhood intervention program. These data are described in Singer
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and Willett (2003, ch. 3). The response is a cognitive development score,
cog, measured at ages 1, 1.5, and 2 years (age) on 103 infants (identified by
id); 58 of whom were in the treatment group and 45 in the control group
(identified by trt). We convert the age measurement to “time on study”,
tos as the treatment began at age 0.5 years.
> Early$tos <- Early$age - 0.5
> str(Early)

`data.frame': 309 obs. of 5 variables:
$ id : Factor w/ 103 levels "86","87","77",..: 12 12 12 17 17 17 22 22 22 8 ...
$ cog: int 103 119 96 106 107 96 112 86 73 100 ...
$ age: num 1 1.5 2 1 1.5 2 1 1.5 2 1 ...
$ trt: Factor w/ 2 levels "N","Y": 2 2 2 2 2 2 2 2 2 2 ...
$ tos: num 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 ...

A lattice plot of the longitudinal scores is given in Figure 1.
These data are grouped by subject, as is common in longitudinal data.

The only grouping factor for random effects is id. (The subjects are them-
selves grouped into a treatment group and a control group but that dichotomy
would be modeled with fixed effects, not random effects.) As an initial model
an analyst may fit an unconditional growth model (Singer and Willett, 2003,
ch. 4)
> fm1 <- lmer(cog ~ tos + (tos | id), Early)

or proceed immediately to a model that allows for the effects of the treatment
> fm2 <- lmer(cog ~ tos * trt + (tos | id), Early)

The structure of the resulting object is
> str(fm2)

Formal class 'lmer' [package "Matrix"] with 29 slots
..@ assign : int [1:4] 0 1 2 3
..@ call : language lmer(formula = cog ~ tos * trt + (tos | id), data = Early)
..@ family :List of 10
.. ..$ family : chr "gaussian"
.. ..$ link : chr "identity"
.. ..$ linkfun :function (mu)
.. ..$ linkinv :function (eta)
.. ..$ variance :function (mu)
.. ..$ dev.resids:function (y, mu, wt)
.. ..$ aic :function (y, n, mu, wt, dev)
.. ..$ mu.eta :function (eta)
.. ..$ initialize: expression({ n <- rep.int(1, nobs) mustart <- y })
.. ..$ validmu :function (mu)
.. ..- attr(*, "class")= chr "family"
..@ fitted : num [1:309] 114 106 98 111 104 ...
..@ fixed : Named num [1:4] 118.41 -21.13 4.22 5.27
.. ..- attr(*, "names")= chr [1:4] "(Intercept)" "tos" "trtY" "tos:trtY"
..@ frame :`data.frame': 309 obs. of 4 variables:
.. ..$ cog: int [1:309] 103 119 96 106 107 96 112 86 73 100 ...
.. ..$ tos: num [1:309] 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 ...
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Figure 1: Cognitive development scores for 103 infants; 45 in the control
group (identification numbers above 900) and 58 in the treatment group.
The data from each infant are displayed in separate panels. Those for the
infants in the treatment group are in the lower three rows of panels; the
control group are in the upper two rows. Within each group the panels are
ordered by increasing initial cognitive score.
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.. ..$ trt: Factor w/ 2 levels "N","Y": 2 2 2 2 2 2 2 2 2 2 ...

.. ..$ id : Factor w/ 103 levels "86","87","77",..: 12 12 12 17 17 17 22 22 22 8 ...

.. ..- attr(*, "terms")=Classes 'terms', 'formula' length 3 cog ~ tos * trt + (tos + id)

.. .. .. ..- attr(*, "variables")= language list(cog, tos, trt, id)

.. .. .. ..- attr(*, "factors")= int [1:4, 1:4] 0 1 0 0 0 0 1 0 0 0 ...

.. .. .. .. ..- attr(*, "dimnames")=List of 2

.. .. .. .. .. ..$ : chr [1:4] "cog" "tos" "trt" "id"

.. .. .. .. .. ..$ : chr [1:4] "tos" "trt" "id" "tos:trt"

.. .. .. ..- attr(*, "term.labels")= chr [1:4] "tos" "trt" "id" "tos:trt"

.. .. .. ..- attr(*, "order")= int [1:4] 1 1 1 2

.. .. .. ..- attr(*, "intercept")= int 1

.. .. .. ..- attr(*, "response")= int 1

.. .. .. ..- attr(*, ".Environment")=length 3 <environment>

.. .. .. ..- attr(*, "predvars")= language list(cog, tos, trt, id)

.. .. .. ..- attr(*, "dataClasses")= Named chr [1:4] "numeric" "numeric" "factor" "factor"

.. .. .. .. ..- attr(*, "names")= chr [1:4] "cog" "tos" "trt" "id"

..@ logLik :Class 'logLik' : -1179 (df=8)

..@ residuals: num [1:309] -10.55 13.21 -2.02 -4.99 3.41 ...

..@ terms :Classes 'terms', 'formula' length 3 cog ~ tos * trt

.. .. ..- attr(*, "variables")= language list(cog, tos, trt)

.. .. ..- attr(*, "factors")= int [1:3, 1:3] 0 1 0 0 0 1 0 1 1

.. .. .. ..- attr(*, "dimnames")=List of 2

.. .. .. .. ..$ : chr [1:3] "cog" "tos" "trt"

.. .. .. .. ..$ : chr [1:3] "tos" "trt" "tos:trt"

.. .. ..- attr(*, "term.labels")= chr [1:3] "tos" "trt" "tos:trt"

.. .. ..- attr(*, "order")= int [1:3] 1 1 2

.. .. ..- attr(*, "intercept")= int 1

.. .. ..- attr(*, "response")= int 1

.. .. ..- attr(*, ".Environment")=length 3 <environment>

.. .. ..- attr(*, "predvars")= language list(cog, tos, trt)

.. .. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "factor"

.. .. .. ..- attr(*, "names")= chr [1:3] "cog" "tos" "trt"

..@ flist :List of 1

.. ..$ id: Factor w/ 103 levels "86","87","77",..: 12 12 12 17 17 17 22 22 22 8 ...

..@ perm :List of 1

.. ..$ id: int [1:103] 0 1 2 3 4 5 6 7 8 9 ...

..@ Parent :List of 1

.. ..$ id:List of 2

.. .. ..$ index: int [1:103] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...

.. .. ..$ block: int [1:103] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...

..@ D :List of 1

.. ..$ id: num [1:2, 1:2, 1:103] 2.25e-05 0.00e+00 -6.80e-01 1.71e-01 2.25e-05 ...

..@ bVar :List of 1

.. ..$ id: num [1:2, 1:2, 1:103] 0.4618 0.0000 -0.1162 0.0293 0.4618 ...

..@ L :List of 1

.. ..$ :Formal class 'dgBCMatrix' [package "Matrix"] with 3 slots

.. .. .. ..@ p: int [1:104] 0 0 0 0 0 0 0 0 0 0 ...

.. .. .. ..@ i: int(0)

.. .. .. ..@ x: num[1:2, 1:2, 0 ]

..@ ZZpO :List of 1

.. ..$ id:Formal class 'dgBCMatrix' [package "Matrix"] with 3 slots

.. .. .. ..@ p: int [1:104] 0 1 2 3 4 5 6 7 8 9 ...

.. .. .. ..@ i: int [1:103] 0 1 2 3 4 5 6 7 8 9 ...

.. .. .. ..@ x: num [1:2, 1:2, 1:103] 1.97e+09 0.00e+00 7.82e+09 3.11e+10 1.97e+09 ...

..@ Omega :List of 1

.. ..$ id: num [1:2, 1:2] 1.97e+09 0.00e+00 7.82e+09 3.11e+10

..@ method : chr "REML"
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..@ RXX : num [1:5, 1:5] 0.12 0.00 0.00 0.00 0.00 ...

..@ RZX : num [1:206, 1:5] -0.1245 0.0313 -0.1245 0.0313 -0.1245 ...

..@ XtX : num [1:5, 1:5] 309 0 0 0 0 ...

..@ ZtZ :List of 1

.. ..$ :Formal class 'dgBCMatrix' [package "Matrix"] with 3 slots

.. .. .. ..@ p: int [1:104] 0 1 2 3 4 5 6 7 8 9 ...

.. .. .. ..@ i: int [1:103] 0 1 2 3 4 5 6 7 8 9 ...

.. .. .. ..@ x: num [1:2, 1:2, 1:103] 3 0 3 3.5 3 0 3 3.5 3 0 ...

..@ ZtX : num [1:206, 1:5] 3 3 3 3 3 3 3 3 3 3 ...

..@ cnames :List of 2

.. ..$ id : chr [1:2] "(Intercept)" "tos"

.. ..$ .fixed: chr [1:5] "(Intercept)" "tos" "trtY" "tos:trtY" ...

..@ devComp : num [1:4] 2568.0 2407.0 13.4 10.0

..@ deviance : Named num [1:2] 2370 2359

.. ..- attr(*, "names")= chr [1:2] "ML" "REML"

..@ nc : int [1:3] 2 5 309

..@ Gp : int [1:2] 0 206

..@ status : Named logi [1:2] TRUE TRUE

.. ..- attr(*, "names")= chr [1:2] "factored" "inverted"

5 Frechet derivatives

We will denote the Frechet derivative of the matrix Ω with respect to Ωi by
DΩi

Ω. This is a four dimensional array that can be regarded as an indexed
set of q2

i matrices, each the same size as Ω. These matrices, which we call
the q2

i “faces” of the array, are indexed by the rows r and the columns c,
r, c = 1, . . . , qi of Ωi. The (r, c)th face, which we write as Di:r,c Ω, is the
derivative of Ω with respect to the (r, c)th element of Ωi. It is a repeated
block/block diagonal matrix where all of the outer diagonal blocks are zero
except for the (i, i) diagonal block which is block diagonal in mi blocks of
ere

T
c , where ej is the jth column of the identity matrix of size qi.
An expression of the form tr [(DΩi

Ω) M ] where M is a matrix of the same
size as Ω evaluates to q2

i scalars indexed by r and c, r, c = 1, . . . , qi, which
we convert to a qi × qi matrix in the obvious way. This type of expression
can be simplified as

tr [(DΩi
Ω)M ] =

mi∑
j=1

tr [(DΩi
Ωi)Mi,i,j,j] =

mi∑
j=1

MT
i,i,j,j (15)

where Mi,i,j,j is the jth inner diagonal block in the ith outer diagonal block
of M . To establish the last equality in (15) note that for any qi × qi matrix
A the entry in row r and column c of tr [(DΩi

Ωi)A] is

{tr [(DΩi
Ωi)A]}r,c = tr

[
ere

T
c A
]

= tr
[
eT

c Aer

]
= eT

c Aer = Ac,r (16)
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If M is symmetric, as is the case in all the expressions of this form that we
consider, then tr [(DΩi

Ω) M ] will be symmetric.
Expressions of this form that we will require include

tr
[
(DΩi

Ω) (Ω)−1] =

mi∑
j=1

(Ωi,i,j,j)
−1

= miΩ
−1
i

, (17)

tr

[
(DΩi

Ω)

(
b̂

ryy

b̂

ryy

T)]
= BiB

T
i (18)

where Bi is the qi × mi matrix whose j column is b̂i,j/ryy , j = 1, . . . ,mi

(recall that these vectors are in the p + 1st column of the RZX slot after the
inversion step), and tr

[
(DΩi

Ω) (ZTZ + Ω)−1
]
.

The last term requires evaluation of the inner diagonal blocks of(
ZTZ + Ω

)−1
=
(
RT

ZZRZZ

)−1
== L−TD−1/2D−T/2L−1 (19)

When k = 1, L is an identity matrix and the result is simply

tr
[
(DΩi

Ω) D−1/2D−T/2
]

=

m1∑
j=1

D
−1/2
1:j D

−T/2
1:j .

When k > 1 we must evaluate the crossproduct of each of the mi inner blocks
of qi columns in the ith outer block of columns of D−T/2L−1 = R−T

ZZ , which
we do using blocked, sparse matrix techniques. See Appendix B.1 for details.

For REML results we also need

tr [(DΩi
Ω) Vb] =

tr
[
(DΩi

Ω) R−1
ZZR−T

ZZ

]
+ tr

[
(DΩi

Ω) R−1
ZZRZXR−1

XXR−T
XXRT

ZXR−T
ZZ

]
(20)

We have just described how to calculate the first term in (20). The second
term is evaluated as the crossproducts of the mi inner blocks of qi rows in
the ith outer block of the rows of −R−1

ZZRZXR−1
XX , which is calculated and

stored in the RZX slot during the inversion of the factorization, as described
in §3.1.
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6 ECME updates

ECME iterations provide a stable, but only linearly convergent, optimization
algorithm for the objective functions f and fR. We use a moderate number
(the default is 20) of them to refine our initial estimates Ω

(0)
i and bring us

into the region of the optimum before switching to Newton iterations on the
unconstrained parameter vector θ.

The ECME iterations can be defined in terms of the Ωi. At the νth iter-
ation, Ω(ν+1) is defined to be the repeated block/block diagonal, symmetric,
positive definite matrix that satisfies the k systems of equations

tr

[
DΩi

Ω

(
b̂(ν)

σ̂(ν)

b̂(ν)
T

σ̂(ν)
+
(
ZTZ + Ω(ν)

)−1 −
(
Ω(ν+1)

)−1

)]
= 0 (21)

for ML estimates or the k systems

tr

[
DΩi

Ω

(
b̂(ν)

σ̂
(ν)
R

b̂(ν)
T

σ̂
(ν)
R

+ V
(ν)

b −Ω(ν+1)−1

)]
= 0 (22)

for REML.
The results of §5 provide

Ω
(ν+1)
i = mi

{
tr
[
(DΩi

Ω) (ZTZ + Ω(ν))−1
]
+ nB

(ν)
i B

(ν)
i

T
}−1

(23)

for ML and

Ω
(ν+1)
i = mi

{
tr [(DΩi

Ω) Vb] + (n− p)B
(ν)
i B

(ν)
i

T
}−1

(24)

for REML.

6.1 Gradient evaluations

The gradients of (11) and (12) with respect to Ωi are

∇Ωi
f = tr

[
DΩi

Ω

(
(ZTZ + Ω)−1 −Ω−1 +

b̂

σ̂

b̂

σ̂

T)]
(25)

∇Ωi
fR = tr

[
DΩi

Ω

(
Vb −Ω−1 +

b̂

σ̂R

b̂

σ̂R

T)]
(26)

and we have already described how to calculate all those terms.
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7 Evaluation of the Hessian

The Hessians of the scalar functions f and fR are symmetric matrices of
second derivatives. As for the calculation of the gradient, we first evalu-
ate the Hessian with respect to the Q =

∑k
i=1 q2

i dimensional vector ω =[
ωT

1 , . . . ,ωT
k

]T
where ωi = vecΩi and ‘vec’ is the vectorization function that

produces a column vector from a matrix by concatenating the columns. That
is, we temporarily ignore the fact that the Ωi must be positive definite and
symmetric and we consider each of the elements in these matrices separately.
In §8 we describe an unconstrained parameter vector θ of length

∑k
i=1

(
qi+1

2

)
and the conversion of the gradient and Hessian for ω to the corresponding
quantities for θ.

For convenience we index the Q elements of ω by triplets i : r, c denoting
the element at row r and column c of Ωi. Bates and DebRoy (2004) show
that the element in row i : r, c and column j : s, t of the Hessian is

{
∇2

ωf
}

i:r,c;j:s,t
= tr

[
Di:r,c (Dj:s,t Ω)

((
ZTZ + Ω

)−1 −Ω−1 +
b̂

σ̂

b̂T

σ̂

)]
− tr

[
Di;r,c Ω

(
ZTZ + Ω

)−1
Dj;s,t Ω

(
ZTZ + Ω

)−1
]

+ tr
[
(Di;r,c Ω)Ω−1 (Dj;s,t Ω)Ω−1

]
− 2

b̂T

σ̂
(Di;r,c Ω) Vb (Dj;s,t Ω)

b̂

σ̂

− 1

n

(
b̂T

σ̂
(Di;r,c Ω)

b̂

σ̂

)(
b̂T

σ̂
(Dj;s,t Ω)

b̂

σ̂

)
(27)

for ML estimates, and

{
∇2

ωfR

}
i:r,c;j:s,t

= tr

[
Di:r,c (Dj:s,t Ω)

(
Vb −Ω−1 +

b̂

σ̂

b̂T

σ̂

)]
− tr [Di;r,c ΩVb Dj;s,t ΩVb]

+ tr
[
(Di;r,c Ω)Ω−1 (Dj;s,t Ω)Ω−1

]
− 2

b̂T

σ̂R

(Di;r,c Ω) Vb (Dj;s,t Ω)
b̂

σ̂R

− 1

n

(
b̂T

σ̂R

(Di;r,c Ω)
b̂

σ̂R

)(
b̂T

σ̂R

(Dj;s,t Ω)
b̂

σ̂R

)
(28)
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for REML.
The matrix Dj:s,t Ω is constant so the first term in both (27) and (28) is

zero.

8 Unconstrained parameterization

The vector θ =
[
θT

1 , . . . ,θT
k

]T
is an unconstrained parameterization of Ω

based on the LDL form of the Cholesky decomposition of the Ωi

Ωi = LiDiL
T
i . (29)

where Li is a qi × qi unit lower triangular matrix and Di is a qi × qi diago-
nal matrix with positive diagonal elements. We use the qi logarithms of the
diagonal elements of Di, written δi, and, when qi > 1, the row-wise concate-
nation of the

(
qi

2

)
elements in the strict lower triangle of Li, written λi, as

the
(

q+1
2

)
dimensional unconstrained parameter θi =

[
δT

i , λT
i

]T
Let g be any scalar function of the Ωi such that the qi × qi gradient ma-

trices ∇δi
f are symmetric. (Both f , the objective for ML estimation, and

fR, the objective for REML estimation, are such functions.) The compo-
nents ∇δi

g and ∇λi
g of the gradient vector ∇θi

g can be evaluated from the
symmetric gradient matrix ∇Ωi

g and the derivative of the product (29). For
example,

{∇δi
g}j = tr

[
(∇Ωi

g)
∂Ωi

∂ {δi}j

]

= tr

[
(∇Ωi

g) Li
∂Di

∂ {δi}j

LT
i

]
= exp {δi}je

T
j Li (∇Ωi

g)T Liej

=
{
Ri (∇Ωi

g) RT
i

}
j,j

(30)

for j = 1, . . . , qi, where Ri is the upper Cholesky factor of Ωi. The partial
derivative with respect to element t of λi, which determines the r, cth element

18



of Li, is

{∇λi
g}t = tr

[
(∇Ωi

g)
∂Ωi

∂ {λi}t

]
= tr

[
(∇Ωi

g) ere
T
c DiL

T
i + (∇Ωi

g) LiDiece
T
r

]
= eT

c DiL
T
i (∇Ωi

g) er + eT
r (∇Ωi

g) LiDiec

= 2 {(∇Ωi
g) LiDi}c,r

= 2
{

(∇Ωi
g) RT

i D
1/2
i

}
c,r

(31)

9 Acknowledgements

This work was supported by U.S. Army Medical Research and Materiel Com-
mand under Contract No. DAMD17-02-C-0119. The views, opinions and/or
findings contained in this report are those of the authors and should not be
construed as an official Department of the Army position, policy or decision
unless so designated by other documentation.

A Sparse matrix formats

The basic form of sparse matrix storage, called the triplet form, represents
the matrix as three arrays of length nz, which is the number of nonredundant
nonzero elements in the matrix. The i array contains the row indices, the j

array the column indices, and the x array the values of the nonzero elements.
A column-oriented triplet form requires that the elements of these arrays be
such that j is nondecreasing. A sorted, column-oriented triplet form is such
that elements in i corresponding to the same j index are in increasing order.
That is, the arrays are ordered by column and, within column, by row.

In column-oriented storage, multiple elements in the same column pro-
duce runs in j. A compressed, column-oriented storage form replaces j by p,
an array of pointers to the indices (in i and x) of the first element in each
column. If there are n columns in the matrix, this array is of length n + 1,
with the last element of p being one greater than the index of last element
in the last column. Then the differences of successive elements of p give the
number of nonzeros in each column.

In the implementation in the Matrix package for R, the indices i, j, and
p are 0-based, as in the C language, (i.e. the first element of an array has
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index 0) not 1-based, as in the S language. Thus the first element of p is
always zero.

B Blocked sparse matrix operations

We take advantage of the blocked sparse structure of ZTZ, Ω, L and D in
operations involving these matrices. Consider, for example, the operation of
solving for R̃ZX in the system (8), LDT/2R̃ZX = ZTX̃. Let u be a column of
DT/2R̃ZX and v be the corresponding column of ZTX̃. The corresponding
column of the result, which is D−T/2u, is easily evaluated from u. (Recall
that D−1/2 is block/block diagonal, i.e. block diagonal in k outer blocks of
sizes miqi × miqi each of which is itself block diagonal in mi blocks of size
qi × qi, and that D−1/2 is calculated and stored during the inversion step.)
Both u and v can be divided into k outer blocks of sizes miqi, which we
denote ui and vi, and each of the outer blocks can be divided into mi inner
blocks of size qi, which we denote ui:j and vi:j.

Because L is lower triangular, the blocks of v can be evaluated in a
blockwise forward solve. That is, the blocked equations are solved in the
order

L(1,1)u1 = v1 =⇒ Iu1 = u1 = v1

L(2,2)u2 = v2 −L(2,1)u1

...

L(k,k)uk = vk −L(k,k−1)uk−1 − · · · −L(k,1)u1

(32)

Notice that the solution in the first block does not require any calculation
because L(1,1) is always the identity. In many applications k = 1 and the
operation of solving for Lu = v can be skipped entirely. In most other
applications the size of u1 dominates the size of the other components so that
being able to set u1 = v1 represents a tremendous savings in computational
effort.

We take advantage of the blocked, sparse columns of the outer blocks of
L in evaluations of the form v2−L(2,1)u1. That is, we evaluate L(2,1)u1 using
the blocks of size q2 × q1 skipping blocks that we know will be zero as we
update the inner blocks of u2 in place. The solutions of systems of the form
L(i,i)ui = ṽi where ṽi is the updated vi are also done in inner blocks taking
advantage of the sparsity of L−1

(i,i). Recall that in the case of nested grouping
factors the L(i,i) are all identity matrices and this step is skipped.
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B.1 Accumulating diagonal blocks of the inverse

The ECME steps and the gradient evaluation require

tr
[
DΩi

Ω
(
ZTZ + Ω

)−1
]

= tr
[
(DΩi

Ω)
(
D−T/2L−1

)T (
D−T/2L−1

)]
(33)

which will be the sum of the crossproducts of the mi inner blocks of qi columns
in the ith outer block of columns of D−T/2L−1.

When i = k = 1 the result is
∑m1

j=1 D
−1/2
1:j D

−T/2
1:j , which can be evaluated

in a single call to the level-3 BLAS routine dsyrk. (Having the 3 dimensional
array containing the mi inner blocks of the ith outer block of D−1/2 in the
form that allows this to be done in a single, level-3 BLAS call is the reason
that we store and invert the upper triangular factors of inner blocks of D.)

When i = 1 and k > 1 we initialize the result from the (1, 1) block as
above, then add the crossproducts of inner blocks of columns in the outer
(2, 1) block, the outer (3, 1) block, and so on. These blocks of columns are
calculated sparsely. During the initial decomposition we evaluate and store
(in blocked, sparse format) L−1

(i,i) for 1 < i ≤ k.
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