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Abstract

Expressions for the evaluation of the profiled log-likelihood or pro-
filed log-restricted-likelihood of a linear mixed model, the gradients
and Hessians of these criteria, and update steps for an ECME algo-
rithm to optimize these criteria are given in Bates and DebRoy (2004).
In this paper we generalize those formulae and describe the represen-
tation of mixed-effects models using sparse matrix methods available
in the Matrix package.

1 Introduction

General formulae for the evaluation of the profiled log-likelihood and pro-
filed log-restricted-likelihood in a linear mixed model are given in Bates and
DebRoy (2004). Here we describe a more general formulation of the model
using sparse matrix decompositions and describe the implementation of these
methods in the lmer function for R.

In §2 we describe the form and representation of the model. The calcu-
lation of the criteria to be optimized by the parameter estimates and related
quantities is discussed in §3.
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2 Form and representation of the model

We consider linear mixed models of the form

y = Xβ + Zb + ε ε ∼ N (0, σ2I), b ∼ N (0,Σ), ε ⊥ b (1)

where y is the n-dimensional response vector, X is an n × p model matrix
for the p dimensional fixed-effects vector β, Z is the n× q model matrix for
the q dimensional random-effects vector b, which has a Gaussian distribution
with mean 0 and variance-covariance matrix Σ, and ε is the random noise
assumed to have a spherical Gaussian distribution. The symbol ⊥ indicates
independence of random variables.

We will assume that X has full column rank and that Σ is positive
definite.

2.1 Structure of the variance-covariance matrix

Components of the random effects vector b and portions of its variance-
covariance matrix Σ are associated with k grouping factors fi, i = 1, . . . , k,
each of length n, and with the ni, i = 1, . . . , k levels of each of the grouping
factors. In general there are qi components of b associated with each of the
ni levels the grouping factor fi, i = 1, . . . , k. Thus

q =
k∑

i=1

niqi (2)

We assume that the components of b and the rows and columns of Σ are
ordered according to the k grouping factors and, within the block for the ith
grouping factor, according to the ni levels of the grouping factor.

Random effects associated with different grouping factors are indepen-
dent. This implies that Σ is block-diagonal with k diagonal blocks of orders
niqi, i = 1, . . . , k.

Random effects associated with different levels of the same grouping factor
are independent. This implies that the ith (outer) diagonal block of Σ is itself
block diagonal in ni blocks of order qi. We say that the structure of Σ is
block/block diagonal.

Finally, the variance-covariance matrix within each of the qi-dimensional
subvectors of b associated with one of the ni levels of grouping factor fi, i =
1, . . . , k is a constant (but unknown) positive-definite symmetric qi×qi matrix
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Σi, i = 1, . . . , k. This implies that each of the ni inner diagonal blocks of
order qi is a copy of Σi. We say that Σ has a repeated block/block diagonal
structure.

In the notation of the Kronecker product, the ith outer diagonal block of
Σ is Ini

⊗Σi.

2.2 The relative precision matrix

Many of the computational formulae that follow are more conveniently ex-
pressed in terms of Σ−1, which is called the precision matrix of the random
effects, than in terms of Σ, the variance-covariance matrix. In fact, the
formulae are most conveniently expressed in terms of the relative precision
matrix σ2Σ−1 which we write as Ω. That is,

Ω = σ2Σ−1 (3)

This called the “relative” precision because it is precision of b (i.e. Σ−1)
relative to the precision of ε (i.e. σ−2I).

It is easy to establish that Ω will have a repeated block/block diagonal
structure like that of Σ. That is, Ω consists of k outer diagonal blocks of sizes
niqi, i = 1, . . . , k and the ith outer diagonal block is itself block diagonal with
ni inner blocks of size qi× qi. Furthermore, each of the inner diagonal blocks
in the ith outer block is a copy of the qi × qi positive-definite, symmetric
matrix Ωi.

Because Ω has a repeated block/block structure we can define the entire
matrix by specifying the symmetric matrices Ωi, i = 1, . . . , k and, because of
the symmetry, Ωi has at most qi(qi + 1)/2 distinct elements. We will write
a parameter vector of length at most

∑k
i=1 qi(qi + 1)/2 that determines Ω as

θ. For example, we could define θ to be the non-redundant elements in the
Ωi, although in the actual computations we use a different, but equivalent,
parameterization for reasons to be discussed later.

We only need to store the matrices Ωi, i = 1, . . . , k and the number
of levels in the grouping factors to be able to create Ω. The matrices Ωi

are stored in the Omega slot of an object of class "lmer". The values of k
and ni, i = 1, . . . , k can be determined from the list of the grouping factors
themselves, stored as the flist slot, or from the dimensions qi, i = 1, . . . , k,
stored in the nc slot, and the group pointers, stored in the Gp slot. The group
pointers are the (0-based) indices of the first component of b associated with
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the ith grouping factor. The last element of Gp is the number of elements in
b.

Thus successive differences of the group pointers are the total number
of components of b associated with the ith grouping factor. That is, these
differences are niqi, i = 1, . . . , k. The first element of the Gp slot is always 0.

2.3 Examples

Consider the fitted models
> Sm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
> data(Chem97, package = "mlmRev")
> Cm1 <- lmer(score ~ gcsescore + (1 | school) + (1 | lea), Chem97,
+ control = list(niterEM = 0, gradient = FALSE))
> data(star, package = "mlmRev")
> Mm1 <- lmer(math ~ gr + sx * eth + cltype + (yrs | id) + (1 |
+ tch) + (yrs | sch), star, control = list(niterEM = 0, gradient = FALSE))

Model Sm1 has a single grouping factor with 18 levels and q1 = 2. The
Omega slot is a list of length one containing a 2× 2 symmetric matrix. There
are 36 elements in b.
> str(Sm1@flist)

List of 1
$ Subject: Factor w/ 18 levels "308","309","310",..: 1 1 1 1 1 1 1 1 1 1 ...

> show(Sm1@Omega)

$Subject
2 x 2 Matrix of class "dpoMatrix"

(Intercept) Days
(Intercept) 1.077182 -0.299243
Days -0.299243 18.769223

> show(Sm1@nc)

Subject
2

> show(Sm1@Gp)

[1] 0 36

> diff(Sm1@Gp)/Sm1@nc

Subject
18

Model Cm1 has two grouping factors: the school factor with 2410 levels
and the lea factor (local education authority - similar to a school district
in the U.S.A.) with 131 levels. It happens that the school factor is nested
within the lea factor, a property that we discuss below. The Omega slot is a
list of length two containing two 1× 1 symmetric matrices.
> str(Cm1@flist)
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List of 2
$ school: Factor w/ 2410 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ lea : Factor w/ 131 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...

> show(Cm1@Omega)

$school
1 x 1 Matrix of class "dpoMatrix"

(Intercept)
(Intercept) 4.418472

$lea
1 x 1 Matrix of class "dpoMatrix"

(Intercept)
(Intercept) 347.6100

> show(Cm1@nc)

school lea
1 1

> show(Cm1@Gp)

[1] 0 2410 2541

> diff(Cm1@Gp)/Cm1@nc

school lea
2410 131

Model Mm1 has three grouping factors: id (student) with 10732 levels,
tch (teacher) with 1374 levels and sch (school) with 80 levels. The Omega

slot is a list of length three containing two 2× 2 symmetric matrices and one
1× 1 matrix.
> str(Mm1@flist)

List of 3
$ id : Factor w/ 10732 levels "100017","100028",..: 1 2 3 3 3 4 5 5 6 6 ...
$ tch: Factor w/ 1374 levels "1","2","3","4",..: 476 889 695 698 703 1097 676 681 349 357 ...
$ sch: Factor w/ 80 levels "1","2","3","4",..: 28 52 41 41 41 64 40 40 22 22 ...

> show(Mm1@Omega)

$id
2 x 2 Matrix of class "dpoMatrix"

(Intercept) yrs
(Intercept) 0.3320375 0.4956214
yrs 0.4956214 8.1878744

$tch
1 x 1 Matrix of class "dpoMatrix"

(Intercept)
(Intercept) 1.425547

$sch
2 x 2 Matrix of class "dpoMatrix"

(Intercept) yrs
(Intercept) 3.288228 6.067263
yrs 6.067263 18.649014

> show(Mm1@nc)

id tch sch
2 1 2
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Name n p k n1 q1 n2 q2 n3 q3 q #(θ)
Sm1 180 2 1 18 2 36 3
Cm1 31022 2 2 2410 1 131 1 2541 2
Mm1 24578 17 3 10732 2 1374 1 80 2 22998 7

Table 1: Dimensions of model matrices X and Z for example model fits.
The model matrix X is n× p and dense. The model matrix Z is n× q and
sparse. The variance-covariance matrix Σ of the random effects b is q×q and
repeated block/block diagonal with k outer blocks of sizes niqi, i = 1, . . . , k
each consisting of ni inner blocks of size qi× qi. The matrix Σ is determined
by a parameter θ whose length is shown in the table.

> show(Mm1@Gp)

[1] 0 21464 22838 22998

> diff(Mm1@Gp)/Mm1@nc

id tch sch
10732 1374 80

The last element of the Gp slot is the dimension of b. Notice that for model
Mm1 the dimension of b is 22,998. This is also the order of the symmetric
matrix Ω although the contents of the matrix are determined by θ which has
a length of 3 + 1 + 3 = 7 in this case.

Table 1 summarizes some of the dimensions in these examples.

2.4 Permutation of the random-effects vector

For most mixed-effects model fits, the model matrix Z for the random effects
vector b is large and sparse. That is, most of the entries in Z are zero (by
design, not by accident).

Numerical analysts have developed special techniques for representing and
manipulating sparse matrices. Of particular importance to us are techniques
for obtaining the left Cholesky factor L of large, sparse, positive-definite,
symmetric matrices. In particular, we want to obtain the Cholesky factor-
ization of ZTZ + Ω(θ) for different values of θ.

Sparse matrix operations are typically performed in two phases: a sym-
bolic phase, in which the number of non-zero elements in the result and their
positions are determined, followed by a numeric phase, in which the actual
numeric values are calculated. Advanced sparse Cholesky factorization soft-
ware, such as the CHOLMOD library (Davis, 2005) that we use, allow for
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Z ZTZ L
Name n q nz sp nz sp nz sp
Sm1 180 36 360 0.0556 54 0.0811 54 0.0811
Cm1 31022 2541 62044 0.0008 4951 0.0015 13021 0.0040
Mm1 24578 22998 1222890 0.0002 130138 0.0005 187959 0.0007

Table 2: Summary of the sparsity of the model matrix Z, its crossproduct
matrix ZTZ and the left Cholesky factor L in the examples. The notation nz
indicates the number of nonzeros in the matrix and sp indicates the sparsity
index (the fraction of the elements in the matrix that are non-zero). Because
ZTZ is symmetric, only the nonzeros in the upper triangle are counted and
the sparsity index is relative to the total number of elements in the upper
triangle.

calculation of a fill-reducing permutation of the rows and columns during
the symbolic phase. In fact the CHOLMOD code allows for evaluation of
both a fill-reducing permutation and a post-ordering that groups together
columns of L with identical patterns of nonzeros, thus allowing for dense
matrix techniques to be used on these blocks of columns or “super-nodes”.
Such a decomposition is called a supernodal Cholesky factorization.

Because the number of nonzeros in Ω(θ) and their positions do not change
with θ and because the nonzeros in Ω(θ) are a subset of the nonzeros in
ZTZ, we need only perform the symbolic phase once and we can do on ZT

(the CHOLMOD library has a module that calculates the permutation for
a super-nodal decomposition of ZTZ from ZT). That is, using ZT only we
can determine the permutation matrix P for all supernodal decompositions
of the form

P
[
ZTZ + Ω(θ)

]
P T = L(θ)L(θ)T (4)

We revise (1) by incorporating the permutation to obtain

y = Xβ + ZP TPb + ε ε ∼ N (0, σ2I), b ∼ N (0, σ2Σ), ε ⊥ b (5)

2.5 Extent of the sparsity

Table 2 shows the extent of the sparsity of the matrices Z, ZTZ and L in
our examples.

The matrix L is the supernodal representation of the left Cholesky factor
of P

(
ZTZ + Ω

)
P T. Because the fill-reducing permutation P has been ap-
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plied the number of nonzeros in L will generally be less than the number of
nonzeros in the left Cholesky factor of ZTZ+Ω. However, when any supern-
odes of L contain more than one column there will be elements above the
diagonal of L stored and these elements are necessarily zero. They are stored
in the supernodal factorization so that the diagonal block for a supernode
can be treated as a dense rectangular matrix. Although these elements are
stored in the structure they are never used because any calculations involving
the diagonal blocks take into account its being a lower triangular matrix. We
do not count these elements as nonzeros in computing the size of L or the
sparsity index.

In model Sm1 the number of nonzeros in L is equal to the number of
nonzeros in ZTZ. That is, there is no fill-in. In model Mm1 the number of
nonzeros in L is approximately 144% the number of nonzeros in ZTZ rep-
resenting a modest amount of fill-in. For model Cm1 the number of nonzeros
in L is apparently 263% the number of nonzeros in ZTZ, which is still not
dramatic. However, it is misleading in that the extra “nonzeros” are, in fact,
systematic zeros. Models based on a nested sequence of grouping factors do
not generate any fill-in but the pattern in the factor L is not of the type
that can be detected and accomodated by standard algorithms for sparse
matrices.

3 Likelihood and restricted likelihood

In general the maximum likelihood estimates of the parameters in a statis-
tical model are those values of the parameters that maximize the likelihood
function, which is the same numerical value as the probability density of y
given the parameters but regarded as a function of the parameters given y,
not as a function of y given the parameters.

For model (5) the parameters are β, σ2 and θ (as described in §2.2, θ
and σ2 jointly determine Σ) so we evaluate the likelihood L(β, σ2, θ|y) as

L(β, σ2, θ|y) = fy|β,σ2,θ(y|β, σ2, θ) (6)

where fy|β,σ2,θ(y|β, σ2, θ) is the marginal probability density for y given the
parameters.

Because we will need to write several different marginal and conditional
probability densities in this section, and because expressions like fy|β,σ2,θ(y|β, σ2, θ)
are difficult to read, we will adopt a convention sometimes used in the
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Bayesian inference literature that a conditional expression in square brackets
indicates the probability density of the quantity on the left of the | given the
quantities on the right of the |. That is[

y|β, σ2, θ
]

= fy|β,σ2,θ(y|β, σ2, θ) (7)

Model (5) specifies the conditional distributions

[
y|β, σ2, b

]
=

exp
{
−‖y −Xβ −ZP TPb‖2/ (2σ2)

}
(2πσ2)n/2

(8)

and [
b|θ, σ2

]
=

exp
{
−bTΣ−1b/2

}
|Σ|1/2 (2π)q/2

=
|Ω|1/2 exp

{
−bTΩb/ (2σ2)

}
(2πσ2)q/2

(9)

from which we can derive the marginal distribution

[
y|β, σ2, θ

]
=

∫
b

[
y|β, σ2, b

] [
b|θ, σ2

]
db

=
|Ω|1/2

(2πσ2)n/2

∫
b

exp
{
−
[
‖y −Xβ −ZP TPb‖2 + bTΩb

]
/ (2σ2)

}
(2πσ2)q/2

db. (10)

3.1 A penalized least squares representation

To evaluate the integral in (10) we expand the expression in the numerator
of the exponent

g(b, β|Z, X, y, P ) = ‖y −Xβ −ZP TPb‖2 + bTP TPΩP TPb

=

∥∥∥∥∥∥[ZP T X y
] −Pb

−β
−1

∥∥∥∥∥∥
2

+ bTP TPΩP TPb

=

−Pb
−β
−1

T P
(
ZTZ + Ω

)
P T PZTX PZTy

XTZP T XTX XTy
yTZP T yTX yTy

−Pb
−β
−1


(11)
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from which we see that the expression is a quadratic form.
As we have already indicated, we simplify the quadratic form by taking a

Cholesky decomposition of the positive-definite, symmetric matrix defining
the form. We write this asP

(
ZTZ + Ω

)
P T PZTX PZTy

XTZP T XTX XTy
yTZP T yTX yTy


=

 L 0 0
RT

ZX RT
XX 0

rT
Zy rT

Xy ryy

LT RZX rZy

0 RXX rXy

0 0 ryy

 (12)

which gives

g(b, β|Z, X, y, P ) = ‖rZy −RZXβ−LTPb‖2 +‖rXy −RXXβ‖2 + r2
yy . (13)

The last two terms in (13) do not depend on b so the integral in (10) can
be evaluated if we evaluate∫

b

exp
{
−‖rZy −RZXβ −LTPb‖2/ (2σ2)

}
(2πσ2)q/2

db

which we do with a change of variable

v = LPb

for which the Jacobian is∣∣∣∣dv

db

∣∣∣∣ =
√
|LP |2 =

√
|L|2 = |LLT|1/2 = |ZTZ + Ω|1/2

Thus∫
b

exp
{
−‖rZy −RZXβ −LTPb‖2/ (2σ2)

}
(2πσ2)q/2

db

=
1

|ZTZ + Ω|1/2

∫
v

exp {−‖rZy −RZXβ − v‖2/ (2σ2)}
(2πσ2)q/2

dv

=
1

|ZTZ + Ω|1/2

(14)

because the integral with respect to v is the integral of a q-dimensional
multivariate normal density.
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3.2 Likelihood results

Substituting (13) and (14) into (10) we can evaluate the likelihood L(β, σ2, θ|y).
As often happens, it is easier to write the log-likelihood

`(β, σ2, θ|y) = log L(β, σ2, θ|y)

and even easier to write the result on the deviance scale as

− 2`(β, σ2, θ|y)

= log

(
|ZTZ + Ω|

|Ω|

)
+

r2
yy

σ2
+
‖rXy −RXXβ‖2

σ2
+ n log(2πσ2) (15)

The maximum likelihood estimators [θ̂, β̂, σ̂2] minimize the deviance ex-
pression (15), which has some properties that can be used to simplify the
optimization process. In particular,

1. The conditional estimates of β satisfy

RXX β̂(θ) = rXy . (16)

2. The conditional modes (which are also the means) of the random effects
b satisfy

LTP b̂(θ, β) = rZy −RZXβ. (17)

Usually we want to evaluate these at θ and β̂(θ), which we write as

b̂(θ) = b̂ (θ, β(θ)).

3. The conditional ML estimate of σ2 is

σ̂2(θ) = r2
yy/n. (18)

4. The profiled ML deviance, which is a function of θ only produced by
plugging in the conditional estimates for β and σ2, is

log

(
|L|2

|Ω|

)
+ n

[
1 + log

(
2πr2

yy

n

)]
(19)

5. The profiled REML deviance is

log

(
|D| |RXX |2

|Ω|

)
+ (n− p)

[
1 + log

(
2πr2

yy

n− p

)]
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