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1 Description

The multiplicity problem arises when several inferences are considered simulta-
neously as a group. If each inference has a 5% error rate, then the error rate
over the entire group can be much higher than 5%. This article shows practical
examples of multiple comparisons procedures that control the error of making
any incorrect inference.

The multcomp package for the R statistical environment allows for multiple
comparisons of parameters whose estimates are generally correlated, including
comparisons of k groups in general linear models. The package has many com-
mon multiple comparison procedures “hard-coded”, including Dunnett, Tukey,
sequential pairwise contrasts, comparisons with the average, changepoint anal-
ysis, Williams’, Marcus’, McDermott’s, and tetrad contrasts. In addition, a free
input interface for the contrast matrix allows for more general comparisons.

The comparisons themselves are not restricted to balanced or simple designs.
Instead, the package is designed to provide general multiple comparisons, thus
allowing for covariates, nested effects, correlated means, likelihood-based esti-
mates, and missing values. For the homoscedastic normal linear models, the
functions in the package account for the correlations between test statistics by
using the exact multivariate ¢t-distribution. The resulting procedures are there-

fore more powerful than the Bonferroni and Holm methods; adjusted p-values for
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these methods are reported for reference. For more general models, the program
accounts for correlations using the asymptotic multivariate normal distribution;
examples include multiple comparisons based on rank transformations, logistic
regression, GEEs, and proportional hazards models. In the asymptotic case,
the user must supply the estimates, the asymptotic covariance matrix, and the
contrast matrix.

Basically, the package provides two functions. The first, simint, computes
confidence intervals for the common single-step procedures. This approach is
uniformly improved by the second function (simtest), which utilizes logical
constraints and is closely related to closed testing. However, no confidence
intervals are available for the simtest function. For testing and validation

purposes, some examples from Westfall et al. (1999) are included in the package.

2 Details

Assume the general linear model
Y = X3 + ¢,

where Y is the n x 1 observation vector, X is the fixed and known n x p design
matrix, B is the fixed and unknown p x 1 parameter vector and € is the random,
unobservable n x 1 error vector, distributed as N, (0,02%L,). We assume the
usual estimates

B =(X'X)"X'Y

and

5 = (Y - XB)'(Y -XB)/v,

where v = n — rank(X). Our focus is on multiple comparisons for parameters

of the general form c!@3. Its variance is given through

Var(c!B) = 62c/(X'X) c.



In simultaneous inferences we are faced with a given family of estimable

parameters {c!3,...,ctB3}. We thus use the pivotal test statistics
_ dp-cp
a4/t (XtX)¢;

For a general account on multiple comparison procedures we refer to Hochberg
and Tamhane (1987). The joint distribution of {T%,...,T)} is multivariate ¢
with degrees of freedom v and correlation matrix R = DC(X!X)~C'D, where
C! = (c1,...,c) and D = diag(ct(X'X)"c;) /2. In the asymptotic case v —
oo or if ¢ is known, the corresponding limiting multivariate normal distribution
holds. The numerical evaluation of the multivariate ¢ and normal distribution
is available with the R package mvtnorm, see Hothorn et al. (2001).

The function simint provides simultaneous confidence intervals for the es-

timable functions ct3 in the (two-sided) form

[cfﬁ —1_a0y/ct(XPX) "¢ ¢l + cl_ac}\/cﬁ(XtX)—cz} )

where ¢;_, is the critical value at level 1 —«, as derived under the distributional
assumptions above. If lower or upper tailed tests are used, the corresponding
interval bounds are set to —oo and oo, respectively.

The second function simtest provides more powerful test decisions than
simint yet it does not provide simultaneous confidence intervals. It uses the
stepwise methods of Westfall (1997), which take the logical constraints between
the hypotheses into account and which are closely related to the closed testing
principle of Marcus et al. (1976). In addition, the stochastic dependencies of the
test statistics are incorporated, thus allowing imbalance, covariates and more
general models. Again, any collection of linear combinations of the estimable
parameters is allowed, not just pairwise comparisons. We refer to Westfall (1997)

for the algebraic and algorithmic details.

3 Example

We illustrate some of the capabilities of the multcomp package using the recov-

ery dataset. Three different heating blankets by, by, b3 for post-surgery treat-



ment are compared to a standard blanket by. The variable of interest in this
simple one-way layout was recovery time in minutes of patients allocated ran-
domly to one of the four treatments. The standard approach for comparing
several treatments against a control is the many-to-one test of Dunnett (1955).
The Dunnett test is one of the “hard-coded” procedures available for one-factor
models in multcomp. To obtain simultaneous confidence intervals for the com-

parisons (3; — 31 on simply calls:

>library (multcomp)
Loading required package: mvtnorm

>data(recovery)
>Dcirec <- simint(minutes ~ blanket, data = recovery,

+ conf.level = 0.9, alternative = "less")
>print (Dcirec)

Simultaneous confidence intervals: Dunnett

contrasts

90 % confidence intervals

Estimate lower CI upper CI

blanketbl-blanketb0 -2.133 -Inf -0.041
blanketb2-blanketb0 -7.467 -Inf -5.374
blanketb3-blanketb0 -1.667 -Inf -0.512

Thus, blankets b and b3 lead to significant lower recovery times in comparison
to the standard by, since the respective upper confidence bounds are less than 0.
In particular, the output above indicates that at the designated confidence level
of 90% the average recovery time for by is more than 7 minutes shorter than it
is for bg.

A second way to obtain the same results is to define the contrast matrix C
explicitly:
>C <- matrix(c(0, 0, 0, -1, -1, -1, 1, 0, 0, O,
+ 1, 0, 0, 0, 1), nc = 5)



>rownames (C) <- paste("C", 1:nrow(C), sep = "")
>Ccirec <- simint(minutes ~ blanket, data = recovery,
+ conf.level = 0.9, alternative = "less", eps = le-04,

+ cmatrix = C)
>print(Ccirec)

Simultaneous confidence intervals: user-defined

contrasts

90 % confidence intervals

Estimate lower CI upper CI

C1 -2.1333 -Inf -0.0406
C2 -7.4667 -Inf -5.3739
C3 -1.6667 -Inf -0.5122

The first column of C stands for the intercept Gy, the remaining columns are

reserved for the 4 levels 31, ..., B4 of the single factor. Each row defines a partic-

ular linear combination ¢!3. Note that the eps argument specifies the accuracy

of the numerical results (see pmvt in package mvtnorm for more details). This

is the reason why the confidence bounds are now printed with four significant

digits instead of the former three digits.

More detailed output is available by using the summary method:

>summary (Ccirec)

Simultaneous 90% confidence intervals: user-defined

contrasts

user—-defined contrasts for factor blanket

Contrast matrix:

[,11 [,21 [,3] [,4] [,5]
Cc1 o -1 1 0 0
c2 o -1 0 1 0



C3 o -1 0 0 1

Absolute Error Tolerance: 1le-04

90 % quantile: 1.3049

Coefficients:

Estimate low CI, wupp CI t value Std.Err. p raw p Bonf

C1 -2.1333  -Inf -0.0406 -1.3302 1.6038 0.0958 0.0958

C2 -7.4667  -Inf -5.3739 -4.6556 1.6038 0.0000 0.0000

C3 -1.6667  -Inf -0.5122 -1.8837  0.8848 0.0337 0.0337
p adj

C1 0.0958

€2 0.0000

€3 0.0337

This output prints the user defined contrast matrix C and the quantile ¢;_,. In
addition, simultaneous confidence intervals, the estimates cfﬁ and their stan-
dard errors are given as well as the raw p-values (computed from the marginal
t distributions) and multiplicity adjusted p-values (using either the multivari-
ate ¢ distribution or the Bonferroni correction). The simultaneous confidence
intervals and the adjusted p-values based on the multivariate ¢ distribution are
compatible in the sense that if p,q; < 0.05, then the associated confidence in-
terval does not contain the 0.

A more powerful approach is available using the simtest function. The
call remains essentially the same, also no simultaneous confidence intervals are

available:

>Ctrec <- simtest(minutes ~ blanket, data = recovery,

+ conf.level = 0.9, alternative = "less", eps = 1le-04,
+ cmatrix = C)
>summary (Ctrec)

Simultaneous tests: user-defined contrasts



user—-defined contrasts for factor blanket

Contrast matrix:

[,11 [,21 [,3] [,4] [,5]
C1 o -1 1 0 0
c2 o -1 0 1 0

Absolute Error Tolerance: 1le-04

Coefficients:

Estimate t value Std.Err. p raw p Bonf p adj
C2 -7.4667 -4.6556 1.6038 0.0000 0.0001 0.0001
C3 -1.6667 -1.8837 1.6038 0.0337 0.0675 0.0640
Cl1 -2.1333 -1.3302 0.8848 0.0958 0.0958 0.0958

It transpires that the adjusted p-values are indeed uniformly lower in comparison
to those from simint.

A final example call illustrates the use of the multcomp package, if the esti-
mates (3; and their covariances are passed by hand. In such cases, the core func-
tions csimint and csimtest have to be called without using the sim{int,test}

interfaces. The call

>parm <- c(14.8, 12.6667, 7.3333, 13.1333)

>N <- c(20, 3, 3, 15)

>contrast <- contrMat (N, type = "Dunnett")

>nu <- 37

>mse <- 6.7099

>covm <- mse * diag(1/N)

>csimint (estpar = parm, df = as.integer(nu), covm = covm,

+ cmatrix = contrast, conf.level = 0.9, alternative = "less")

Simultaneous confidence intervals: user-defined

contrasts



90 % confidence intervals

Estimate lower CI upper CI

2-1 -2.133 -Inf -0.041
3-1 -7.467 -Inf -5.374
4-1 -1.667 -Inf -0.512

yields the same result as the first call above. The sample size vector N and
the mean square error mse are only required for a convenient computation of
the covariance matrix. Note that the contrast matrix can either be entered by
hand or by using the availability of standard contrast matrices in the contrMat

function.

4 Graphical Representation

The method plot.hmtest is available for a graphical inspectation of the si-
multaneous confidence intervals. For each contrast, the confidence interval is
plotted, for example plot(Dcirec) can be used for plotting the one-sided Dun-

nett confidence intervals for the recovery example from the first code snippet.

5 Conclusion

This article addressed the application of multiple comparisons using the mult-
comp package. The present methods cover several standard test procedures and
allow for user specified type of comparisons. Also the discussion has been de-
voted to general linear models, the package is also applicable to more general
linear and nonlinear mixed models as long as the covariances between the esti-
mates are known.

Currently, the quantiles of the multivariate ¢ or normal distribution are com-

puted using uniroot on the p-value functions. This is time consuming and will



Dunnett contrasts
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Figure 1: A graphical representation of one-sided Dunnett confidence intervals.
The intervals are plotted as horizontal lines where the limits of the intervals are

given by round brackets and the estimates by a point.

be improved in future versions of the mvtnorm package.
We would like to thank Doug Bates for corrections and suggestions improving

the readability.
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