
Introduction to the ’raster’ package

(version 2.0-08)

Robert J. Hijmans

June 28, 2012

1 Introduction

This vignette describes the R package ’raster’. A raster is a spatial (ge-
ographic) data structure that divides a region into rectangles called ’cells’ (or
’pixels’) that can store one or more values for each of these cells. Such a data
structure is also referred to as a ’grid’ and is often contrasted with ’vector’ data
that is used to represent points, lines, and polygons.

The raster package has functions for creating, reading, manipulating, and
writing raster data. The package provides, among other things, general raster
data manipulation functions that can easily be used to develop more specific
functions. For example, there are functions to read a chunk of raster values
from a file or to convert cell numbers to coordinates and back. The package
also implements raster algebra and most functions for raster data manipulation
that are common in Geographic Information Systems (GIS). These functions are
similar to those in GIS programs such as Idrisi, the raster functions of GRASS,
and the ’grid’ module of ArcInfo (’workstation’).

A notable feature of the raster package is that it can work with raster
datasets that are stored on disk and are too large to be loaded into memory
(RAM). The package can work with large files because the objects it creates
from these files only contain information about the structure of the data, such
as the number of rows and columns, the spatial extent, and the filename, but it
does not attempt to read all the cell values in memory. In computations with
these objects, data is processed in chunks. If no output filename is specified to
a function, and the output raster is too large to keep in memory, the results are
written to a temporary file.

To understand what is covered in this vignette, you must understand the
basics of the R language. There is a multitude of on-line and other resources
that can help you to get acquainted with it. The raster package does not
operate in isolation. For example, for vector type data it uses classes defined in
the sp package. See the vignette and help pages of that package or Bivand et
al. (2008). Bivand et al., provide an introduction to the use of R for handling

1

spatial data, and to statistically oriented spatial data analysis (such as inference
from spatial data, point pattern analysis, and geostatistics).

In the next section, some general aspects of the design of the ’raster’ pack-
age are discussed, notably the structure of the main classes, and what they
represent. The use of the package is illustrated in subsequent sections. raster

has a large number of functions, not all of them are discussed here, and those
that are discussed are mentioned only briefly. See the help files of the package
for more information on individual functions and help(”raster-package”) for
an index of functions by topic.

2 Classes

The package is built around a number of ’S4’ classes of which the RasterLayer,
RasterBrick, and RasterStack classes are the most important. See Chambers
(2009) for a detailed discussion of the use of S4 classes in R . When discussing
methods that can operate on all three of these objects, they are referred to as
’Raster*’ objects.

2.1 RasterLayer

A RasterLayer object represents single-layer (variable) raster data. A RasterLayer

object always stores a number of fundamental parameters that describe it. These
include the number of columns and rows, the coordinates of its spatial extent
(’bounding box’), and the coordinate reference system (the ’map projection’).
In addition, a RasterLayer can store information about the file in which the
raster cell values are stored (if there is such a file). A RasterLayer can also
hold the raster cell values in memory.

2.2 RasterStack and RasterBrick

It is quite common to analyze raster data using single-layer objects. However,
in many cases multi-variable raster data sets are used. The raster package has
two classes for multi-layer data the RasterStack and the RasterBrick. The
principal difference between these two classes is that a RasterBrick can only be
linked to a single (multi-layer) file. In contrast, a RasterStack can be formed
from separate files and/or from a few layers (’bands’) from a single file.

In fact, a RasterStack is a collection of RasterLayer objects with the same
spatial extent and resolution. In essence it is a list of RasterLayer objects. A
RasterStack can easily be formed form a collection of files in different locations
and these can be mixed with RasterLayer objects that only exist in memory.

A RasterBrick is truly a multilayered object, and processing a RasterBrick

can be more efficient than processing a RasterStack representing the same data.
However, it can only refer to a single file. A typical example of such a file would
be a multi-band satellite image or the output of a global climate model (with
e.g., a time series of temperature values for each day of the year for each raster

2

cell). Methods that operate on RasterStack and RasterBrick objects typically
return a RasterBrick.

2.3 Other classes

Below is some more detail, you do not need to read or understand this section
to use the raster package.

The three classes described above inherit from the Raster class (that means
they are derived from this more basic ’parent’ class by adding something to that
class) which itself inherits from the BasicRaster class. The BasicRaster only
has a few properties (referred to as ’slots’ in S4 speak): the number of columns
and rows, the coordinate reference system (which itself is an object of class CRS,
which is defined in package ’sp’) and the spatial extent, which is an object of
class Extent.

An object of class Extent has four slots: xmin, xmax, ymin, and ymax.
These represent the minimum and maximum x and y coordinates of the of the
Raster object. These would be, for example, -180, 180, -90, and 90, for a global
raster with longitude/latitude coordinates. Note that raster uses the coordinates
of the extremes (corners) of the entire raster (unlike some files/programs that
use the coordinates of the center of extreme cells).

Raster is a virtual class. This means that it cannot be instantiated (you
cannot create objects from this class). It was created to allow the definition of
methods for that class. These methods will be dispatched when called with a
descendent of the class (i.e. when the method is called with a RasterLayer,
RasterBrick or RasterStack object as argument). This allows for efficient
code writing because many methods are the same for any of these three classes,
and hence a single method for Raster suffices.

RasterStackBrick is a class union of the RasterStack and RasterBrick

class. This is a also a virtual class. It allows defining methods (functions) that
apply to both RasterStack and RasterBrick objects.

3 Creating Raster* objects

A RasterLayer can easily be created from scratch using the function raster.
The default settings will create a global raster data structure with a longi-
tude/latitude coordinate reference system and 1 by 1 degree cells. You can
change these settings by providing additional arguments such as xmin, nrow,
ncol, and/or crs, to the function. You can also change these parameters after
creating the object. If you set the projection, this is only to properly define it,
not to change it. To transform a RasterLayer to another coordinate reference
system (projection) you can use the function projectRaster.

Here is an example of creating and changing a RasterLayer object ’r’ from
scratch.

> library(raster)

> # RasterLayer with the default parameters

3

> x <- raster()

> x

class : RasterLayer

dimensions : 180, 360, 64800 (nrow, ncol, ncell)

resolution : 1, 1 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : none

> # With other parameters

> x <- raster(ncol=36, nrow=18, xmn=-1000, xmx=1000, ymn=-100, ymx=900)

> # that can be changed

> res(x)

[1] 55.55556 55.55556

> # change resolution

> res(x) <- 100

> res(x)

[1] 100 100

> ncol(x)

[1] 20

> # change the numer of columns (affects resolution)

> ncol(x) <- 18

> ncol(x)

[1] 18

> res(x)

[1] 111.1111 100.0000

> # set the coordinate reference system (CRS) (define the projection)

> projection(x) <- "+proj=utm +zone=48 +datum=WGS84"

> x

class : RasterLayer

dimensions : 10, 18, 180 (nrow, ncol, ncell)

resolution : 111.1111, 100 (x, y)

extent : -1000, 1000, -100, 900 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=utm +zone=48 +datum=WGS84

values : none

4

The objects ’x’ created in the example above only consist of a ’skeleton’,
that is, we have defined the number of rows and columns, and where the raster
is located in geographic space, but there are no cell-values associated with it.
Setting and accessing values is illustrated below.

> r <- raster(ncol=10, nrow=10)

> ncell(r)

[1] 100

> hasValues(r)

[1] FALSE

> # use the 'values' function

> # e.g.,

> values(r) <- 1:ncell(r)

> # or

> set.seed(0)

> values(r) <- runif(ncell(r))

> hasValues(r)

[1] TRUE

> inMemory(r)

[1] TRUE

> values(r)[1:10]

[1] 0.8966972 0.2655087 0.3721239 0.5728534 0.9082078

[6] 0.2016819 0.8983897 0.9446753 0.6607978 0.6291140

> plot(r, main='Raster with 100 cells')

5

In some cases, for example when you change the number of columns or rows,
you will lose the values associated with the RasterLayer if there were any (or
the link to a file if there was one). The same applies, in most cases, if you change
the resolution directly (as this can affect the number of rows or columns). Values
are not lost when changing the extent as this change adjusts the resolution, but
does not change the number of rows or columns.

> hasValues(r)

[1] TRUE

> res(r)

[1] 36 18

> dim(r)

[1] 10 10 1

> xmax(r)

[1] 180

> # change the maximum x coordinate of the extent (bounding box) of the RasterLayer

> xmax(r) <- 0

> hasValues(r)

6

[1] TRUE

> res(r)

[1] 18 18

> dim(r)

[1] 10 10 1

> ncol(r) <- 6

> hasValues(r)

[1] FALSE

> res(r)

[1] 30 18

> dim(r)

[1] 10 6 1

> xmax(r)

[1] 0

The function raster also allows you to create a RasterLayer from another
object, including another RasterLayer, RasterStack and RasterBrick , as
well as from a SpatialPixels* and SpatialGrid* object (defined in the sp

package), an Extent object, a matrix, an ’im’ object (SpatStat), and ’asc’ and
’kasc’ objects (adehabitat).

It is more common, however, to create a RasterLayer object from a file.
The raster package can use raster files in several formats, including some ’na-
tively’ supported formats and other formats via the rgdal package. Supported
formats for reading include GeoTIFF, ESRI, ENVI, and ERDAS. Most formats
supported for reading can also be written to. Here is an example using the
’Meuse’ dataset (taken from the sp package), using a file in the native ’raster-
file’ format:

> # get the name of an example file installed with the package

> # do not use this construction of your own files

> filename <- system.file("external/test.grd", package="raster")

> filename

[1] "c:/temp/RtmpoFXVWz/Rinst6d7c3f4cfe7/raster/external/test.grd"

> r <- raster(filename)

> filename(r)

7

[1] "c:\\temp\\RtmpoFXVWz\\Rinst6d7c3f4cfe7\\raster\\external\\test.grd"

> hasValues(r)

[1] TRUE

> inMemory(r)

[1] FALSE

> plot(r, main='RasterLayer from file')

Multi-layer objects can be created in memory (from RasterLayer objects)
or from files.

> # create three identical RasterLayer objects

> r1 <- r2 <- r3 <- raster(nrow=10, ncol=10)

> # Assign random cell values

> values(r1) <- runif(ncell(r1))

> values(r2) <- runif(ncell(r2))

> values(r3) <- runif(ncell(r3))

> # combine three RasterLayer objects into a RasterStack

> s <- stack(r1, r2, r3)

> s

8

class : RasterStack

dimensions : 10, 10, 100, 3 (nrow, ncol, ncell, nlayers)

resolution : 36, 18 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

layer names : layer.1, layer.2, layer.3

min values : 0.013, 0.028, 0.064

max values : 0.99, 0.98, 1.00

> nlayers(s)

[1] 3

> # combine three RasterLayer objects into a RasterBrick

> b1 <- brick(r1, r2, r3)

> # equivalent to:

> b2 <- brick(s)

> # create a RasterBrick from file

> filename <- system.file("external/rlogo.grd", package="raster")

> filename

[1] "c:/temp/RtmpoFXVWz/Rinst6d7c3f4cfe7/raster/external/rlogo.grd"

> b <- brick(filename)

> b

class : RasterBrick

dimensions : 77, 101, 7777, 3 (nrow, ncol, ncell, nlayers)

resolution : 1, 1 (x, y)

extent : 0, 101, 0, 77 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=merc

values : c:\temp\RtmpoFXVWz\Rinst6d7c3f4cfe7\raster\external\rlogo.grd

layer names : red, green, blue

min values : 0, 0, 0

max values : 255, 255, 255

> nlayers(b)

[1] 3

> # extract a single RasterLayer

> r <- raster(b, layer=2)

> # equivalent to creating it from disk

> r <- raster(filename, band=2)

4 Raster algebra

Many generic functions that allow for simple and elegant raster algebra have
been implemented for Raster* objects, including the normal algebraic operators

9

such as +, -, *, /, logical operators such as >, >=, <, ==, ! and functions
such as abs, round, ceiling, floor, trunc, sqrt, log, log10, exp, cos, sin,
max, min, range, prod, sum, any, all. In these functions you can mix
Raster objects with numbers, as long as the first argument is a Raster object.

> # create an empty RasterLayer

> r <- raster(ncol=10, nrow=10)

> # assign values to cells

> values(r) <- 1:ncell(r)

> s <- r + 10

> s <- sqrt(s)

> s <- s * r + 5

> r[] <- runif(ncell(r))

> r <- round(r)

> r <- r == 1

You can also use replacement functions:

> s[r] <- -0.5

> s[!r] <- 5

> s[s == 5] <- 15

If you use multiple Raster* objects (in functions where this is relevant, such
as range), these must have the same resolution and origin. The origin of a
Raster* object is the point closest to (0, 0) that you could get if you moved
from a corners of a Raster* object towards that point in steps of the x and y

resolution. Normally these objects would also have the same extent, but if they
do not, the returned object covers the spatial intersection of the objects used.

When you use multiple multi-layer objects with different numbers or layers,
the ’shorter’ objects are ’recycled’. For example, if you multuply a 4-layer object
(a1, a2, a3, a4) with a 2-layer object (b1, b2), the result is a four-layer object
(a1b1, a2b2, a3b1, a3b2).

> r <- raster(ncol=5, nrow=5)

> r[] <- 1

> s <- stack(r, r+1)

> q <- stack(r, r+2, r+4)

> x <- r + s + q

> x

class : RasterBrick

dimensions : 5, 5, 25, 3 (nrow, ncol, ncell, nlayers)

resolution : 72, 36 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : in memory

layer names : layer.1, layer.2, layer.3

min values : 3, 6, 7

max values : 3, 6, 7

10

Summary functions (min, max, mean, prod, sum, Median, cv, range,
any, all) always return a RasterLayer object. Perhaps this is not obvious when
using functions like min, sum or mean.

> a <- mean(r,s,10)

> b <- sum(r,s)

> st <- stack(r, s, a, b)

> sst <- sum(st)

> sst

class : RasterLayer

dimensions : 5, 5, 25 (nrow, ncol, ncell)

resolution : 72, 36 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : in memory

layer name : layer

min value : 11.5

max value : 11.5

Use cellStats if instead of a RasterLayer you want a single number sum-
marizing the cell values of each layer.

> cellStats(st, 'sum')

layer.1 layer.2 layer.3 layer.4 layer.5

25.0 25.0 50.0 87.5 100.0

> cellStats(sst, 'sum')

[1] 287.5

5 ’High-level’ functions

Several ’high level’ functions have been implemented for RasterLayer ob-
jects. ’High level’ functions refer to functions that you would normally find in
a GIS program that supports raster data. Here we briefly discuss some of these
functions. All these functions work for raster datasets that cannot be loaded
into memory. See the help files for more detailed descriptions of each function.

The high-level functions have some arguments in common. The first argu-
ment is typically ’x’ or ’object’ and can be a RasterLayer, or, in most cases, a
RasterStack or RasterBrick. It is followed by one or more arguments specific
to the function (either additional RasterLayer objects or other arguments),
followed by a filename=”” and ”...” arguments.

The default filename is an empty character ””. If you do not specify a file-
name, the default action for the function is to return a Raster object that only
exists in memory. However, if the function deems that the Raster object to

11

be created would be too large to hold memory it is written to a temporary file
instead.

The ”...” argument allows for setting additional arguments that are relevant
when writing values to a file: the file format, datatype (e.g. integer or real
values), and a to indicate whether existing files should be overwritten.

5.1 Modifying a Raster* object

There are several functions that deal with modifying the spatial extent of
Raster* objects. The crop function lets you take a geographic subset of a
larger Raster object. You can crop a Raster* by providing an extent object
or another spatial object from which an extent can be extracted (objects from
classes deriving from Raster and from Spatial in the sp package). An easy way
to get an extent object is to plot a RasterLayer and then use drawExtent
to visually determine the new extent (bounding box) to provide to the crop
function.

trim crops a RasterLayer by removing the outer rows and columns that
only contain NA values. In contrast, expand adds new rows and/or columns
with NA values. The purpose of this could be to create a new RasterLayer

of the same extent of another larger RasterLayer such that the can be used
together in other functions.

The merge function lets you merge 2 or more Raster* objects into a single
new object. The input objects must have the same resolution and origin (such
that their cells neatly fit into a single larger raster). If this is not the case
you can first adjust one of the Raster* objects with use (dis)aggregate or
resample.

aggregate and disaggregate allow for changing the resolution (cell size)
of a Raster* object. In the case of aggregate, you need to specify a function
determining what to do with the grouped cell values (e.g. mean). It is possible
to specify different (dis)aggregation factors in the x and y direction. aggregate
and disaggregate are the best functions when adjusting cells size only, with an
integer step (e.g. each side 2 times smaller or larger), but in some cases that is
not possible.

For example, you may need nearly the same cell size, while shifting the cell
centers. In those cases, the resample function can be used. It can do either
nearest neighbor assignments (for categorical data) or bilinear interpolation (for
numerical data). Simple linear shifts of a Raster object can be accomplished
with the shift function or with the extent function. resample should not be
used to create a Raster* object with much larger resolution. If such adjustments
need to be made then you can first use aggregate.

With the projectRaster function you can transform values of Raster*

object to a new object with a different coordinate reference system.
Here are some simple examples:

> r <- raster()

> r[] <- 1:ncell(r)

12

> ra <- aggregate(r, 10)

> r1 <- crop(r, extent(-180,0,0,30))

> r2 <- crop(r, extent(-10,180,-20,10))

> m <- merge(r1, r2, filename='test.grd', overwrite=TRUE)

> plot(m)

flip lets you flip the data (reverse order) in horizontal or vertical direction –
typically to correct for a ’communication problem’ between different R packages
or a misinterpreted file. rotate lets you rotate longitude/latitude rasters that
have longitudes from 0 to 360 degrees (often used by climatologists) to the
standard -180 to 180 degrees system. With t you can rotate a Raster* object
90 degrees.

5.2 Overlay

The overlay function can be used as an alternative to the raster algebra dis-
cussed above. Overlay, like the funcitons discussed in the following subsections
provide either easy to use short-hand, or more efficient computation for large
(file based) objects.

With overlay you can combine multiple Raster objects (e.g. multiply them).
The related function mask removes all values from one layer that are NA in
another layer, and cover combines two layers by taking the values of the first
layer except where these are NA .

13

5.3 Calc

calc allows you to do a computation for a single Raster object by providing
a function. If you supply a RasterLayer, another RasterLayer is returned. If
you provide a multi-layer object you get a (single layer) RasterLayer if you
use a summary type function (e.g. sum) but a RasterBrick if multiple layers
are returned. stackApply computes summary type layers for subsets of a
RasterStack or RasterBrick.

5.4 Reclassify

You can use cut or reclass to replace ranges of values with single values, or
subs to substitute (replace) single values with other values.

> r <- raster(ncol=5, nrow=1)

> r[] <- 1:ncell(r)

> getValues(r)

[1] 1 2 3 4 5

> s <- calc(r, fun=function(x){ x[x < 4] <- NA; return(x)})

> as.matrix(s)

[,1] [,2] [,3] [,4] [,5]

[1,] NA NA NA 4 5

> t <- overlay(r, s, fun=function(x, y){ x / (2 * sqrt(y)) + 5 })

> as.matrix(t)

[,1] [,2] [,3] [,4] [,5]

[1,] NA NA NA 6 6.118034

> u <- mask(r, t)

> as.matrix(u)

[,1] [,2] [,3] [,4] [,5]

[1,] NA NA NA 4 5

> v = u==s

> as.matrix(v)

[,1] [,2] [,3] [,4] [,5]

[1,] NA NA NA TRUE TRUE

> w <- cover(t, r)

> as.matrix(w)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 6 6.118034

14

> x <- reclass(w, c(0,2,1, 2,5,2, 4,10,3))

> as.matrix(x)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 1 2 3 3

> y <- subs(x, data.frame(id=c(2,3), v=c(40,50)))

> as.matrix(y)

[,1] [,2] [,3] [,4] [,5]

[1,] NA NA 40 50 50

5.5 Focal functions

There are three focal (neighorhood) functions: focal, focalFilter, focalNA.
These functions currently only work for RasterLayer objects. They make a com-
putation using values in a neighborhood of cells around a focal cell, and putting
the result in the focal cell of the output RasterLayer. With focal, the neigh-
borhood can only be a rectangle. With focalFilter, the neighborhood is a
user-defined a matrix of weights and could approximate any shape by giving
some cells zero weight. The focalNA function only computes new values for
cells that are NA in the input RasterLayer.

5.6 Distance

There are a number of distance related functions. distance computes the
shortest distance to cells that are not NA . pointDistance computes the short-
est distance to any point in a set of points. gridDistance computes the distance
when following grid cells that can be traversed (e.g. excluding water bodies).
direction computes the direction towards (or from) the nearest cell that is not
NA . adjacency determines which cells are adjacent to other cells, and point-
Distance computes distance between points. See the gdistance package for
more advanced distance calculations (cost distance, resistance distance)

5.7 Spatial configuration

Function clump identifies groups of cells that are connected. edge identifies
edges, that is, transitions between cell values. area computes the size of each
grid cell (for unprojected rasters), this may be useful to, e.g. compute the area
covered by a certain class on a longitude/latitude raster.

> r <- raster(nrow=45, ncol=90)

> r[] <- round(runif(ncell(r))*3)

> a <- area(r)

> zonal(a, r, 'sum')

15

zone "sum"

[1,] 0 94124805

[2,] 1 169841636

[3,] 2 158999260

[4,] 3 88311390

5.8 Predictions

The package has two functions to make model predictions to (potentially very
large) rasters. predict takes a multilayer raster and a fitted model as arguments.
Fitted models can be of various classes, including glm, gam, randomforest, and
brt. Function interpolate is similar but is for models that use coordinates as
predictor variables, for example in kriging and spline interpolation.

5.9 Vector to raster conversion

The raster packages supports point, line, and polygon to raster conversion
with the rasterize function. For vector type data (points, lines, polygons),
objects of Spatial* classes defined in the sp package are used; but points can
also be represented by a two-column matrix (x and y).

Point to raster conversion is often done with the purpose to analyze the
point data. For example to count the number of distinct species (represented
by point observations) that occur in each raster cell. rasterize takes a Raster*

object to set the spatial extent and resolution, and a function to determine how
to summarize the points (or an attribute of each point) by cell.

Polygon to raster conversion is typically done to create a RasterLayer that
can act as a mask, i.e. to set to NA a set of cells of a Raster object, or
to summarize values on a raster by zone. For example a country polygon is
transferred to a raster that is then used to set all the cells outside that country
to NA ; whereas polygons representing administrative regions such as states can
be transferred to a raster to summarize raster values by region.

It is also possible to convert the values of a RasterLayer to points or poly-
gons, using rasterToPoints and rasterToPolygons. Both functions only re-
turn values for cells that are not NA . Unlike rasterToPolygons, rasterTo-
Points is reasonably efficient and allows you to provide a function to subset the
output before it is produced (which can be necessary for very large rasters as
the point object is created in memory).

6 Summarizing functions

When used with a Raster* object as first argument, normal summary statis-
tics functions such as min, max and mean return a RasterLayer. You can use
cellStats if, instead, you want to obtain a summary for all cells of a single
Raster* object. You can use freq to make a frequency table, or count to
count the number of cells with a specified value. Use zonal to summarize a

16

Raster* object using zones (areas with the same integer number) defined in a
RasterLayer and crosstab to cross-tabulate two RasterLayer objects.

> r <- raster(ncol=36, nrow=18)

> r[] <- runif(ncell(r))

> cellStats(r, mean)

[1] 0.5179682

> s = r

> s[] <- round(runif(ncell(r)) * 5)

> zonal(r, s, 'mean')

zone "mean"

[1,] 0 0.5144431

[2,] 1 0.5480089

[3,] 2 0.5249257

[4,] 3 0.5194031

[5,] 4 0.4853966

[6,] 5 0.5218401

> freq(s)

value count

[1,] 0 54

[2,] 1 102

[3,] 2 139

[4,] 3 148

[5,] 4 133

[6,] 5 72

> count(s, 3)

[1] 148

> crosstab(r*3, s)

0 1 2 3 4 5

0 8 13 21 16 24 10

1 17 31 42 56 45 24

2 19 31 52 54 37 27

3 10 27 24 22 27 11

7 Plotting

Several generic functions have been implemented for Raster* objects to cre-
ate maps and other plot types. Use ’plot’ to create a map of a Raster* object.

17

When plot is used with a RasterLayer, it calls the function ’rasterImage’ (but,
by default, adds a legend; using code from fields::image.plot). It is also possible
to directly call image. You can zoom in using ’zoom’ and clicking on the map
twice (to indicate where to zoom to). With click it is possible to interactively
query a Raster* object by clicking once or several times on a map plot.

After plotting a RasterLayer you can add vector type spatial data (points,
lines, polygons). You can do this with functions points, lines, polygons if you are
using the basic R data structures or plot(object, add=TRUE) if you are using
Spatial* objects as defined in the sp package. When plot is used with a multi-
layer Raster* object, all layers are plotted (up to 16), unless the layers desired
are indicated with an additional argument. You can also plot Raster* objects
with spplot. The rasterVis package has several other lattice based plotting
functions for Raster* objects. rasterVis also facilatates creating a map from a
RasterLayer with the ggplot2 package.

Multi-layer Raster objects can be plotted as individual layers

> b <- brick(system.file("external/rlogo.grd", package="raster"))

> plot(b)

They can also be combined into a single image, by assigning individual layers
to one of the three color channels (red, green and blue):

> plotRGB(b, r=1, g=2, b=3)

18

You can also use the a number of other plotting functions with a Raster

object as argument, including hist, persp, contour, and density. See the
help files for more info.

8 Writing files

8.1 File format

Raster can read most, and write several raster file formats, via the rgdal

package. However, it directly reads and writes a native ’rasterfile’ format. A
rasterfile consists of two files: a binary sequential data file and a text header
file. The header file is of the ”windows .ini” type. When reading, you do not
have to specify the file format, but you do need to do that when writing (except
when using the default native format). This file format is also used in DIVA-GIS
(http://www.diva-gis.org/). See the help file for function writeRaster or
the ”Description of the rasterfile format” vignette.

9 Helper functons

The cell number is an important concept in the raster package. Raster data
can be thought of as a matrix, but in a RasterLayer it is more commonly
treated as a vector. Cells are numbered from the upper left cell to the upper

19

http://www.diva-gis.org/

right cell and then continuing on the left side of the next row, and so on until the
last cell at the lower-right side of the raster. There are several helper functions
to determine the column or row number from a cell and vice versa, and to
determine the cell number for x, y coordinates and vice versa.

> library(raster)

> r <- raster(ncol=36, nrow=18)

> ncol(r)

[1] 36

> nrow(r)

[1] 18

> ncell(r)

[1] 648

> rowFromCell(r, 100)

[1] 3

> colFromCell(r, 100)

[1] 28

> cellFromRowCol(r,5,5)

rownr

149

> xyFromCell(r, 100)

x y

[1,] 95 65

> cellFromXY(r, c(0,0))

[1] 343

> colFromX(r, 0)

[1] 19

> rowFromY(r, 0)

[1] 10

20

10 Accessing cell values

Cell values can be accessed with several methods. Use getValues to get all
values or a single row; and getValuesBlock to read a block (rectangle) of cell
values.

> r <- raster(system.file("external/test.grd", package="raster"))

> v <- getValues(r, 50)

> v[35:39]

[1] 456.878 485.538 550.788 580.339 590.029

> getValuesBlock(r, 50, 1, 35, 5)

[1] 456.878 485.538 550.788 580.339 590.029

You can also read values using cell numbers or coordinates (xy) using the
extract method.

> cells <- cellFromRowCol(r, 50, 35:39)

> cells

[1] 3955 3956 3957 3958 3959

> extract(r, cells)

[1] 456.878 485.538 550.788 580.339 590.029

> xy = xyFromCell(r, cells)

> xy

x y

[1,] 179780 332020

[2,] 179820 332020

[3,] 179860 332020

[4,] 179900 332020

[5,] 179940 332020

> extract(r, xy)

[1] 456.878 485.538 550.788 580.339 590.029

You can also extract values using SpatialPolygons* or SpatialLines*. The
default approach for extracting raster values with polygons is that a polygon has
to cover the center of a cell, for the cell to be included. However, you can use
argument ”weights=TRUE” in which case you get, apart from the cell values,
the percentage of each cell that is covered by the polygon, so that you can apply,
e.g., a 50

21

In the case of lines, any cell that is crossed by a line is included. For lines and
points, a cell that is only ’touched’ is included when it is below or to the right
(or both) of the line segment/point (except for the bottom row and right-most
column).

In addition, you can use standard R indexing to access values, or to replace
values (assign new values to cells) in a Raster object. If you replace a value in
a Raster object based on a file, the connection to that file is lost (because it
now is different from that file). Setting raster values for very large files will be
very slow with this approach as each time a new (temporary) file, with all the
values, is written to disk. If you want to overwrite values in an existing file, you
can use update (with caution!)

> r[cells]

[1] 456.878 485.538 550.788 580.339 590.029

> r[1:4]

[1] NA NA NA NA

> filename(r)

[1] "c:\\temp\\RtmpoFXVWz\\Rinst6d7c3f4cfe7\\raster\\external\\test.grd"

> r[2:3] <- 10

> r[1:4]

[1] NA 10 10 NA

> filename(r)

[1] ""

Note that in the above examples values are retrieved using cell numbers.
That is, a raster is represented as a (one-dimensional) vector. Values can also
be inspected using a (two-dimensional) matrix notation. As for R matrices, the
first index represents the row number, the second the column number.

> r[1]

NA

> r[2,2]

NA

> r[1,]

22

[1] NA 10 10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

[19] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

[37] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

[55] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

[73] NA NA NA NA NA NA NA NA

> r[,2]

[1] 10.000 NA NA NA NA NA

[7] NA NA NA NA NA NA

[13] NA NA NA NA NA NA

[19] NA NA NA NA NA NA

[25] NA NA NA NA NA NA

[31] NA NA NA NA NA NA

[37] NA NA NA NA NA NA

[43] NA NA NA NA NA NA

[49] NA NA NA NA NA NA

[55] NA NA NA NA NA NA

[61] NA NA NA NA NA NA

[67] NA NA NA NA NA NA

[73] NA NA NA NA NA NA

[79] NA NA NA NA NA NA

[85] NA NA NA NA NA NA

[91] NA NA NA NA NA 473.833

[97] 471.573 NA NA NA NA NA

[103] NA NA NA NA NA NA

[109] NA NA NA NA NA NA

[115] NA

> r[1:3,1:3]

[1] NA 10 10 NA NA NA NA NA NA

> # keep the matrix structure

> r[1:3,1:3, drop=FALSE]

class : RasterLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 40, 40 (x, y)

extent : 178400, 178520, 333880, 334000 (xmin, xmax, ymin, ymax)

coord. ref. : +init=epsg:28992 +towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812 +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs

values : in memory

layer name : layer

min value : 10

max value : 10

Accessing values through this type of indexing should be avoided inside func-
tions as it is less efficient than accessing values via functions like getValues.

23

11 Session options

There is a number of session options that influence reading and writing
files. These can be set in a session, with setOptions, and saved to make them
persistent in between sessions. But you probably should not change the default
values unless you have pressing need to do so. You can, for example, set the
directory where temporary files are written, and set your preferred default file
format and data type. Some of these settings can be overwritten by arguments
to functions where they apply (with arguments like filename, datatype, format).
Except for generic functions like mean, ’+’, and sqrt. These functions may write
a file when the result is too large to hold in memory and then these options can
only be set through the session options. The options chunksize and maxmemory
determine the maximum size (in number of cells) of a single chunk of values that
is read/written in chunk-by-chunk processing of very large files.

> showOptions()

format : raster

datatype : FLT4S

overwrite : FALSE

progress : none

timer : FALSE

chunksize : 1e+07

maxmemory : 1e+08

tmpdir : c:/Temp/R_raster_tmp/rhijmans/

tmptime : 168

setfileext : TRUE

tolerance : 0.1

standardnames: TRUE

12 Coercion to objects of other classes

Although the raster package defines its own set of classes, it is easy to coerce
objects of these classes to objects of the ’spatial’ family defined in the sp package.
This allows for using functions defined by sp (e.g. spplot) and for using other
packages that expect spatial* objects. To create a Raster object from variable
n in a SpatialGrid* x use raster(x, n) or stack(x) or brick(x). Vice versa
use as(,)

You can also convert objects of class ”im” (spatstat) and ”asc” (adehabitat)
to a RasterLayer and ”kasc” (adehabitat) to a RasterStack or Brick using the
raster(x), stack(x) or brick(x) function.

> r1 <- raster(ncol=36, nrow=18)

> r2 <- r1

> r1[] <- runif(ncell(r1))

> r2[] <- runif(ncell(r1))

24

> s <- stack(r1, r2)

> sgdf <- as(s, 'SpatialGridDataFrame')

> newr2 <- raster(sgdf, 2)

> news <- stack(sgdf)

13 Extending raster objects

It is straightforward to build on the Raster* objects using the S4 inheritance
mechanism. Say you need objects that behave like a RasterLayer, but have
some additional properties that you need to use in your own functions (S4
methods). See Chambers (2009) and the help pages of the Methods package for
more info. Below is an example:

> setClass ('myRaster',

+ contains = 'RasterLayer',

+ representation (

+ important = 'data.frame',

+ essential = 'character'

+) ,

+ prototype (

+ important = data.frame(),

+ essential = ''

+)

+)

> r = raster(nrow=10, ncol=10)

> m <- as(r, 'myRaster')

> m@important <- data.frame(id=1:10, value=runif(10))

> m@essential <- 'my own slot'

> m[] <- 1:ncell(m)

> setMethod ('show' , 'myRaster',

+ function(object) {

+ callNextMethod(object) # call show(RasterLayer)

+ cat('essential:', object@essential, '\n')

+ cat('important information:\n')

+ print(object@important)

+ })

[1] "show"

> m

class : myRaster

dimensions : 10, 10, 100 (nrow, ncol, ncell)

resolution : 36, 18 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

25

coord. ref. : +proj=longlat +datum=WGS84

values : in memory

layer name : layer

min value : 1

max value : 100

essential: my own slot

important information:

id value

1 1 0.9608613

2 2 0.3111691

3 3 0.8612748

4 4 0.8352472

5 5 0.8221431

6 6 0.5390177

7 7 0.6969546

8 8 0.3095380

9 9 0.1058503

10 10 0.6639418

14 References

Bivand, R.S., E.J. Pebesma and V. Gomez-Rubio, 2008. Applied Spatial Data
Analysis with R . Springer. 378p.

Chambers, J.M., 2009. Software for Data Analysis: Programming with R .
Springer. 498p.

26

	Introduction
	Classes
	RasterLayer
	RasterStack and RasterBrick
	Other classes

	Creating Raster* objects
	Raster algebra
	'High-level' functions
	Modifying a Raster* object
	Overlay
	Calc
	Reclassify
	Focal functions
	Distance
	Spatial configuration
	Predictions
	Vector to raster conversion

	Summarizing functions
	Plotting
	Writing files
	File format

	Helper functons
	Accessing cell values
	Session options
	Coercion to objects of other classes
	Extending raster objects
	References

