
S Classes and Methods for Spatial Data:

the sp Package

Edzer J. Pebesma∗ Roger S. Bivand†

Feb 2005

Contents

1 Introduction 2

2 Spatial data classes 2

3 Manipulating spatial objects 3
3.1 Standard methods . 3
3.2 Spatial methods . 4

4 Spatial points 4
4.1 Points without attributes . 4
4.2 Points with attributes . 7

5 Grids 11
5.1 Creating grids from topology . 11
5.2 Creating grids from points . 13
5.3 Gridded data with attributes . 14
5.4 Are grids stored as points or as matrix/array? 15
5.5 Row and column selection of a region 16

6 Lines 17
6.1 Building line objects from scratch 17
6.2 Building line objects with attributes 18

7 Polygons 19
7.1 Building from scratch . 19
7.2 Polygons with attributes . 20

∗Dept of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80.115,
3508 TC Utrecht, The Netherlands e.pebesma@geog.uu.nl

†Economic Geography Section, Department of Economics, Norwegian School of
Economics and Business Administration, Breiviksveien 40, N-5045 Bergen, Norway;
Roger.Bivand@nhh.no

1

8 Interfaces to GIS and external formats 21
8.1 Reading grids through rgdal . 21
8.2 Reading ESRI shapefiles . 21
8.3 Reading ArcGIS coverages . 21

1 Introduction

The sp package provides classes and methods for dealing with spatial data in
S (R and S-Plus1). The spatial data structures implemented include points,
lines, polygons and grids; each of them with or without attribute data. We
have chosen to use S4 classes and methods style (Chambers, 1998) to allow
validation of objects created. Although we mainly aim at using spatial data
in the geographical (two-dimensional) domain, the data structures that have a
straightforward implementation in higher dimensions (points, grids) do allow
this.

The motivation to write this package was born on a pre-conference spatial
data workshop during DSC 2003. At that time, the advantage of having multiple
R packages for spatial statistics seemed to be hindered by a lack of a uniform in-
terface for handling spatial data. Each package had its own conventions on how
spatial data were stored and returned. With this package, and packages sup-
porting the classes provided here, we hope that R will become a more coherent
tool for analyzing different types of spatial data.

The package is available, or will be available soon on CRAN. From the
package home page, http://r-spatial.sourceforge.net/, a graph gallery
with R code, and the development source tree are available.

This vignette describes the classes, methods and functions provided by sp.
Instead of manipulating the class slots (components) directly, we provide meth-
ods and functions to create the classes from elementary types such as matrices,
data.frames or lists and to convert them back to any of these types. Also,
coercion (type casting) from one class to the other is provided, where relevant.

Package sp is loaded by

> library(sp)

2 Spatial data classes

The spatial data classes implemented are points, grids, lines, rings and poly-
gons. Package sp provides classes for the spatial-only information (the topol-
ogy), e.g. SpatialPoints, and extensions for the case where we attribute infor-
mation stored in a data.frame is available for each point, e.g. SpatialPoints-
DataFrame. The available data classes are:

1our primary efforts target R; depending on the needs, we will address S-Plus as well

2

http://spatial.nhh.no/meetings/vienna/index.html
http://spatial.nhh.no/meetings/vienna/index.html
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
http://r-spatial.sourceforge.net/

data type class attributes? contains
points SpatialPoints No Spatial*
points SpatialPointsDataFrame Yes SpatialPoints*
pixels SpatialPixels No SpatialPoints*
pixels SpatialPixelsDataFrame Yes SpatialPixels*

SpatialPointsDataFrame**
full grid SpatialGrid No SpatialPixels*
full grid SpatialGridDataFrame Yes SpatialGrid*
line SLine No Spatial*
lines SLines No Spatial*, Sline list
lines SpatialLines No Spatial*, SLines list
lines SpatialLinesDataFrame Yes SpatialLines*
rings Sring No SLine*
rings Srings No Spatial*, Sring list
rings SpatialRings No Spatial*, Srings list
rings SpatialRingsDataFrame Yes SpatialRings*

* by direct extension; ** by setIs() relationship;
The class Spatial does never hold actual data, it only provides the infor-

mation common to all derived classes: the spatial coordinates bounding box
and information about the coordinate reference system (geographic projection
information).

In the following sections we will show how we can create objects of these
classes from scratch or from other classes, and which methods and functions are
available for them.

3 Manipulating spatial objects

Although entries in spatial objects are in principle accessible through their slot
name, e.g. x@coords contains the coordinates of an object of class or extending
SpatialPoints, we strongly encourage users to access the data by using func-
tions and methods, in this case coordinates(x) to retrieve the coordinates.

3.1 Standard methods

Selecting, retrieving or replacing certain attributes in spatial objects with at-
tributes is done using methods standard

� [select ”rows” (items) and/or columns in the data attribute table; e.g.
meuse[1:2, "zinc"] returns a SpatialPointsDataFrame with the first
two points and an attribute table with only variable ”zinc”.

� [[select a column from the data attribute table

� [[<- assign or replace values to a column in the data attribute table.

3

Other methods available are: plot, summary, print, dim and names (operate
on the data.frame part), as.data.frame, as.matrix and image (for gridded
data), lines (for line data), points (for point data), subset (points and grids)
and stack (point and grid data.frames).

3.2 Spatial methods

A number of spatial methods are available for the classes in sp:

� dimensions(x) returns number of spatial dimensions

� y = transform(x, "latlong") transform from one coordinate reference
system (geographic projection) to another (requires package spproj)

� bbox(x) returns the coordinate bounding box

� coordinates(x) returns a matrix with the spatial coordinates

� rings(x) retrieve the spatial rings (polygons) of an object deriving from
SpatialRings

� gridded(x) tells whether x derives from SpatialPixels

� spplot(x) plot attributes, possibly in combination with other types of
data (points, lines, grids, polygons), and possibly in as a conditioning plot
for multiple attributes

� overlay(x, y) combine two spatial layers of different type, e.g. retrieve
the polygon or grid values on a set of points, or retrieve the points (or a
function of their attributes) within (sets of) polygons.

� spsample(x) sampling of spatial points in continuous space within a poly-
gon, a gridded area, or on a spatial line. Subsetting and sample can be
used to subsample full spatial entities.

4 Spatial points

4.1 Points without attributes

We can generate a set of 10 points on the unit square [0, 1]× [0, 1] by

> xc = round(runif(10), 2)

> yc = round(runif(10), 2)

> xy = cbind(xc, yc)

> xy

xc yc
[1,] 0.67 0.30
[2,] 0.96 0.62

4

[3,] 0.92 0.91
[4,] 0.77 0.85
[5,] 0.72 0.46
[6,] 0.74 0.39
[7,] 0.63 0.64
[8,] 0.19 0.72
[9,] 0.70 0.20
[10,] 0.37 0.28

this 10× 2 matrix can be converted into a SpatialPoints object by

> xy.sp = SpatialPoints(xy)

> xy.sp

SpatialPoints:
xc yc

[1,] 0.67 0.30
[2,] 0.96 0.62
[3,] 0.92 0.91
[4,] 0.77 0.85
[5,] 0.72 0.46
[6,] 0.74 0.39
[7,] 0.63 0.64
[8,] 0.19 0.72
[9,] 0.70 0.20
[10,] 0.37 0.28
Coordinate Reference System (CRS) arguments: NA

> plot(xy.sp, pch = 2)

The plot is shown in figure 1.
We can retrieve the coordinates from xy.sp by

> xy.cc = coordinates(xy.sp)

> class(xy.cc)

[1] "matrix"

> dim(xy.cc)

[1] 10 2

and other methods retrieve the bounding box, the dimensions, select points (not
dimensions or columns), coerce to a data.frame, or print a summary:

> bbox(xy.sp)

min max
xc 0.19 0.96
yc 0.20 0.91

5

0.2 0.4 0.6 0.8 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

xc

yc

Figure 1: plot of SpatialPoints object; aspect ratio of x and y axis units is 1

6

> dimensions(xy.sp)

[1] 2

> xy.sp[1:2]

SpatialPoints:
xc yc

[1,] 0.67 0.30
[2,] 0.96 0.62
Coordinate Reference System (CRS) arguments: NA

> xy.df = as.data.frame(xy.sp)

> class(xy.df)

[1] "data.frame"

> dim(xy.df)

[1] 10 2

> summary(xy.sp)

Object of class SpatialPoints
Coordinates:

min max
xc 0.19 0.96
yc 0.20 0.91
Is projected: NA
proj4string : [NA]
Number of points: 10

4.2 Points with attributes

One way of creating a SpatialPointsDataFrame object is by building it from
a a SpatialPoints object and a data.frame containing the attributes:

> df = data.frame(z1 = round(5 + rnorm(10), 2), z2 = 20:29)

> df

z1 z2
1 3.10 20
2 4.15 21
3 3.68 22
4 4.45 23
5 6.62 24
6 5.57 25
7 3.66 26
8 3.75 27
9 5.19 28
10 5.02 29

7

> xy.spdf = SpatialPointsDataFrame(xy.sp, df)

> xy.spdf

coordinates z1 z2
1 (0.67, 0.3) 3.10 20
2 (0.96, 0.62) 4.15 21
3 (0.92, 0.91) 3.68 22
4 (0.77, 0.85) 4.45 23
5 (0.72, 0.46) 6.62 24
6 (0.74, 0.39) 5.57 25
7 (0.63, 0.64) 3.66 26
8 (0.19, 0.72) 3.75 27
9 (0.7, 0.2) 5.19 28
10 (0.37, 0.28) 5.02 29

> summary(xy.spdf)

Object of class SpatialPointsDataFrame
Coordinates:

min max
xc 0.19 0.96
yc 0.20 0.91
Is projected: NA
proj4string : [NA]
Number of points: 10
Data attributes:

z1 z2
Min. :3.100 Min. :20.00
1st Qu.:3.697 1st Qu.:22.25
Median :4.300 Median :24.50
Mean :4.519 Mean :24.50
3rd Qu.:5.147 3rd Qu.:26.75
Max. :6.620 Max. :29.00

> dimensions(xy.spdf)

[1] 2

> xy.spdf[1:2,]

coordinates z1 z2
1 (0.67, 0.3) 3.10 20
2 (0.96, 0.62) 4.15 21

> xy.spdf[1]

coordinates z1
1 (0.67, 0.3) 3.10

8

2 (0.96, 0.62) 4.15
3 (0.92, 0.91) 3.68
4 (0.77, 0.85) 4.45
5 (0.72, 0.46) 6.62
6 (0.74, 0.39) 5.57
7 (0.63, 0.64) 3.66
8 (0.19, 0.72) 3.75
9 (0.7, 0.2) 5.19
10 (0.37, 0.28) 5.02

> xy.spdf[1:2, "z2"]

coordinates z2
1 (0.67, 0.3) 20
2 (0.96, 0.62) 21

> xy.df = as.data.frame(xy.spdf)

> xy.df[1:2,]

z1 z2 xc yc
1 3.10 20 0.67 0.30
2 4.15 21 0.96 0.62

> xy.cc = coordinates(xy.spdf)

> class(xy.cc)

[1] "matrix"

> dim(xy.cc)

[1] 10 2

A note on selection with [: the behaviour is as much as possible copied from
that of data.frames, but coordinates are always sticky and allways a Spatial-
PointsDataFrame is returned; drop=FALSE is not allowed. If coordinates should
be dropped, use the as.data.frame method and select the non-coordinate data,
or use [[to select a single attribute column (example below).

SpatialPointsDataFrame objects can be created directly from data.frames
by specifying which columns contain the coordinates:

> df1 = data.frame(xy, df)

> coordinates(df1) = c("xc", "yc")

> df1

coordinates z1 z2
1 (0.67, 0.3) 3.10 20
2 (0.96, 0.62) 4.15 21
3 (0.92, 0.91) 3.68 22

9

4 (0.77, 0.85) 4.45 23
5 (0.72, 0.46) 6.62 24
6 (0.74, 0.39) 5.57 25
7 (0.63, 0.64) 3.66 26
8 (0.19, 0.72) 3.75 27
9 (0.7, 0.2) 5.19 28
10 (0.37, 0.28) 5.02 29

or

> df2 = data.frame(xy, df)

> coordinates(df2) = ~xc + yc

> df2[1:2,]

coordinates z1 z2
1 (0.67, 0.3) 3.10 20
2 (0.96, 0.62) 4.15 21

> as.data.frame(df2)[1:2,]

xc yc z1 z2
1 0.67 0.30 3.10 20
2 0.96 0.62 4.15 21

Note that in this form, coordinates by setting (specifying) the coordinates
promotes it argument, an object of class data.frame to an object of class Spa-
tialPointsDataFrame. The method as.data.frame coerces back to the origi-
nal data.frame. When used on a right-hand side of an equation, coorinates
retrieves the matrix with coordinates:

> coordinates(df2)[1:2,]

xc yc
1 0.67 0.30
2 0.96 0.62

Elements (columns) in the data.frame part of an object can be manipulated
(retrieved, assigned) directly:

> df2[["z2"]]

[1] 20 21 22 23 24 25 26 27 28 29

> df2[["z2"]][10] = 20

> df2[["z3"]] = 1:10

> summary(df2)

10

Object of class SpatialPointsDataFrame
Coordinates:

min max
xc 0.19 0.96
yc 0.20 0.91
Is projected: NA
proj4string : [NA]
Number of points: 10
Data attributes:

z1 z2 z3
Min. :3.100 Min. :20.00 Min. : 1.00
1st Qu.:3.697 1st Qu.:21.25 1st Qu.: 3.25
Median :4.300 Median :23.50 Median : 5.50
Mean :4.519 Mean :23.60 Mean : 5.50
3rd Qu.:5.147 3rd Qu.:25.75 3rd Qu.: 7.75
Max. :6.620 Max. :28.00 Max. :10.00

Plotting attribute data can be done by using either spplot to colour symbols,
or bubble which uses symbol size:

> bubble(df2, "z1", key.space = "bottom")

> spplot(df2, "z1", key.space = "bottom")

the resulting plots are shown in figure 2.

5 Grids

Package sp has two classes for grid topology: SpatialPixels and Spatial-
Grid. The pixels form stores coordinates and is for partial grids, or unordered
points; the SpatialGrid form does not store coordinates but holds full grids
(i.e., SpatialGridDataFrame holds attribute values for each grid cell). Objects
can be coerced from one representation to the other.

5.1 Creating grids from topology

When we know the offset, the cell sizes and the dimensions of a grid, we can
specify this by using the function GridTopology:

> gt = GridTopology(cellcentre.offset = c(1, 1, 2), cellsize = c(1,

+ 1, 1), cells.dim = c(3, 4, 6))

> grd = SpatialGrid(gt)

> summary(grd)

Object of class SpatialGrid
Coordinates:

min max

11

z1

x

y

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

●

●

●●

●●

●
●

●
●

●
●
●
●
●

3.1
3.698
4.3
5.147
6.62

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

[3.1,3.804]
(3.804,4.508]
(4.508,5.212]
(5.212,5.916]
(5.916,6.62]

Figure 2: plot of SpatialPointsDataFrame object, using symbol size (bubble,
top) or colour (spplot, bottom)

12

coords.x1 1 3
coords.x2 1 4
coords.x3 2 7
Is projected: NA
proj4string : [NA]
Number of points: 2
Grid attributes:
cellcentre.offset cellsize cells.dim

1 1 1 3
2 1 1 4
3 2 1 6

The grid parameters can be retrieved by the function

> gridparameters(grd)

cellcentre.offset cellsize cells.dim
1 1 1 3
2 1 1 4
3 2 1 6

5.2 Creating grids from points

In the following example a three-dimensional grid is constructed from a set of
point coordinates:

> pts = expand.grid(x = 1:3, y = 1:4, z = 2:7)

> grd.pts = SpatialPixels(SpatialPoints(pts))

> summary(grd.pts)

Object of class SpatialPixels
Coordinates:
min max

x 1 3
y 1 4
z 2 7
Is projected: NA
proj4string : [NA]
Number of points: 72

> grd = as(grd.pts, "SpatialGrid")

> summary(grd)

Object of class SpatialGrid
Coordinates:

13

min max
x 1 3
y 1 4
z 2 7
Is projected: NA
proj4string : [NA]
Number of points: 2
Grid attributes:
cellcentre.offset cellsize cells.dim

x 1 1 3
y 1 1 4
z 2 1 6

Note that when passed a points argument, SpatialPixels accepts a tolerance
(default 10 * .Machine$double.eps) to specify how close the points have to be
to being exactly on a grid. For very large coordinates, this value may have to
be increased. A warning is issued if full rows and/or columns are missing.

5.3 Gridded data with attributes

Spatial, gridded data are data with coordinates on a regular lattice. To form
such a grid we can go from coordinates:

> attr = expand.grid(xc = 1:3, yc = 1:3)

> grd.attr = data.frame(attr, z1 = 1:9, z2 = 9:1)

> coordinates(grd.attr) = ~xc + yc

> gridded(grd.attr)

[1] FALSE

> gridded(grd.attr) = TRUE

> gridded(grd.attr)

[1] TRUE

> summary(grd.attr)

Object of class SpatialPixelsDataFrame
Coordinates:

min max
xc 1 3
yc 1 3
Is projected: NA
proj4string : [NA]
Number of points: 9

14

Data attributes:
z1 z2

Min. :1 Min. :1
1st Qu.:3 1st Qu.:3
Median :5 Median :5
Mean :5 Mean :5
3rd Qu.:7 3rd Qu.:7
Max. :9 Max. :9

5.4 Are grids stored as points or as matrix/array?

The form in which gridded data comes depends on whether the grid was created
from a set of points or from a matrix or external grid format (e.g. read through
rgdal). Retrieving the form, or conversion to another can be done by as(x,
"Class"), or by using the function fullgrid:

> fullgrid(grd)

[1] TRUE

> fullgrid(grd.pts)

[1] FALSE

> fullgrid(grd.attr)

[1] FALSE

> fullgrid(grd.pts) = TRUE

> fullgrid(grd.attr) = TRUE

> fullgrid(grd.pts)

[1] TRUE

> fullgrid(grd.attr)

[1] TRUE

The advantage of having grids in cell form is that when a large part of
the grid contains missing values, these cells do not have to be stored; also, no
ordering of grid cells is required. For plotting by a grid with levelplot, this
form is required and spplot (for grids a front-end to levelplot) will convert

15

grids that are not in this form. In contrast, image requires a slightly altered
version of the the full grid form. A disadvantage of the cell form is that the
coordinates for each point have to be stored, which may be prohibitive for large
grids. Grids in cell form do have an index to allow for fast transformation to
the full grid form.

Besides print, summary, plot, objects of class SpatialGridDataFrame have
methods for

� [select rows (points) or columns (variables)

� [[retrieve a column from the attribute table (data.frame part)

� [[<- assign or replace a column in the attribute table (data.frame part)

� coordinates retrieve the coordinates of grid cells

� as.matrix retrieve the data as a matrix. The first index (rows) is the
x-column, the second index (columns) the y-coordinate. Row index 1 is
the smallest x-coordinate; column index 1 is the larges y-coordinate (top-
to-bottom).

� as coercion methods for data.frame, SpatialPointsDataFrame

� image plot an image of the grid

Finally, spplot, a front-end to levelplot allows the plotting of a single grid
plot or a lattice of grid plots.

5.5 Row and column selection of a region

Rows/columns selection can be done when gridded data is in the full grid form
(as SpatialGridDataFrame). In this form also rows and/or columns can be
de-selected (in which case a warning is issued):

> fullgrid(grd.attr) = FALSE

> grd.attr[1:5, "z1"]

Object of class SpatialPixelsDataFrame
Object of class SpatialPixels
Grid topology:

cellcentre.offset cellsize cells.dim
xc 1 1 3
yc 2 1 2
SpatialPoints:

xc yc
[1,] 1 3
[2,] 2 3
[3,] 3 3
[4,] 1 2

16

[5,] 2 2
Coordinate Reference System (CRS) arguments: NA

Data:
z1

Min. :4.0
1st Qu.:5.0
Median :7.0
Mean :6.6
3rd Qu.:8.0
Max. :9.0

> fullgrid(grd.attr) = TRUE

> grd.attr[1:2, -2, c("z2", "z1")]

SpatialPoints:
xc yc

[1,] 1 2
[2,] 3 3
Coordinate Reference System (CRS) arguments: NA

6 Lines

6.1 Building line objects from scratch

In many instances, line coordinates will be retrieved from external sources. The
following example shows how to build an object of class SpatialLines from
scratch.

> l1 = cbind(c(1, 2, 3), c(3, 2, 2))

> l1a = cbind(l1[, 1] + 0.05, l1[, 2] + 0.05)

> l2 = cbind(c(1, 2, 3), c(1, 1.5, 1))

> Sl1 = Sline(l1)

> Sl1a = Sline(l1a)

> Sl2 = Sline(l2)

> S1 = Slines(list(Sl1, Sl1a))

> S2 = Slines(list(Sl2))

> Sl = SpatialLines(list(S1, S2))

> summary(Sl)

Object of class SpatialLines
Coordinates:

min max
r1 1 3.05

17

r2 1 3.05
Is projected: NA
proj4string : [NA]

> plot(Sl, col = c("red", "blue"))

6.2 Building line objects with attributes

The class SpatialLinesDataFrame is designed for holding lines data that have
an attribute table (data.frame) attached to it:

> df = data.frame(z = c(1, 2))

> Sldf = SpatialLinesDataFrame(Sl, data = df)

> summary(Sldf)

Object of class SpatialLinesDataFrame
Coordinates:

min max
r1 1 3.05
r2 1 3.05
Is projected: NA
proj4string : [NA]
Data attributes:

18

z
Min. :1.00
1st Qu.:1.25
Median :1.50
Mean :1.50
3rd Qu.:1.75
Max. :2.00

Not many useful methods for it are available yet. The plot method only plots
the lines, ignoring attribute table values. Suggestions for useful methods are
welcome.

7 Polygons

7.1 Building from scratch

The following example shows how a set of polygons are built from scratch.
Note that Sr4 has the opposite direction (anti-clockwise) as the other three
(clockwise); it is meant to represent a hole in the Sr3 polygon. The default
value for the hole colour pbg is "transparent, which will not show, but which
often does not matter, because another polygon fills the hole — here it is set to
"white".

> Sr1 = Sring(cbind(c(2, 4, 4, 1, 2), c(2, 3, 5, 4, 2)))

> Sr2 = Sring(cbind(c(5, 4, 2, 5), c(2, 3, 2, 2)))

> Sr3 = Sring(cbind(c(4, 4, 5, 10, 4), c(5, 3, 2, 5, 5)))

> Sr4 = Sring(cbind(c(5, 6, 6, 5, 5), c(4, 4, 3, 3, 4)), hole = TRUE)

> Srs1 = Srings(list(Sr1), "s1")

> Srs2 = Srings(list(Sr2), "s2")

> Srs3 = Srings(list(Sr3, Sr4), "s3/4")

> SR = SpatialRings(list(Srs1, Srs2, Srs3), 1:3)

> plot.SpatialRings(SR, col = 1:3, pbg = "white")

19

7.2 Polygons with attributes

Polygons with attributes, objects of class SpatialRingsDataFrame, are built
from the SpatialRings object (topology) and the attributes (data.frame):

> attr = data.frame(a = 1:3, b = 3:1)

> SrDf = SpatialRingsDataFrame(SR, attr)

> spplot(SrDf)

Loading required package: grid

20

a

b

1.0

1.5

2.0

2.5

3.0

or, as another way to create the SpatialRingsDataFrame object:

> SrDf = attr

> rings(SrDf) = SR

8 Interfaces to GIS and external formats

8.1 Reading grids through rgdal

8.2 Reading ESRI shapefiles

points, lines, polygons?

8.3 Reading ArcGIS coverages

References

Chambers, J.M., 1998, Programming with data, a guide to the S language.
Springer, New York.

21

	Introduction
	Spatial data classes
	Manipulating spatial objects
	Standard methods
	Spatial methods

	Spatial points
	Points without attributes
	Points with attributes

	Grids
	Creating grids from topology
	Creating grids from points
	Gridded data with attributes
	Are grids stored as points or as matrix/array?
	Row and column selection of a region

	Lines
	Building line objects from scratch
	Building line objects with attributes

	Polygons
	Building from scratch
	Polygons with attributes

	Interfaces to GIS and external formats
	Reading grids through rgdal
	Reading ESRI shapefiles
	Reading ArcGIS coverages

