
JSS Journal of Statistical Software
MMMMMM YYYY, Volume˜VV, Issue˜II. http://www.jstatsoft.org/

Classes and Methods for

Spatio-Temporal Data in R

1. Das neue IfGI-Logo 1.6 Logovarianten

Logo für den Einsatz in internationalen bzw.

englischsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

ifgi

ifgi

Institute for Geoinformatics
University of Münster

ifgi

Institut für Geoinformatik
Universität Münster

Logo für den Einsatz in nationalen bzw.

deutschsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

Dieses Logo kann bei Anwendungen

eingesetzt werden, wo das Logo besonders

klein erscheint.

Einsatzbereiche: Sponsorenlogo,

Power-Point

Größe bis 40 mm Breite

Edzer Pebesma
Institute for Geoinformatics

University of Münster

Abstract

This document describes classes and methods designed to deal with spatio-temporal
data in R implemented in the R package spacetime. It builds upon the classes and methods
for spatial data are taken from package sp, and all temporal classes supported by package
xts. The goal is to cover a number of useful representations for spatio-temporal sensor
data, or results from predicting (spatial and/or temporal interpolation or smoothing),
aggregating, or subsetting them. The goals of this package are to explore how spatio-
temporal data can be sensibly represented in classes, and to find out which analysis
and visualisation methods are useful and feasible for the classes implemented. It reuses
existing classes, methods, and functions present in packages for spatial data (sp) and
time series data (zoo and xts). Coercion to the appropriate reduced spatial and temporal
classes is provided, as well as to data.frame objects in the long, time-wide and space-
wide formats. It is discussed when representing time intervals, i.e., storing for elementary
observations their start and end time as opposed to storing only start time, is needed
in practice for elementary observations. This document is the main reference for the R
package spacetime, and is available (in updated form) as a vignette in this package.

Keywords:˜Time series analysis, spatial data, spatio-temporal statistics, GIS.

1. Introduction

Spatio-temporal data are abundant, and easily obtained. Examples are satellite images of
parts of the earth, temperature readings for a number of nearby stations, election results
for voting districts and a number of consecutive elections, GPS tracks for people or animals

http://www.jstatsoft.org/

2 Classes and Methods for Spatio-Temporal Data in R

possibly with additional sensor readings, disease outbreaks or volcano eruptions.

Schabenberger and Gotway (2004) argue that analysis of spatio-temporal data often happens
conditionally, meaning that either first the spatial aspect is analysed, after which the temporal
aspects are analysed, or reversed, but not in a joint, integral modelling approach, where space
and time are not separated. As a possible reason they mention the lack of good software,
data classes and methods to handle, import, export, display and analyse such data. This R
(R Development Core Team 2011) package is a start to fill this gap.

Spatio-temporal data are often relatively abundant in either space, or time, but not in both.
Satellite imagery is typically very abundant in space, giving lots of detail in high spatial
resolution for large areas, but relatively sparse in time. Analysis of repeated images over time
may further be hindered by difference in light conditions, errors in georeferencing resulting
in spatial mismatch, and changes in obscured areas due to changed cloud coverage. On the
other side, data from fixed sensors give often very detailed signals over time, allowing for
elaborate modelling, but relatively little detail in space because a very limited number of
sensors is available. The cost of an in situ sensor network typically depends primarily on its
spatial density; the choice of the temporal resolution with which the sensors register signals
may have little effect on total cost.

Although for example Botts, Percivall, Reed, and Davidson (2007) describe a number of open
standards that allow the interaction with sensor data (describing sensor characteristics, re-
questing observed values, planning sensors, and processing raw sensed data to predefined
events), the available statistical or GIS software for this is in an early stage, and scattered.
This paper describes an attempt to combine available infrastructure in the R statistical en-
vironment to a set of useful classes and methods for manipulating, plotting and analysing
spatio-temporal data. A number of case studies from different application areas will illustrate
its use.

An overview of the different time classes in R is found in Ripley and Hornik (2001). Further
advice on which classes to use is found in Grothendieck and Petzoldt (2004).

To store temporal information, we chose to use objects of class xts in package xts (Ryan and
Ulrich 2011) for time, because

� it extends the functionality of package zoo (Zeileis and Grothendieck 2005),

� it supports several basic types to represent time or date: Date, POSIXct, timeDate,
yearmon, and yearqtr,

� it has good tools for aggregation over time using arbitrary aggregation functions, essen-
tially deriving this from package zoo (Zeileis and Grothendieck 2005).

� it has a flexible syntax to select time periods that adheres ISO 86011.

We do not use xts objects to store spatio-temporal attribute information, as it is restricted
to matrix objects, and hence can only store a single type, and not combine e.g., numeric and
factor variables. Instead, as in the classes of sp (Pebesma and Bivand 2005; Bivand, Pebesma,
and Gomez-Rubio 2008), we use data.frame to store measured values. For information that
is purely temporal, the xts objects can be used, and will be recycled appropriately when
coercing to a long format data.frame.

1http://en.wikipedia.org/wiki/ISO_8601

http://en.wikipedia.org/wiki/ISO_8601

Journal of Statistical Software 3

The organisation of this paper is as follows. We will discuss how much spatio-temporal
information is organised in Section 2. Section 3 explains the three major space-time layouts.
The spatio-temporal classes for each of these layouts are presented in Sections 4, 5 and 6.
Section 7 provides further methods for handling them. Section 8 discusses plot methods.
Section 9 discusses spatial and temporal footprint, or support, and Section 10 provides a wide
range of worked examples. Section 11 concludes with a discussion.

This paper is available (in updated form) as vignette from the package spacetime. Other
vignettes in the package deal more extensively with spatio-temporal overlay and aggregation,
and with an approach to proxy data sets in a PostgreSQL table that are too large to fit in
memory with the objects in package spacetime.

2. Space-time data in wide and long formats

Spatio-temporal data for which each location has data for each time can be provided in two
so-called wide formats. An example where a single column refers to a single moment or
period in time is found in the North Carolina Sudden Infant Death Syndrome (sids) data set,
which is in the time-wide format:

R> library("foreign")

R> read.dbf(system.file("shapes/sids.dbf", package="maptools"))[1:5,c(5,9:14)]

NAME BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79

1 Ashe 1091 1 10 1364 0 19

2 Alleghany 487 0 10 542 3 12

3 Surry 3188 5 208 3616 6 260

4 Currituck 508 1 123 830 2 145

5 Northampton 1421 9 1066 1606 3 1197

where columns refer to a particular time: SID74 contains to the infant death syndrome
cases for each county at a particular time period (1974-1978).

The Irish wind data (Haslett and Raftery 1989), for which the first six records are

R> data("wind", package = "gstat")

R> wind[1:6,]

year month day RPT VAL ROS KIL SHA BIR DUB CLA MUL

1 61 1 1 15.04 14.96 13.17 9.29 13.96 9.87 13.67 10.25 10.83

2 61 1 2 14.71 16.88 10.83 6.50 12.62 7.67 11.50 10.04 9.79

3 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 8.04 8.50

4 61 1 4 10.58 6.63 11.75 4.58 4.54 2.88 8.63 1.79 5.83

5 61 1 5 13.33 13.25 11.42 6.17 10.71 8.21 11.92 6.54 10.92

6 61 1 6 13.21 8.12 9.96 6.67 5.37 4.50 10.67 4.42 7.17

CLO BEL MAL

1 12.58 18.50 15.04

2 9.67 17.54 13.83

3 7.67 12.75 12.71

4 Classes and Methods for Spatio-Temporal Data in R

4 5.88 5.46 10.88

5 10.34 12.92 11.83

6 7.50 8.12 13.17

are in space-wide format: each column refers to another wind measurement location, and
the rows reflect a single time period; wind was reported as daily average wind speed in knots
(1 knot = 0.5418 m/s).

Finally, panel data are shown in long form, where the full spatio-temporal information is
held in a single column, and other columns denote location and time. In the Produc data set
(Baltagi 2001), a panel of 48 observations from 1970 to 1986 available in the plm package (Y.
and Millo 2008), the first five records are

R> data("Produc", package = "plm")

R> Produc[1:5,]

state year pcap hwy water util pc gsp emp

1 ALABAMA 1970 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5

2 ALABAMA 1971 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9

3 ALABAMA 1972 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3

4 ALABAMA 1973 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5

5 ALABAMA 1974 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8

unemp

1 4.7

2 5.2

3 4.7

4 3.9

5 5.5

where the first two columns denote space and time (a default assumption in package plm),
and e.g., pcap reflects private capital stock.

None of these examples has strongly referenced spatial or temporal information: it is from the
data alone not clear whether the number 1970 refers to a year, or ALABAMA to a state, and
where this is. Section 10 shows for each of these three cases how the data can be converted
into classes with strongly referenced space and time information.

3. Space-time layouts

In the following we will use spatial location to denote a particular point, (set of) line(s), (set
of) polygon(s), or pixel, for which one or more measurements are registered at particular
moments in time.

Three layouts of space-time data have been implemented, along with convenience methods
and coercion methods to get from one to the other. These will be introduced next.

3.1. Full space-time grid

A full space-time grid2 of observations for spatial location (points, lines, polygons, grid cells)

2note that neither locations nor time points need to be laid out in a regular sequence

Journal of Statistical Software 5

●

●

●

●

●

●

●

●

●

●

●

●

Time points

S
pa

ce
 lo

ca
tio

ns

●

●

●

●

●

●

●

●

●

●

●

●

1st 3rd 4th

1s
t

2n
d

3r
d

1

2

3

4

5

6

7

8

9

10

11

12

STFDF (Space−time full data.frame) layout

Figure 1: Space-time layout of STFDF (STF: ST-Full) objects: all space-time combinations are
stored; numbers refer to the ordering of rows in the data.frame with measured values: time
is kept ordered, space cycles first.

si, i = 1, ..., n and observation time tj , j = 1, ...,m is obtained when the full set of n×m set
of observations zk is stored, with k = 1, ..., nm. We choose to cycle spatial locations first, so
observation k corresponds to location si, i = ((k − 1) % n) + 1 and with time moment tj ,
j = ((k − 1)/n) + 1, with / integer division and % integer division remainder (modulo). The
tj are assumed to be in time order.

In this data class (figure 1), for each location, the same temporal sequence of data is sampled.
Alternatively one could say that for each moment in time, the same set of spatial entities is
sampled. Unsampled combinations of (space, time) are stored in this class, but are assigned
a missing value NA.

3.2. Sparse space-time grid

A sparse grid has the same general layout, with measurements laid out on a space time grid
(figure 2), but instead of storing the full grid, only non-missing valued observations zk are

6 Classes and Methods for Spatio-Temporal Data in R

●

●

●

●

●

●

●

Time points

S
pa

ce
 lo

ca
tio

ns

●

●

●

●

●

●

●

1st 2nd 3rd 4th

1s
t

2n
d

3r
d

1[1,1]

2[2,1]

3[3,1]

4[2,2]

5[3,2]

6[1,3]

7[2,4]

STSDF (Space−time sparse data.frame) layout

Figure 2: space-time layout of STSDF (STS: ST-Sparse) objects: only the non-missing part of
the space-time combinations on a lattice are stored; numbers refer to the ordering of rows in
the data.frame; an index is kept where e.g., [3,4] refers to the third item in the list of spatial
locations and fourth item in the list of temporal points.

stored. For each k, an index [i, j] is stored that refers which spatial location i and time point
j the value belongs to. Storing data this way may be efficient if full space-time lattices have
many missing values, or if a limited set of spatial locations each have different time instances
(times of crime cases for a set of administrative regions), or if for a set of times the set of
spatial locations varies (locations of crimes registered per year, or spatially misaligned remote
sensing images).

3.3. Irregular space-time data.frame

Space-time irregular data.frames (STIDF, figure 3) are meant for the case where time and
space points of measured values have no apparent organisation: for each measured value the
spatial location and time point is stored, as in the long format. This is equivalent to the
(maximally) sparse grid where the index for observation k is [k, k], and hence can be dropped.
For these objects, n = m equals the number of records. Locations and time points need not

Journal of Statistical Software 7

●

●

●

●

●

Time points

S
pa

ce
 lo

ca
tio

ns

●

●

●

●

●

1st 2nd 4th 5th

1s
t,4

th
2n

d
3r

d
5t

h

1

2

3

4

5

STIDF (Space−time irregular data.frame) layout

Figure 3: Space-time layout of STIDF (STI: ST-Irregular) objects: each observation has its
spatial location and time stamp stored; in this example, spatial location 1 is stored twice –
the fact that observations 1 and 4 have the same location is not registered.

be unique, and are replicated in case they are not.

4. Spatio-temporal full grid data.frames (STFDF)

For objects of class STFDF, time representation can be regular or irregular, as is supported
by class xts in package xts. Spatial locations need to be of a class deriving from Spatial in
package sp.

4.1. Class definition

R> library("spacetime")

R> showClass("ST")

Class "ST" [package "spacetime"]

8 Classes and Methods for Spatio-Temporal Data in R

Slots:

Name: sp time

Class: Spatial xts

Known Subclasses:

Class "STS", directly

Class "STI", directly

Class "STF", directly

Class "STSDF", by class "STS", distance 2

Class "STIDF", by class "STI", distance 2

Class "STFDF", by class "STF", distance 2

Class "STIDFtraj", by class "STIDF", distance 3

R> showClass("STFDF")

Class "STFDF" [package "spacetime"]

Slots:

Name: data sp time

Class: data.frame Spatial xts

Extends:

Class "STF", directly

Class "ST", by class "STF", distance 2

R> sp = cbind(x = c(0,0,1), y = c(0,1,1))

R> row.names(sp) = paste("point", 1:nrow(sp), sep="")

R> sp = SpatialPoints(sp)

R> time = as.POSIXct("2010-08-05", tz = "GMT")+3600*(10:13)

R> m = c(10,20,30) # means for each of the 3 point locations

R> mydata = rnorm(length(sp)*length(time),mean=rep(m, 4))

R> IDs = paste("ID",1:length(mydata), sep = "_")

R> mydata = data.frame(values = signif(mydata,3), ID=IDs)

R> stfdf = STFDF(sp, time, mydata)

R> str(stfdf)

Formal class 'STFDF' [package "spacetime"] with 3 slots

..@ data:'data.frame': 12 obs. of 2 variables:

.. ..$ values: num [1:12] 9.28 18.8 30.7 10.4 19.4 30.2 10.6 18.7 30.7 11.8 ...

.. ..$ ID : Factor w/ 12 levels "ID_1","ID_10",..: 1 5 6 7 8 9 10 11 12 2 ...

..@ sp :Formal class 'SpatialPoints' [package "sp"] with 3 slots

..@ coords : num [1:3, 1:2] 0 0 1 0 1 1

..- attr(*, "dimnames")=List of 2

..$: chr [1:3] "point1" "point2" "point3"

Journal of Statistical Software 9

..$: chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 0 0 1 1

..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "x" "y"

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

..@ projargs: chr NA

..@ time:An 'xts' object from 2010-08-05 10:00:00 to 2010-08-05 13:00:00 containing:

Data: int [1:4, 1] 1 2 3 4

Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT

xts Attributes:

NULL

4.2. Coercion to data.frame

The following coercion function creates a data.frame, using either the S3 (to set row.names)
or S4 “as()” method. It gives data in the long format, meaning that time and space are
replicated appropriately:

R> as.data.frame(stfdf, row.names = IDs)

x y sp.ID time timedata values ID

ID_1 0 0 point1 2010-08-05 10:00:00 1 9.28 ID_1

ID_2 0 1 point2 2010-08-05 10:00:00 1 18.80 ID_2

ID_3 1 1 point3 2010-08-05 10:00:00 1 30.70 ID_3

ID_4 0 0 point1 2010-08-05 11:00:00 2 10.40 ID_4

ID_5 0 1 point2 2010-08-05 11:00:00 2 19.40 ID_5

ID_6 1 1 point3 2010-08-05 11:00:00 2 30.20 ID_6

ID_7 0 0 point1 2010-08-05 12:00:00 3 10.60 ID_7

ID_8 0 1 point2 2010-08-05 12:00:00 3 18.70 ID_8

ID_9 1 1 point3 2010-08-05 12:00:00 3 30.70 ID_9

ID_10 0 0 point1 2010-08-05 13:00:00 4 11.80 ID_10

ID_11 0 1 point2 2010-08-05 13:00:00 4 21.00 ID_11

ID_12 1 1 point3 2010-08-05 13:00:00 4 30.30 ID_12

R> as(stfdf, "data.frame")[1:4,]

x y sp.ID time timedata values ID

1 0 0 point1 2010-08-05 10:00:00 1 9.28 ID_1

2 0 1 point2 2010-08-05 10:00:00 1 18.80 ID_2

3 1 1 point3 2010-08-05 10:00:00 1 30.70 ID_3

4 0 0 point1 2010-08-05 11:00:00 2 10.40 ID_4

Note that sp.ID denotes the ID of the spatial location; coordinates are shown for point,
pixel or grid cell centre locations; in case locations refer to lines or polygons, the line’s start
coordinate and coordinate centre of weight are given, respectively, as the coordinate values
in this representation.

For a single attribute, we can obtain a data.frame object if we properly unstack the column,
giving the data in both its wide formats when in addition we apply transpose t():

10 Classes and Methods for Spatio-Temporal Data in R

R> unstack(stfdf)

point1 point2 point3

2010-08-05 10:00:00 9.28 18.8 30.7

2010-08-05 11:00:00 10.40 19.4 30.2

2010-08-05 12:00:00 10.60 18.7 30.7

2010-08-05 13:00:00 11.80 21.0 30.3

R> t(unstack(stfdf))

2010-08-05 10:00:00 2010-08-05 11:00:00 2010-08-05 12:00:00

point1 9.28 10.4 10.6

point2 18.80 19.4 18.7

point3 30.70 30.2 30.7

2010-08-05 13:00:00

point1 11.8

point2 21.0

point3 30.3

R> unstack(stfdf, which = 2)

point1 point2 point3

2010-08-05 10:00:00 ID_1 ID_2 ID_3

2010-08-05 11:00:00 ID_4 ID_5 ID_6

2010-08-05 12:00:00 ID_7 ID_8 ID_9

2010-08-05 13:00:00 ID_10 ID_11 ID_12

4.3. Coercion to matrix or objects of class xts

We can coerce an object of class STFDF to an object of class xts if we select a single numeric
attribute:

R> as(stfdf[,,"values"], "xts")

point1 point2 point3

2010-08-05 10:00:00 9.28 18.8 30.7

2010-08-05 11:00:00 10.40 19.4 30.2

2010-08-05 12:00:00 10.60 18.7 30.7

2010-08-05 13:00:00 11.80 21.0 30.3

An xts object is a matrix, with time (in some form) stored in an attribute, and time non-
decreasing over rows. Method index retrieves the time points:

R> x = as(stfdf[,,"values"], "xts")

R> index(x)

Journal of Statistical Software 11

[1] "2010-08-05 10:00:00 GMT" "2010-08-05 11:00:00 GMT"

[3] "2010-08-05 12:00:00 GMT" "2010-08-05 13:00:00 GMT"

4.4. Spatial, temporal and spatio-temporal aggregation

Aggregating values over all space locations or time instances can be done by coercing to xts

(i.e., to a matrix form) and then using apply, either over space:

R> x = as(stfdf[,,"values"], "xts")

R> apply(x, 1, mean)

2010-08-05 10:00:00 2010-08-05 11:00:00 2010-08-05 12:00:00

19.59333 20.00000 20.00000

2010-08-05 13:00:00

21.03333

or over time:

R> apply(x, 2, mean)

point1 point2 point3

10.520 19.475 30.475

Aggregation to a more coarse spatial or temporal form (e.g., to a coarser grid, aggregating
points over administrative regions, aggregating daily data to monthly data) can be done using
the method aggregate. More information with illustrated examples is found in the vignette
on this, obtained by:

R> vignette("sto")

To obtain the aggregation predicate, i.e. the grouping of observations in space-time, the
method over is implemented for objects deriving from ST. Grouping can be done based on
spatial, temporal, or spatio-temporal predicates. This effectively provides an spatio-temporal
equivalent to what is known in GI Science as the spatial overlay.

4.5. Attribute retrieval and replacement: [[and $

We can define the [[and $ retrieval and replacement methods for all classes deriving from
ST at once. Here are some examples:

R> stfdf[[1]]

[1] 9.28 18.80 30.70 10.40 19.40 30.20 10.60 18.70 30.70 11.80 21.00

[12] 30.30

R> stfdf[["values"]]

12 Classes and Methods for Spatio-Temporal Data in R

[1] 9.28 18.80 30.70 10.40 19.40 30.20 10.60 18.70 30.70 11.80 21.00

[12] 30.30

R> stfdf[["newVal"]] = rnorm(12)

R> stfdf$ID

[1] ID_1 ID_2 ID_3 ID_4 ID_5 ID_6 ID_7 ID_8 ID_9 ID_10 ID_11

[12] ID_12

12 Levels: ID_1 ID_10 ID_11 ID_12 ID_2 ID_3 ID_4 ID_5 ID_6 ... ID_9

R> stfdf$ID = paste("OldIDs", 1:12, sep="")

R> stfdf$NewID = paste("NewIDs", 12:1, sep="")

R> stfdf

An object of class "STFDF"

Slot "data":

values ID newVal NewID

1 9.28 OldIDs1 -0.15389513 NewIDs12

2 18.80 OldIDs2 -0.35297257 NewIDs11

3 30.70 OldIDs3 -0.30063030 NewIDs10

4 10.40 OldIDs4 -1.27681523 NewIDs9

5 19.40 OldIDs5 -0.46543726 NewIDs8

6 30.20 OldIDs6 -0.54947509 NewIDs7

7 10.60 OldIDs7 -1.85959239 NewIDs6

8 18.70 OldIDs8 -0.99049105 NewIDs5

9 30.70 OldIDs9 0.04464429 NewIDs4

10 11.80 OldIDs10 1.12077888 NewIDs3

11 21.00 OldIDs11 0.69355910 NewIDs2

12 30.30 OldIDs12 0.82508981 NewIDs1

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

4.6. Space and time selection with [

The idea behind the [method for classes in sp was that objects would behave as much

Journal of Statistical Software 13

as possible similar to a matrix or data.frame – this is one of the stronger intuitive areas
of R syntax. For a data.frame, a construct like a[i,j] selects row(s) i and column(s) j.
For objects deriving from Spatial, rows were taken as the spatial entities (points, lines,
polygons, pixels) and rows as the attributes – a convention that was partially broken for class
SpatialGridDataFrame, where a[i,j,k] could select the k-th attribute of the spatial grid
selection with spatial grid row(s) i and column(s) j (unless the length of i equals the number
of grid cells).

For the spatio-temporal data classes described here, a[i,j,k] selects spatial entity/entities
i, temporal entity/entities j, and attribute(s) k:

R> stfdf[,1] # SpatialPointsDataFrame

coordinates values ID newVal NewID

1 (0, 0) 9.28 OldIDs1 -0.1538951 NewIDs12

2 (0, 1) 18.80 OldIDs2 -0.3529726 NewIDs11

3 (1, 1) 30.70 OldIDs3 -0.3006303 NewIDs10

R> stfdf[,,1]

An object of class "STFDF"

Slot "data":

values

1 9.28

2 18.80

3 30.70

4 10.40

5 19.40

6 30.20

7 10.60

8 18.70

9 30.70

10 11.80

11 21.00

12 30.30

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

14 Classes and Methods for Spatio-Temporal Data in R

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

R> stfdf[1,,1] # xts

values

2010-08-05 10:00:00 9.28

2010-08-05 11:00:00 10.40

2010-08-05 12:00:00 10.60

2010-08-05 13:00:00 11.80

R> stfdf[,,"ID"]

An object of class "STFDF"

Slot "data":

ID

1 OldIDs1

2 OldIDs2

3 OldIDs3

4 OldIDs4

5 OldIDs5

6 OldIDs6

7 OldIDs7

8 OldIDs8

9 OldIDs9

10 OldIDs10

11 OldIDs11

12 OldIDs12

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

R> stfdf[1,,"values", drop = FALSE] # stays STFDF:

Journal of Statistical Software 15

An object of class "STFDF"

Slot "data":

values

1 9.28

2 10.40

3 10.60

4 11.80

Slot "sp":

SpatialPoints:

x y

point1 0 0

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

R> stfdf[,1, drop=FALSE] #stays STFDF

An object of class "STFDF"

Slot "data":

values ID newVal NewID

1 9.28 OldIDs1 -0.1538951 NewIDs12

2 18.80 OldIDs2 -0.3529726 NewIDs11

3 30.70 OldIDs3 -0.3006303 NewIDs10

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

..1

2010-08-05 10:00:00 1

Clearly, unless drop=FALSE, selecting a single time or single location object results in an object
that is no longer spatio-temporal; see also Section 7.

16 Classes and Methods for Spatio-Temporal Data in R

5. Space-time sparse data.frames (STSDF)

Space-time sparse data.frames have a layout over a grid, meaning that particular times
and locations are typically present more than once, but only the data for the time/location
combinations are stored. An index keeps the link between the measured values (rows) in the
data slot, and the locations and times.

5.1. Class definition

R> showClass("STSDF")

Class "STSDF" [package "spacetime"]

Slots:

Name: data index sp time

Class: data.frame matrix Spatial xts

Extends:

Class "STS", directly

Class "ST", by class "STS", distance 2

In this class, index is an n× 2 matrix. If in this index row i has entry [j, k], it means that the
i-th row in the data slot corresponds to location j and time k.

6. Spatio-temporal irregular data.frames (STIDF)

Space-time irregular data.frames store for each data record the location and time. No index
is kept. Location and time need not be organized. Data are stored such that time is ordered
(as it is an xts object).

6.1. Class definition

R> showClass("STIDF")

Class "STIDF" [package "spacetime"]

Slots:

Name: data sp time

Class: data.frame Spatial xts

Extends:

Class "STI", directly

Class "ST", by class "STI", distance 2

Known Subclasses: "STIDFtraj"

Journal of Statistical Software 17

R> sp = expand.grid(x = 1:3, y = 1:3)

R> row.names(sp) = paste("point", 1:nrow(sp), sep="")

R> sp = SpatialPoints(sp)

R> time = as.POSIXct("2010-08-05", tz = "GMT")+3600*(11:19)

R> m = 1:9 * 10 # means for each of the 9 point locations

R> mydata = rnorm(length(sp), mean=m)

R> IDs = paste("ID",1:length(mydata))

R> mydata = data.frame(values = signif(mydata,3),ID=IDs)

R> stidf = STIDF(sp, time, mydata)

R> stidf

An object of class "STIDF"

Slot "data":

values ID

1 11.1 ID 1

2 18.5 ID 2

3 30.2 ID 3

4 40.4 ID 4

5 47.7 ID 5

6 58.2 ID 6

7 69.3 ID 7

8 78.3 ID 8

9 89.0 ID 9

Slot "sp":

SpatialPoints:

x y

[1,] 1 1

[2,] 2 1

[3,] 3 1

[4,] 1 2

[5,] 2 2

[6,] 3 2

[7,] 1 3

[8,] 2 3

[9,] 3 3

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 11:00:00 1

2010-08-05 12:00:00 2

2010-08-05 13:00:00 3

2010-08-05 14:00:00 4

2010-08-05 15:00:00 5

2010-08-05 16:00:00 6

2010-08-05 17:00:00 7

18 Classes and Methods for Spatio-Temporal Data in R

2010-08-05 18:00:00 8

2010-08-05 19:00:00 9

6.2. Methods

Selection takes place with the [method:

R> stidf[1:2,]

An object of class "STIDF"

Slot "data":

values ID

1 11.1 ID 1

2 18.5 ID 2

Slot "sp":

SpatialPoints:

x y

[1,] 1 1

[2,] 2 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 11:00:00 1

2010-08-05 12:00:00 2

7. Further methods: snapshot, history, coercion

7.1. Snap and Hist

A time snapshot (Galton 2004) to a particular moment in time can be obtained through
selecting a particular time moment:

R> stfdf[,time[3]]

coordinates values ID newVal NewID

1 (0, 0) 11.8 OldIDs10 1.1207789 NewIDs3

2 (0, 1) 21.0 OldIDs11 0.6935591 NewIDs2

3 (1, 1) 30.3 OldIDs12 0.8250898 NewIDs1

by default, a simplified object of the underlying Spatial class for this particular time is
obtained (drop=TRUE); if we specify drop = FALSE, the class will not be changed:

R> class(stfdf[,time[3]])

Journal of Statistical Software 19

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

R> class(stfdf[,time[3],drop=FALSE])

[1] "STFDF"

attr(,"package")

[1] "spacetime"

A time series (or history, according to Galton, 2004) for a single particular location is obtained
by selecting this location, e.g.,

R> stfdf[1, , "values"]

values

2010-08-05 10:00:00 9.28

2010-08-05 11:00:00 10.40

2010-08-05 12:00:00 10.60

2010-08-05 13:00:00 11.80

Again, the class is not reduced to the simpler when drop = FALSE is specified:

R> class(stfdf[1,])

[1] "xts" "zoo"

R> class(stfdf[1,drop=FALSE])

[1] "STFDF"

attr(,"package")

[1] "spacetime"

For objects of class STIDF, drop = TRUE results in a Spatial object when a single time value
is selected.

7.2. Coercion between STxxx classes

Coercion from full to sparse and/or irregular space-time data.frames, we can use as:

R> class(stfdf)

[1] "STFDF"

attr(,"package")

[1] "spacetime"

R> class(as(stfdf, "STSDF"))

20 Classes and Methods for Spatio-Temporal Data in R

[1] "STSDF"

attr(,"package")

[1] "spacetime"

R> class(as(as(stfdf, "STSDF"), "STIDF"))

[1] "STIDF"

attr(,"package")

[1] "spacetime"

R> class(as(stfdf, "STIDF"))

[1] "STIDF"

attr(,"package")

[1] "spacetime"

On our way back, the reverse coercion takes place:

R> x = as(stfdf, "STIDF")

R> class(as(x, "STSDF"))

[1] "STSDF"

attr(,"package")

[1] "spacetime"

R> class(as(as(x, "STSDF"), "STFDF"))

[1] "STFDF"

attr(,"package")

[1] "spacetime"

R> class(as(x, "STFDF"))

[1] "STFDF"

attr(,"package")

[1] "spacetime"

R> xx = as(x, "STFDF")

R> identical(stfdf, xx)

[1] TRUE

7.3. Coercion to class SpatialXxDataFrame

Spatio-temporal data objects can be coerced to the corresponding purely spatial objects.
Objects of class STFDF will be represented in time-wide form, where only the first (selected)
attribute is retained:

Journal of Statistical Software 21

R> xs1 = as(stfdf, "Spatial")

R> class(xs1)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

R> xs1

coordinates X2010.08.05.10.00.00 X2010.08.05.11.00.00

point1 (0, 0) 9.28 10.4

point2 (0, 1) 18.80 19.4

point3 (1, 1) 30.70 30.2

X2010.08.05.12.00.00 X2010.08.05.13.00.00

point1 10.6 11.8

point2 18.7 21.0

point3 30.7 30.3

as time stamps do not work well as column names, this object gets the proper times as an
attribute:

R> attr(xs1, "time")

[1] "2010-08-05 10:00:00 GMT" "2010-08-05 11:00:00 GMT"

[3] "2010-08-05 12:00:00 GMT" "2010-08-05 13:00:00 GMT"

Objects of class STSDF or STIDF will be represented in long form, where time is added as
additional column:

R> xs2 = as(x, "Spatial")

R> class(xs2)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

R> xs2[1:4,]

coordinates values ID newVal NewID time

1 (0, 0) 9.28 OldIDs1 -0.1538951 NewIDs12 2010-08-05 10:00:00

2 (0, 1) 18.80 OldIDs2 -0.3529726 NewIDs11 2010-08-05 10:00:00

3 (1, 1) 30.70 OldIDs3 -0.3006303 NewIDs10 2010-08-05 10:00:00

4 (0, 0) 10.40 OldIDs4 -1.2768152 NewIDs9 2010-08-05 11:00:00

22 Classes and Methods for Spatio-Temporal Data in R

8. Graphs of spatio-temporal data: stplot

8.1. stplot: panels, space-time plots, animation

The stplot method can create a few specialized plot types for the classes in the spacetime

package. They are:

multi-panel plots In this form, for each time step (selected) a map is plotted in a separte
panel, and the strip above the panel indicates what the panel is about. The panels
share x- and y-axis, no space needs to be lost by separating white space, and a common
legend is used. Three types are implemented for STFDF data:

� x and y axis denote space, an example for gridded data is shown in figure 6. The
stplot is a wrapper around spplot in package sp, and inherits most of its options.

� y and x denote value and time; one panel for each spatial location, colors may
different attributes (type="tp")

� y and x denote value and time; one panel for each attribute, colors may denote
different stations (type="ts")

space-time plots space-time plots show data in a space-time cross Section, with e.g., space
on the x-axis and time on the y-axis. An example on a so-called Hovmöller plot of the
sea surface temperature data in Cressie and Wikle (2011) is obtained by

R> demo(CressieWikle)

Hovmöller plots only make sense for full space-time lattices, i.e. objects of class STFDF.
To obtain such a plot, the arguments mode and scaleX should be considered; some
special care is needed when only the x- or y-axis needs to be plotted instead of the
spatial index (1...n); details are found in the stplot documentation. An example of a
Hovmöller-style plot with station index along the x-axis and time along the y-axis is
obtained by

R> scales=list(x=list(rot = 45))

R> stplot(w, mode = "xt", scales = scales, xlab = NULL)

and shown in figure 8.

animated plots Animation is another way of displaying change over time; a sequence of
spplots, one for each time step, is looped over when the parameter animate is set to a
positive value (indicating the time in seconds to pause between subsequent plots).

8.2. Time series plots

Time series plots are a fairly common type of plot in R. Package xts has a plot method that
allows univariate time series to be plotted. Many (if not most) plot routines in R support
time to be along the x- or y-axis. The plot in figure 7 was generated by using package lattice
(Sarkar 2008), and uses a colour palette from package RColorBrewer (Neuwirth 2011):

Journal of Statistical Software 23

R> library("lattice")

R> library("RColorBrewer")

R> b = brewer.pal(12, "Set3")

R> par.settings = list(superpose.symbol = list(col = b, fill = b),

+ superpose.line = list(col = b),

+ fontsize = list(text=9))

R> stplot(w, mode = "ts", auto.key=list(space="right"),

+ xlab = "1961", ylab = expression(sqrt(speed)),

+ par.settings = par.settings)

9. Spatial footprint or support, time intervals

9.1. Time periods or time instances

Data structures for time series data in R have, explicitly or implicitly, for each record a time
stamp, not a time interval. The implicit assumption seems to be (i) the time stamp is a
moment, (ii) this indicates either the real moment of measurement / registration, or the
start of the interval over which something is aggregated (summed, averaged, maximized).
For financial ”Open, high, low, close” data, the ”Open” and ”Close” refer to the values at
the moments the stock exchange opens and closes, meaning time instances, whereas ”high”
and ”low” are aggregated values – the minimum and maximum price over the time interval
between opening and closing times.

Package lubridate (Grolemund and Wickham 2011) allows one to define and to compute with
time intervals (e.g., Allen (1983)). It does not provide structures to attach these intervals to
time series data.

According to ISO 8601:2004, a time stamp like ”2010-05” refers to the full month of May,
2010, and so reflects a time period rather than a moment. As a selection criterion, xts will
include everything inside the following interval:

R> .parseISO8601('2010-05')

$first.time

[1] "2010-05-01 CEST"

$last.time

[1] "2010-05-31 23:59:59 CEST"

and this syntax lets one define, unambiguously, yearly, monthly, daily, hourly or minute in-
tervals, but not e.g.˜10- or 30-minute intervals. For a particular interval, the full specification
is needed:

R> .parseISO8601('2010-05-01T13:30/2010-05-01T13:39')

$first.time

[1] "2010-05-01 13:30:00 CEST"

http://en.wikipedia.org/wiki/ISO_8601

24 Classes and Methods for Spatio-Temporal Data in R

$last.time

[1] "2010-05-01 13:39:59 CEST"

9.2. Spatial support

All examples above work with spatial points, i.e., data having a point support. The assump-
tion of data having points support is implicit. For polygons, the assumption will be that
values reflect aggregates over the polygon. For gridded data, it is ambiguous whether the
value at the grid cell centre is meant (e.g. for DEM data) or an aggregate over the grid cell
(typical for remote sensing imagery). The Spatial* objects of package sp have no explicit
information about the spatial support.

10. Worked examples

This Section shows how existing data in various formats can be converted into ST classes,
and how they can be analysed and/or visualised.

10.1. North Carolina SIDS

As an example, the North Carolina Sudden Infant Death Syndrome (sids) data in package
maptools (Lewin-Koh, Bivand, contributions˜by Edzer J.˜Pebesma, Archer, Baddeley, Bibiko,
Dray, Forrest, Friendly, Giraudoux, Golicher, Rubio, Hausmann, Hufthammer, Jagger, Luque,
MacQueen, Niccolai, Short, Stabler, and Turner 2011) will be used; they are sparse in time
(aggregated to 2 periods of unequal length, according to the documentation in package spdep),
but have polygons in space. Figure 4 shows the plot generated.

R> library("maptools")

R> fname = system.file("shapes/sids.shp", package="maptools")[1]

R> nc = readShapePoly(fname, proj4string=CRS("+proj=longlat +datum=NAD27"))

R> data = data.frame(

+ BIR = c(nc$BIR74, nc$BIR79),

+ NWBIR = c(nc$NWBIR74, nc$NWBIR79),

+ SID = c(nc$SID74, nc$SID79))

R> time = as.POSIXct(strptime(c("1974-01-01", "1979-01-01"), "%Y-%m-%d"),

+ tz = "GMT")

R> nct = STFDF(

+ sp = as(nc, "SpatialPolygons"),

+ time = time,

+ data = data)

R> stplot(nct[,,"SID"], c("1974-1978", "1979-1984"))

10.2. Panel data

The panel data discussed in Section 2 are imported as a full ST data.frame (STFDF), and
linked to the proper state polygons of maps. Both Produc and the states in package maps

Journal of Statistical Software 25

1974−1978

1979−1984

0

10

20

30

40

50

Figure 4: North Carolina sudden infant death syndrome (sids) data.

(Brownrigg and Minka 2011) order states alphabetically; the only thing to watch out for is
that the former does not include District of Columbia, but the latter does (record 8):

R> library("maps")

R> states.m = map('state', plot=FALSE, fill=TRUE)

R> IDs <- sapply(strsplit(states.m$names, ":"), function(x) x[1])

R> library("maptools")

R> states = map2SpatialPolygons(states.m, IDs=IDs)

R> library("plm")

R> data("Produc")

R> yrs = 1970:1986

R> time = as.POSIXct(paste(yrs, "-01-01", sep=""), tz = "GMT")

R> # deselect District of Columbia, polygon 8, which is not present in Produc:

R> Produc.st = STFDF(states[-8], time, Produc[order(Produc[2], Produc[1]),])

R> stplot(Produc.st[,,"unemp"], yrs)

(The plot itself was omitted for reasons of file size.) Time and state were not removed from
the data table on construction; printing these data as a data.frame confirms that time and
state were matched correctly. The routines in package plm can be used on the data, back
transformed to a data.frame, when index is specified (the first two columns from the back-
transformed data no longer contain state and year):

R> zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

+ data = as.data.frame(Produc.st), index = c("state","year"))

R> summary(zz)

Oneway (individual) effect Within Model

Call:

26 Classes and Methods for Spatio-Temporal Data in R

plm(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,

data = as.data.frame(Produc.st), index = c("state", "year"))

Balanced Panel: n=48, T=17, N=816

Residuals :

Min. 1st Qu. Median 3rd Qu. Max.

-0.12000 -0.02370 -0.00204 0.01810 0.17500

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

log(pcap) -0.02614965 0.02900158 -0.9017 0.3675

log(pc) 0.29200693 0.02511967 11.6246 < 2.2e-16 ***

log(emp) 0.76815947 0.03009174 25.5273 < 2.2e-16 ***

unemp -0.00529774 0.00098873 -5.3582 1.114e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 18.941

Residual Sum of Squares: 1.1112

R-Squared : 0.94134

Adj. R-Squared : 0.88135

F-statistic: 3064.81 on 4 and 764 DF, p-value: < 2.22e-16

10.3. Interpolating Irish wind

This worked example is a modified version of the analysis presented in demo(wind) of package
gstat (Pebesma 2004). This demo is rather lengthy and reproduces much of the original
analysis in Haslett and Raftery (1989). Here, we will reduce the intermediate plots and focus
on the use of spatio-temporal classes.

First, we will load the wind data from package gstat. It has two tables, station locations in
a data.frame, called wind.loc, and daily wind speed in data.frame wind. We now convert
character representation (such as 51d56’N) to proper numerical coordinates, and convert the
station locations to a SpatialPointsDataFrame object. A plot of these data is shown in figure
5.

R> library("gstat")

R> data("wind")

R> wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude"]])))

R> wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude"]])))

R> coordinates(wind.loc) = ~x+y

R> proj4string(wind.loc) = "+proj=longlat +datum=WGS84"

The first thing to do with the wind speed values is to reshape these data. Unlike the North
Carolina SIDS data of Section 10.1, for this data space is sparse and time is rich, and so the
data in data.frame wind come in space-wide form with stations time series in columns:

Journal of Statistical Software 27

12°W 10°W 8°W 6°W 4°W

51
°N

52
°N

53
°N

54
°N

55
°N

Valentia

Belmullet

Claremorris

Shannon

Roche's Point

Birr

Mullingar

Malin Head

Kilkenny

Clones

Dublin

Roslare

Figure 5: Station locations for Irish wind data.

28 Classes and Methods for Spatio-Temporal Data in R

R> wind[1:3,]

year month day RPT VAL ROS KIL SHA BIR DUB CLA MUL

1 61 1 1 15.04 14.96 13.17 9.29 13.96 9.87 13.67 10.25 10.83

2 61 1 2 14.71 16.88 10.83 6.50 12.62 7.67 11.50 10.04 9.79

3 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 8.04 8.50

CLO BEL MAL

1 12.58 18.50 15.04

2 9.67 17.54 13.83

3 7.67 12.75 12.71

We will recode the time columns to an appropriate time data structure, and subtract a smooth
time trend of daily means (not exactly equal, but similar to the trend removal in the original
paper):

R> wind$time = ISOdate(wind$year+1900, wind$month, wind$day)

R> wind$jday = as.numeric(format(wind$time, '%j'))

R> stations = 4:15

R> windsqrt = sqrt(0.5148 * as.matrix(wind[stations])) # knots -> m/s

R> Jday = 1:366

R> windsqrt = windsqrt - mean(windsqrt)

R> daymeans = sapply(split(windsqrt, wind$jday), mean)

R> meanwind = lowess(daymeans ~ Jday, f = 0.1)$y[wind$jday]

R> velocities = apply(windsqrt, 2, function(x) { x - meanwind })

Next, we will match the wind data to its location, and project the longitude/latitude coor-
dinates and country boundary to the appropriate UTM zone, using spTransform in package
rgdal (Keitt, Bivand, Pebesma, and Rowlingson 2011) for coordinate transformation:

R> # order locations to order of columns in wind;

R> # connect station names to location coordinates

R> wind.loc = wind.loc[match(names(wind[4:15]), wind.loc$Code),]

R> pts = coordinates(wind.loc[match(names(wind[4:15]), wind.loc$Code),])

R> rownames(pts) = wind.loc$Station

R> pts = SpatialPoints(pts)

R> # convert to utm zone 29, to be able to do interpolation in

R> # proper Euclidian (projected) space:

R> proj4string(pts) = "+proj=longlat +datum=WGS84"

R> library("rgdal")

R> utm29 = CRS("+proj=utm +zone=29 +datum=WGS84")

R> pts = spTransform(pts, utm29)

R> # construct from space-wide table:

R> w = stConstruct(velocities, space = list(values = 1:ncol(velocities)),

+ time = wind$time, SpatialObj = pts)

R> library("maptools")

R> m = map2SpatialLines(

+ map("worldHires", xlim = c(-11,-5.4), ylim = c(51,55.5), plot=F))

Journal of Statistical Software 29

1961−04−01 12:00:001961−04−04 17:20:001961−04−07 22:40:001961−04−11 04:00:001961−04−14 09:20:00

1961−04−17 14:40:001961−04−20 20:00:001961−04−24 01:20:001961−04−27 06:40:001961−04−30 12:00:00

−1.0

−0.5

0.0

0.5

Figure 6: Space-time interpolations of wind (square root transformed, detrended) over Ireland
using a separable product covariance model, for 10 time points regularly distributed over the
month for which daily data was considered (April, 1961).

R> proj4string(m) = "+proj=longlat +datum=WGS84"

R> m = spTransform(m, utm29)

R> # setup grid

R> grd = SpatialPixels(SpatialPoints(makegrid(m, n = 300)),

+ proj4string = proj4string(m))

R> # select april 1961:

R> w = w[, "1961-04"]

R> # 10 prediction time points, evenly spread over this month:

R> n = 10

R> tgrd = xts(1:n, seq(min(index(w)), max(index(w)), length=n))

R> # separable covariance model, exponential with ranges 750 km and 1.5 day:

R> v = list(space = vgm(0.6, "Exp", 750000), time = vgm(1, "Exp", 1.5 * 3600 * 24))

R> pred = krigeST(values ~ 1, w, STF(grd, tgrd), v)

R> wind.ST = STFDF(grd, tgrd, data.frame(sqrt_speed = pred))

the results of which are shown in figure 6, created with stplot.

10.4. Calculation of EOFs

Empirical orthogonal functions from STFDF objects can be computed in spatial form (default):

R> eof.sp = EOF(wind.ST)

or in temporal form by:

30 Classes and Methods for Spatio-Temporal Data in R

1961

sp
ee

d

−1.5

−1.0

−0.5

0.0

0.5

1.0

Apr 03 Apr 10 Apr 17 Apr 24 May 01

Roche's Point
Valentia
Roslare
Kilkenny
Shannon
Birr
Dublin
Claremorris
Mullingar
Clones
Belmullet
Malin Head

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: Time series plot of daily wind speed at 12 stations, used for interpolation in figure
6.

R> eof.xts = EOF(wind.ST, "temporal")

the resulting object is of the appropriate Spatial subclass (SpatialGridDataFrame, SpatialPolygonsDataFrame
etc.) in the spatial form, or of class xts in the temporal form. Figure 9 shows the 10 spatial
EOFs obtained from the interpolated wind data of figure 6.

10.5. Conversion from and to trip

Objects of class trip in package trip (Sumner 2010), meant to represent trajectories, extend
objects of class SpatialPointsDataFrame by indicating in which attribute columns time and
trip ID are, in slot TOR.columns. To not lose this information (in particular, which column
contains the IDs), we will extend class STIDF to retain this info.

The following example uses data from package diveMove (Luque 2007). It assumes that time
in a trip object is ordered, as xts will order it otherwise:

R> library("diveMove")

R> library("trip")

R> locs = readLocs(gzfile(system.file(file.path("data", "sealLocs.csv.gz"),

+ package="diveMove")), idCol=1, dateCol=2,

+ dtformat="%Y-%m-%d %H:%M:%S", classCol=3,

+ lonCol=4, latCol=5, sep=";")

R> ringy = subset(locs, id == "ringy" & !is.na(lon) & !is.na(lat))

R> coordinates(ringy) = ringy[c("lon", "lat")]

R> tr = trip(ringy, c("time", "id"))

R> # convert to SPSDFtraj, and plot:

R> setAs("trip", "STIDFtraj",

+ function(from) {

Journal of Statistical Software 31

tim
e

Apr 03

Apr 10

Apr 17

Apr 24

Roc
he

's
Poin

t

Vale
nt

ia

Ros
lar

e

Kilk
en

ny

Sha
nn

on Birr

Dub
lin

Clar
em

or
ris

M
ull

ing
ar

Clon
es

Belm
ull

et

M
ali

n
Hea

d

−1.5

−1.0

−0.5

0.0

0.5

1.0

Figure 8: Space-time (Hovmöller) plot of wind station data.

32 Classes and Methods for Spatio-Temporal Data in R

EOF1 EOF2 EOF3 EOF4 EOF5

EOF6 EOF7 EOF8 EOF9 EOF10

−0.5

0.0

0.5

1.0

1.5

Figure 9: EOFs of space-time interpolations of wind over Ireland (for spatial reference, see
figure 6), for the 10 time points at which daily data was chosen above (April, 1961).

+ from$burst = from[[from@TOR.columns[2]]]

+ time = from[[from@TOR.columns[1]]]

+ new("STIDFtraj", STIDF(as(from, "SpatialPoints"), time, from@data))

+ }

+)

R> x = as(tr, "STIDFtraj")

R> m = map2SpatialLines(map("world",

+ xlim = c(-100,-50), ylim = c(40,77), plot=F))

R> proj4string(m) = "+proj=longlat +datum=WGS84"

R> plot(m, axes=TRUE, cex.axis =.7)

R> plot(x, add=TRUE, col = "red")

R> # convert back, compare:

R> setAs("STIDFtraj", "trip", function(from) {

+ from$time = index(from@time)

+ trip(SpatialPointsDataFrame(from@sp, from@data), c("time", "burst"))

+ }

+)

R> y = as(x, "trip")

R> y$burst = NULL

R> all.equal(y, tr, check.attributes = FALSE)

[1] TRUE

Journal of Statistical Software 33

120°W 100°W 80°W 60°W 40°W

40
°N

50
°N

60
°N

70
°N

80
°N

10.6. Trajectory data: ltraj in adehabitatLT

Trajectory objects of class ltraj in package adehabitatLT (Calenge, Dray, and Royer-Carenzi
2008) are lists of bursts, sets of sequentially, connected space-time points at which an object
is registered. When converting a list to a single STIDF object, the ordering is according to
time, and the subsequent objects become unconnected. In the coercion back to ltraj, based
on ID and burst the appropriate bursts are restored. A simple plot is obtained by:

R> library("adehabitatLT")

R> # from: adehabitat/demo/managltraj.r

R> # demo(managltraj)

R> data("puechabonsp")

R> # locations:

R> locs = puechabonsp$relocs

R> xy = coordinates(locs)

R> ### Conversion of the date to the format POSIX

R> da = as.character(locs$Date)

R> da = as.POSIXct(strptime(as.character(locs$Date),"%y%m%d"), tz = "GMT")

R> ## object of class "ltraj"

R> ltr = as.ltraj(xy, da, id = locs$Name)

34 Classes and Methods for Spatio-Temporal Data in R

R> foo = function(dt) dt > 100*3600*24

R> ## The function foo returns TRUE if dt is longer than 100 days

R> ## We use it to cut ltr:

R> l2 = cutltraj(ltr, "foo(dt)", nextr = TRUE)

R> stidfTrj = as(l2, "STIDFtraj")

R> ltr0 = as(stidfTrj, "ltraj")

R> all.equal(l2, ltr0, check.attributes = FALSE)

[1] TRUE

R> plot(stidfTrj, col = c("red", "green", "blue", "darkgreen", "black"),

+ axes=TRUE)

698000 700000 702000

31
58

00
0

31
60

00
0

A more complicated plot is shown in figure 10, obtained by the command

R> stplot(stidfTrj,by="time*id")

the output of which is shown in figure 10.

10.7. Country shapes in cshapes

The cshapes (Weidmann, Kuse, and Gleditsch 2011) package contains a GIS dataset of country

Journal of Statistical Software 35

time
Brock

time
Brock

time
Brock

time
Brock

time
Brock

time
Brock

time
Calou

time
Calou

time
Calou

time
Calou

time
Calou

time
Calou

time
Chou

time
Chou

time
Chou

time
Chou

time
Chou

time
Chou

time
Jean

time
Jean

time
Jean

time
Jean

time
Jean

time
Jean

Figure 10: Trajectories, by id (rows) and time (columns).

36 Classes and Methods for Spatio-Temporal Data in R

boundaries (1946-2008), and includes functions for data extraction and the computation of
weights matrices. The data set consist of a SpatialPolygonsDataFrame, with the following
attributes:

R> library("cshapes")

R> cs = cshp()

R> names(cs)

[1] "CNTRY_NAME" "AREA" "CAPNAME" "CAPLONG" "CAPLAT"

[6] "FEATUREID" "COWCODE" "COWSYEAR" "COWSMONTH" "COWSDAY"

[11] "COWEYEAR" "COWEMONTH" "COWEDAY" "GWCODE" "GWSYEAR"

[16] "GWSMONTH" "GWSDAY" "GWEYEAR" "GWEMONTH" "GWEDAY"

[21] "ISONAME" "ISO1NUM" "ISO1AL2" "ISO1AL3"

where two data bases are used, ”COW” (correlates of war project3) and ”GW” Gleditsch and
Ward (1999). The attributes COWSMONTH and COWEMONTH denote the start month
and end month, respectively, according to the COW data base.

To select the country boundaries corresponding to a particular date and system, one can use

R> cshp.2002 <- cshp(date=as.Date("2002-6-30"), useGW=TRUE)

In the following fragment, an unordered list of times t is passed on to STIDF, and this will
cause the geometries and attributes to be reordered (in the order of t):

R> t = as.POSIXct(strptime(paste(cs$COWSYEAR,

+ cs$COWSMONTH,cs$COWSDAY, sep="-"), "%Y-%m-%d"), tz = "GMT")

R> st = STIDF(geometry(cs), t, as.data.frame(cs))

R> pt = SpatialPoints(cbind(7, 52), CRS(proj4string(cs)))

R> as.data.frame(st[pt,,1:5])

V1 V2 sp.ID time timedata

1 9.41437 50.57623 188 1955-05-05 188

2 10.38084 51.09070 187 1990-10-03 187

CNTRY_NAME AREA CAPNAME CAPLONG CAPLAT

1 Germany Federal Republic 247366.4 Bonn 7.1 50.73333

2 Germany 356448.2 Berlin 13.4 52.51667

11. Discussion

Building on existing infrastructure for spatial and temporal data, we have successfully imple-
mented a coherent set of classes for spatio-temporal data, that provides regular space-time
layouts, partially regular (sparse) space-time layouts and irregular space-time layouts. The
set is flexible in the sense that several representations of space (points, lines, polygons, grid)
and time (POSIXt, Date, timeDate, yearmon, yearqtr) can be used.

3Correlates of War Project. 2008. State System Membership List, v2008.1. Online, http://

correlatesofwar.org/

http://correlatesofwar.org/
http://correlatesofwar.org/

Journal of Statistical Software 37

We have given examples for constructing objects of these classes from various data sources,
coercing them from one to another, exporting them to spatial or temporal representations, as
well as visualising them in various forms. We have also shown how one can go from one form
into another by ways of prediction based on a statistical model, using an example on spatio-
temporal geostatistical interpolation. In addition to spatio-temporally varying information,
objects of the classes can contain attributes that are purely spatial or purely temporal. Selec-
tion can be done based on spatial characteristics, time (intervals), or attributes, and follows
a logic similar to that for selection on data tables (data.frames).

Using existing infrastructure had the consequence that data that refer to time intervals are
stored with a (start) time instance only. This may seem incomplete, but reflects current
practice. As the time series community, at least as far as reflected in the CRAN Task View
on Time Series Analysis4, does not care about storing time intervals, there must be a ground
for this. One reason may be that time instances automatically refer to an interval, e.g. a
date represents a full day, a POSIXt value a full second. Another may be that the time
instance representation has an analogy to storing spatial polygons as topology, whereas time
intervals may have this to representing spatial polygons as sets of rings. The interval/rings
representation may be easier for some cases, but may also result in increased complexity as
they may be inconsistent: intervals and rings may overlap. Representing temporally changing
spatial polygons in a spatio-temporally topologically correct way is still a challenge.

Acknowledgements

Michael Sumner provided helpful comments on the trip example. Members from the spatio-
temporal modelling lab of the institute for geoinformatics of the University of Muenster (Ben
Gräler, Katharina Henneböhl, Daniel Nüst) contributed in several useful discussions. Partici-
pants to the workshop Handling and analyzing spatio-temporal data in R, held in Münster on
Mar 21-22, 2011, are gratefully acknowledged.

References

Allen JF (1983). “Maintaining Knowledge about Temporal Intervals.” Commun. ACM, 26,
832–843. ISSN 0001-0782. doi:http://doi.acm.org/10.1145/182.358434. URL http:

//doi.acm.org/10.1145/182.358434.

Baltagi B (2001). Econometric Analaysis of Panel Data, 3rd edition. John Wiley & Sons,
New York. URL http://www.wiley.com/legacy/wileychi/baltagi/.

Bivand RS, Pebesma EJ, Gomez-Rubio V (2008). Applied Spatial Data Analysis with R.
Springer-Verlag, New York. URL http://www.asdar-book.org/.

Botts M, Percivall G, Reed C, Davidson J (2007). “OGC Sensor Web Enablement: Overview
And High Level Architecture.” Technical report, Open Geospatial Consortium. URL http:

//portal.opengeospatial.org/files/?artifact_id=25562.

4http://cran.r-project.org/web/views/TimeSeries.html

http://dx.doi.org/http://doi.acm.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
http://www.wiley.com/legacy/wileychi/baltagi/
http://www.asdar-book.org/
http://portal.opengeospatial.org/files/?artifact_id=25562
http://portal.opengeospatial.org/files/?artifact_id=25562

38 Classes and Methods for Spatio-Temporal Data in R

Brownrigg R, Minka TP (2011). maps: Draw Geographical Maps. R package version 2.1-6,
URL http://CRAN.R-project.org/package=maps.

Calenge C, Dray S, Royer-Carenzi M (2008). “The Concept of Animals’ Trajectories from a
Data Analysis Perspective.” Ecological informatics, 4, 34–41.

Cressie N, Wikle C (2011). Statistics for Spatio-temporal Data. John Wiley & Sons, New
York.

Galton A (2004). “Fields and Objects in Space, Time and Space-time.” Spatial cognition and
computation, 4.

Gleditsch KS, Ward MD (1999). “Interstate System Membership: A Revised List of the
Independent States since 1816.” International Interactions, 25, 393–413. URL http:

//privatewww.essex.ac.uk/~ksg/statelist.html.

Grolemund G, Wickham H (2011). “Dates and Times Made Easy with lubridate.” Journal of
Statistical Software, 40(3), 1–25. URL http://www.jstatsoft.org/v40/i03/.

Grothendieck G, Petzoldt T (2004). “R Help Desk: Date and Time Classes in R.” R News,
4, 29–32. URL http://cran.r-project.org/doc/Rnews/Rnews_2004-1.pdf.

Haslett J, Raftery AE (1989). “Space-time Modelling with Long-memory Dependence: As-
sessing Ireland’s Wind Power Resource (with Discussion).” Applied Statistics, 38, 1–50.

Keitt TH, Bivand R, Pebesma E, Rowlingson B (2011). rgdal: Bindings for the Geospatial
Data Abstraction Library. R package version 0.7-1, URL http://CRAN.R-project.org/

package=rgdal.

Lewin-Koh NJ, Bivand R, contributions˜by Edzer J˜Pebesma, Archer E, Baddeley A, Bibiko
HJ, Dray S, Forrest D, Friendly M, Giraudoux P, Golicher D, Rubio VG, Hausmann P,
Hufthammer KO, Jagger T, Luque SP, MacQueen D, Niccolai A, Short T, Stabler B,
Turner R (2011). maptools: Tools for Reading and Handling Spatial Objects. R package
version 0.8-10, URL http://CRAN.R-project.org/package=maptools.

Luque SP (2007). “Diving Behaviour Analysis in R.” R News, 7(3), 8–14. ISSN -2022.
Contributions from: John P.Y. Arnould, Laurent Dubroca, and Andy Liaw, URL http:

//cran.r-project.org/doc/Rnews/.

Neuwirth E (2011). RColorBrewer: ColorBrewer palettes. R package version 1.0-5, URL
http://CRAN.R-project.org/package=RColorBrewer.

Pebesma EJ (2004). “Multivariable Geostatistics in S: the gstat Package.” Computers &
Geosciences, 30(7), 683–691.

Pebesma EJ, Bivand RS (2005). “Classes and Methods for Spatial Data in R.” R News, 5(2),
9–13. URL http://cran.r-project.org/doc/Rnews/.

R Development Core Team (2011). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

http://CRAN.R-project.org/package=maps
http://privatewww.essex.ac.uk/~ksg/statelist.html
http://privatewww.essex.ac.uk/~ksg/statelist.html
http://www.jstatsoft.org/v40/i03/
http://cran.r-project.org/doc/Rnews/Rnews_2004-1.pdf
http://CRAN.R-project.org/package=rgdal
http://CRAN.R-project.org/package=rgdal
http://CRAN.R-project.org/package=maptools
http://cran.r-project.org/doc/Rnews/
http://cran.r-project.org/doc/Rnews/
http://CRAN.R-project.org/package=RColorBrewer
http://cran.r-project.org/doc/Rnews/
http://www.R-project.org/

Journal of Statistical Software 39

Ripley B, Hornik K (2001). “Date-time Classes.” R News, 1, 8–11.

Ryan JA, Ulrich JM (2011). xts: eXtensible Time Series. R package version 0.8-2, URL
http://CRAN.R-project.org/package=xts.

Sarkar D (2008). Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
ISBN 978-0-387-75968-5, URL http://lmdvr.r-forge.r-project.org.

Schabenberger O, Gotway C (2004). Statistical Methods for Spatial Data Analysis. Chapman
and Hall, Boca Raton.

Sumner M (2010). “The Tag Location Problem.” Technical report, Institute of Marine and
Antarctic Studies University of Tasmania. Unpublished PhD thesis.

Weidmann NB, Kuse D, Gleditsch KS (2011). cshapes: CShapes Dataset and Utilities. R
package version 0.3-1, URL http://CRAN.R-project.org/package=cshapes.

Y C, Millo G (2008). “Panel Data Econometrics in R: The plm Package.” Journal of Statistical
Software, 27. URL http://www.jstatsoft.org/v27/i02/.

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. URL http://www.jstatsoft.org/

v14/i06/.

Affiliation:

Edzer Pebesma
Institute for Geoinformatics, University of Münster
Weseler Strasse 253, Münster, Germany
E-mail: edzer.pebesma@uni-muenster.de
URL: http://ifgi.uni-muenster.de/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume˜VV, Issue˜II Submitted: yyyy-mm-dd
MMMMMM YYYY Accepted: yyyy-mm-dd

http://CRAN.R-project.org/package=xts
http://lmdvr.r-forge.r-project.org
http://CRAN.R-project.org/package=cshapes
http://www.jstatsoft.org/v27/i02/
http://www.jstatsoft.org/v14/i06/
http://www.jstatsoft.org/v14/i06/
mailto:edzer.pebesma@uni-muenster.de
http://ifgi.uni-muenster.de/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Space-time data in wide and long formats
	Space-time layouts
	Full space-time grid
	Sparse space-time grid
	Irregular space-time data.frame

	Spatio-temporal full grid datat.frames
	Class definition
	Coercion to data.frame
	Coercion to matrix or objects of class xts
	Spatial, temporal and spatio-temporal aggregation
	Attribute retrieval and replacement
	Space and time selection

	Space-time sparse data.frames
	Class definition

	Spatio-temporal irregular data.frames
	Class definition
	Methods

	Further methods: snapshot, history, coercion
	Snap and Hist
	Coercion between STxxx classes
	Coercion to class SpatialXxDataframe

	Graphs of spatio-temporal dtaa: stplot
	stplot: panels, space-time plots, animation
	Time series plots

	Spatial footprint or support, time intervals
	Time periods or time instances
	Spatial support

	Worked examples
	North Carolina SIDS
	Panel data
	Interpolating Irish wind
	Calculation of EOFs
	Conversion from and to trip
	Trajectory data: ltraj in adehabitatLT
	Country shapes in cshapes

	Discussion

