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� � �� � � � � � � � � � �� � � � � �single tracks, (staggered) subtracks, and steps

� � � � � � � � � � �� � � � � � �cell-based, step-based, and staggered metrics� � �� � � � � � � �� � � � � � � �� �� � � � � � � � � � � � �
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Track properties can be computed in a cell-based, step-based, or staggered fashion. For more informa-
tion, please refer to  (  � � � 	 � � �� � �� �  �� � � � ). Examples are shown for the analysis of speed, but can also 
be performed with other analysis measures (� � � �� )�

� � � � �� � � � �
Find average speed of each
individual cell (track):

# 
ce

lls

mean cell speed

Get instantaneous/”step” speed 
distribution for each cell (track):

# 
st

ep
s

# 
st

ep
s

step speed

cell 1:

cell 2:

� � � � �� � � � �
Average speed over all steps,
pooled from all tracks together:

#s
te

ps

step speed

To get the distribution over all
steps instead of only the mean:

� � � � � � � � �
Measure speed on all subtracks
in the staggered matrix:

speed

Directly get all mean cell speeds 
(over the staggered subtracks):

-

- 

-  . . . 

ID      t  x  y  z
cell1 t1   .   .   . 
cell1 t2  .   .   . 
cell2 t1  .   .   . 
cell2 t2  .   .   . 

Generate tracks object from a csv �le:
mydata.csv: - $cell1:

- $cell2:

- ...

t  x  y  z
t1   . . . . . 
t2  . . . . .  
t  x  y  z
t1   . . . . . 
t2  . . . . .  

Convert between data structures:

ID      t  x  y  z
cell1 t1   . . . . . 
cell1 t2  . . . . . 
cell2 t1  . . . . . 
cell2 t2  . . . . . 

tracks to dataframe

dataframe to tracks

tracks to regular R list 

dataframe

- $cell1:
t  x  y  z
t1   . . . . . 
t2  . . . . .  

wrap single track matrix
into a track object

t   . . .
t8  . . .  
t3  . . . 

t   . . .
t1  . . .  
t2  . . . 

� � � � � � �� � � � � �  allow better inference of the cell’s
behavior, especially in cell-based analyses (� � � �� ).

# 
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max length distribution

longest track (# steps)

Check for � � � � � � � �Δ�  between steps, or gaps:
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Fix this issue automatically for all tracks in X with
an irregular Δt above some threshold:

t   . . .
t1  . . .  
t2  . . . 
t3  . . .  

t   . . .
t1  . . .  
t3  . . .

Adjust � �	 � �� � � � � � � � � � �Δ� :  

cell-based
mean

- $cell1:

- $cell2:

- ... ...

keep only tracks of at least n steps

Concatenate two tracks objects:

To analyze cell movement, we record a cell’s coordinates in time-lapse videos
to obtain a cell � �� � � . To facilitate the interpretation of tracking data,
� � � � � � � � � �  implements a large variety of methods for the fast and 
�exible analysis of track data in R. Load data from a text �le, 
get rid of artefacts and tracking errors by performing quality 
controls proposed in literature, and analyze any metric on the level of
individual tracks, steps, or subtracks. � � � � � � � � � �  supports angle analyses and
allows rapid visualization, clustering, and simulation of tracks.  Let’s get started!

cell.steps <- subtracks( x, 1 )
all.steps <- subtracks( X, 1 )
first.steps <- prefixes( X, 1 )
t.steps <- subtracksByTime( X, t, 1 )

X x <- X[[1]]

mean( sapply( X, speed ) )

steps <- subtracks( x, 1 )
hist( sapply( 
 steps, speed ) )

steps <- subtracks( X, 1 )
hist( sapply( 
 steps, speed ) )

aggregate( X, speed,
 subtrack.length = 1,
 FUN = mean )$value

image( applyStaggered(
 x, speed, matrix = TRUE ) )

sapply( X, 
  staggered( speed ) )

read.tracks.csv( mydata.csv, 
 id.column = 1, time.column = 2, 
 pos.columns = 3:5 )

as.data.frame( X )

as.tracks( D )

as.list( X )

wrapTrack( x )

Sort tracks by time-order:
sort( X )

maxTrackLength( X )

subsample( x, k = 2 )

filterTracks( function(x) nrow(x)>n, X )

fix1 <- repairGaps( X, “interpolate” )

hist( sapply( X, nrow ) )

avdt <- timeStep( x ); hist( sapply( 
  subtracks( x, 1 ), duration ) - avdt )
 

c( X1, X2 )

interpolateTrack( x, dtvec )

“steps” are 
subtracks
of length 1

matrix with all
“staggered”  
subtracks 

“pre�xes” start at t1

all subtracks
starting at t 

symmetrical
matrix. 0-step
subtracks have
no speed (NA).

if FALSE: return only the matrix 
mean, which is dominated by
short (more frequent!) subtracks.

� � � � �  have equal weights; � � � � �
from short tracks weigh more

� � � � �  have equal weights; � � � � �
with longer tracks weigh more

tracks object contains
a matrix for each cell

Output of read.tracks.csv() 
and as.tracks.data.frame()
is time-ordered by default. 

split into
two tracks

interpolate
@�xed ∆t

 interpolate at times in dtvec
steps of
one cell x

all steps in
object X

function
must return
TRUE/FALSE

Filtering can cause bias. Consider a step-based
analysis (� � � �� ) instead of removing short tracks.

� � � �[[ ]] to return coordinate matrix, 
[ ] to return a tracks object.  

subtrack length

Angle analyses�(� � � �� )�can help detect artifacts, 
drift, and tracking errors (  � � � 	 � � �� � �� �  �� � � � ). 

or: “split”

subsample every 
k-th timepoint



� � � � � � � � � � �	 � � � � � � � �
(see also  ?TrackMeasures)

� � �� � � � � � � 
 � � � � � �� �� � � � � � � � � � � �
detecting patterns in track data

� � �� �	 � � � � � � � �� � � � � � � �
Models & bootstrapping

� � � � � � � � �� �� � � � � � � � � � � � � �
(see also  ?AngleAnalysis)

� � � � � �	 � � � � �
Check out the detailed examples in the package vignettes:
browseVignettes( package = “celltrackR” )

� � � � � � � � � � �

= tend - t1

= d(t1,t2) + ... + d(tend-1,tend)

d(tm,tn)
tm

tn
dy

dx

= d(tm,tn)

� � � � � �� � � �� � � � � � � � 	 � � �

= tracklength/duration

t1 = max d(t1, tn)
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θ

v1

vend

= angle θ(v1, vend) (first & last step)

= dot product v1 • vend = 
cos θ

|v1||vend|

θ1

θ2

θ
θ

= mean (θ1, ... , θend)

= angle θ between �rst step 
    and reference pointθd

= distance d between �rst step 
    and reference point

p (px, py, pz)

θ
= angle θ between �rst step 
    and reference direction

= angle θ between �rst step 
    and plane with points p1-p3

= distance d between �rst step 
    and plane with points p1-p3
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overallAngle( x )

duration( x )

trackLength( x )

displacement( x,
  from = m, to = n )

speed( x )

maxDisplacement( x )

displacementRatio( x )

= max d/tracklength
outreachRatio( x )

straightness( x )
= d(t1,tend)/tracklength

asphericity( x )
= ( a2 - b2 )2/( a2 + b2 )2

overallDot( x )

meanTurningAngle( x )

hotellingsTest( X, 
  plot = TRUE )

beaucheminTrack( sim.time, delta.t,
 p.persist, p.bias, bias.dir, taxis.mode,
 t.free, v.free, t.pause )

brownianTrack( nsteps, dim, mean=c(0,0),
  sd=c(1,1) )

simdata <- simulateTracks( 10,
  bootstrapTrack( nsteps, X ) )

plot( X )

plotTrackMeasures( 
 X, speed,
 meanTurningAngle )

trackFeatureMap( X,
 c(speed,straightness,
 meanTurningAngle),
 method = “PCA” )

bootstrapTrack( nsteps, X )

angleToPoint( x,p )

distanceToPoint( x,p )

angleToDir( x,dvec )

angleToPlane( x,p1,p2,p3 )

distanceToPlane( x,p1,p2,p3 )

step.pairs <- analyzeStepPairs( X )
plot( step.pairs$dist, step.pairs$angle )

plot(normalizeTracks( X ))

plot(aggregate( X, squareDisplacement ))
plot(aggregate( X, overallDot ))

minv <- median(
 sapply( X, speed ) )
fast <- selectTracks( 
 X, speed, minv, Inf )

clusterTracks( X,
 c(speed,straightness,
 meanTurningAngle),
 method = “hclust” )

see also:
squareDisplacement()
displacementVector()
normalizeToDuration()

note that asphericity
ignores time-ordering

useful for autocorrelation/
autocovariance plots

symmetric
0 < θ < π 
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 � � � � � �� � � � � � � �� � � � � �� � �� � � � � �� � �� � � � � � �can help 
identify directional biases or artefacts (  � � � 	 � � �� � �
� �  �� � � � ): 

or try analyzeCellPairs()

expected:
90 degrees

� � � � � � � � � �� �� � � � �can help detect global direction-
ality in a dataset in an unbiased fashion (� � � � � � �� � �
� �  �� � � � ): 

� � � � � � � 
 � � � �� � � � � �  in space

overlay track starting points

� � � � � �	 � � � � � � � �� � �� � � � � � � � �Δ� � �mean square 
displacement (MSD) & autocovariance plots

� � � � � � �� � �� � � � � � � �� � � � � �
Visualize two measures 
in a scatterplot:

Plot cos() of 
overallAngle()
for an autocor-
relation plot

Or subset tracks by one
feature �rst:

Or visualize higher dim-
ensional feature sets with
dimensionality reduction:

Other methods: 
“UMAP”/“MDS”

boundingBox(X)

3D tracks? see plot3d()
& projectDimensions()

does the average 
step displacement
di�er from the null
vector?

A � � � � � 	 �� � � �  in dim dimensions:

non-zero for directional bias

A "� � � � �� � � �� � ” model designed for T cells
(  � � � � � � 	 � � �� � �� �  �� � � � ). Cells move at speed
v.free for time t.free, and then pause for a time 
t.pause before changing direction (can be with
directional persistence or directional bias): 

unlike brownianTrack(), beaucheminTrack()
has an explicit de�nition of time.

A � � � � � � � � � � � � �� � � � �  matches speeds and 
turning angles to those observed in data:

Comparing observed data to idealized models is
useful for interpretation. CelltrackR supports
several methods for simulating tracks.

� �	 � � � � � �	 � � � � � � � �� � � � � � �� � �� � � � :

or another simulation method

Beauchemin et al (2007). Characterizing T cell movement within
     lymph nodes in the absence of antigen. � � � �� � � �� � ��� � � � � �� �  . 

Beltman et al (2009). Analysing Immune cell migration. 
������ � � � � � �� � 
 	� � � ��� � � � � �� �  �

Mokhtari et al (2013). Automated characterization and para-
     meter-free classi�cation of cell tracks based on local mi-
     gration behavior. � � � � �� � � �

Textor et al (2011). De�ning the quantitative limits of intravital
     two-photon lymphocyte tracking. � � � � ���
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Cluster tracks by features:

Or: “kmeans”


