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1 Introduction

The glmmEP package supports binary response mixed model analysis based on an expectation
propagation approximation to the log-likelihood. Full details of the methodology, as well as
theoretical back-up, are in the article by Hall, Johnstone, Ormerod, Wand & Yu (2018).

The package’s central function is glmmEP(). In this vignette we explain how to set up the
input data matrices for glmmEP() and then obtain inferential summaries of the fit. We first
use a simulated data set, corresponding to a simulation study described in Hall et al. (2018).
We then conduct some analyses involving a dataset that arose for a contraception use study.

2 Nature of the Computations and a Caveat

Exact likelihood-based inference for binary response mixed models involves numerical integra-
tion with dimension matching that of the random effects vectors. Typically this dimension
is a low number between 1 and 5, with 1 (corresponding to random intercepts models) and
2 (corresponding to adding a random slopes effect) being the most common. The essence of
the expectation propagation approach is to replace each of the multivariate integrals required
for a log-likelihood evaluation by a fixed-point iterative algorithm which, in certain cases, has
closed formed updates. This has the attraction of circumventing the numerical integration
requirement. In Hall et al. (2018) we derive theoretically justifiable starting values, which are
used in glmmEP. In our extensive simulation testing (see e.g. Section 4.1 of Hall et al., 2018) we
have witnessed excellent convergence of expectation propagation. The approximate likelihood
evaluations are then used to search for the maximum value, and approximate the correspond-
ing Hessian, over a multivariate parameter space using the Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton iterative algorithm. Starting values for this algorithm are obtained by a prelim-
inary Nelder-Mead iterative algorithm search. However, iterative algorithms are susceptible to
breakdown and it is difficult to guard against problems when glmmEP is used to fit an arbitrary
data set. We welcome feedback on experiences that users have with glmmEP applied to their
data. Our e-mail addresses are james.yu@student.uts.edu.au and matt.wand@uts.edu.au

3 Illustration for Simulated Data

In an R session the glmmEP package is loaded via the command:

library(glmmEP)

3.1 Generation and Format of the Simulated Data

The next chunk of code obtains simulated data corresponding to the simulation study in
Section 4.1.2. of Hall et al. (2018):

dataObj <- glmmSimData(seed=54321) ; y <- dataObj$y ; idNum <- dataObj$idNum

Xfixed <- dataObj$Xfixed ; Xrandom <- dataObj$Xrandom

1



The dimension values for these data are:

m = number of groups = 2, 500,

ni = number of measurements in the ith group which is
a randomly generated integer between 20 and 30,

m∑
i=1

ni = total number of measurements = 6, 229,

dF = fixed effects dimension = 6
and dR = random effects dimension = 2.

The command:

print(y[1:100])

leads to the output:

[1] 1 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0
[38] 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1
[75] 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1

which are the first 100 entries of the response vector y, which must be numerical with all
entries either 0 or 1. The length of y is 6, 229. The command:

print(idNum[1:100])

gives

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4
[75] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

which are the first 100 entries of the identification number vector idNum. The length of idNum
is 6, 229. It is apparent that the sample sizes in the first four groups are n1 = 24, n2 = 25,
n3 = 21 and n4 = 23. Next, if one issues:

print(Xfixed[1:10,])

then the resultant output is:

x1 x2 x3 x4 x5
[1,] 1 0.36289082 0.002376411 0.09104755 0.1273508 0.3222632
[2,] 1 0.04930613 0.190524008 0.26741325 0.3577301 0.3285285
[3,] 1 0.57960823 0.032975174 0.80433496 0.3783690 0.5370373
[4,] 1 0.81654150 0.092146002 0.94197020 0.4696319 0.6734873
[5,] 1 0.45523877 0.016108288 0.25312640 0.3708289 0.3986340
[6,] 1 0.45992203 0.436338940 0.96050362 0.7808369 0.7156205
[7,] 1 0.23505112 0.710328994 0.57337595 0.8998197 0.7668252
[8,] 1 0.75835507 0.991308090 0.34212789 0.1302605 0.5837071
[9,] 1 0.32415353 0.080589397 0.33139670 0.4897236 0.3431149
[10,] 1 0.33242435 0.559411192 0.01339585 0.2474313 0.6049820

which displays the first 10 rows of the 6, 229 × 6 fixed effects design matrix Xfixed. An
important aspect of glmmEP() is that it insists on the first column having all entries equal to
1, corresponding to the fixed effects intercept. Lastly, issuing

print(Xrandom[1:10,])

gives
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x1
[1,] 1 0.36289082
[2,] 1 0.04930613
[3,] 1 0.57960823
[4,] 1 0.81654150
[5,] 1 0.45523877
[6,] 1 0.45992203
[7,] 1 0.23505112
[8,] 1 0.75835507
[9,] 1 0.32415353
[10,] 1 0.33242435

Note that Xrandom coincides with the first 2 columns of Xfixed. This means that, in the
upcoming call to glmmEP(), there will be random intercepts, and random slopes corresponding
to the first predictor x1.

3.2 Probit Mixed Model Analysis of the Data

The appropriate fitting command is:

fitSimulRanIntAndSlp <- glmmEP(y,Xfixed,Xrandom,idNum)

and takes about 20–30 seconds to fit on typical 2018 computers.
An inferential summary of the fit is obtained via:

summary(fitSimulRanIntAndSlp)

and leads to

95% C.I.low estimate 95% C.I. upp
intercept 0.13272044 0.30246606 0.4722118
x1 0.69789090 0.88043814 1.0629854
x2 -0.54163761 -0.41337685 -0.2851161
x3 -0.03726938 0.09050807 0.2182855
x4 -1.45392531 -1.31994887 -1.1859724
x5 1.04426639 1.17685492 1.3094436
sigma1 0.60352982 0.70879985 0.8324305
sigma2 0.76176324 0.94008393 1.1601476
rho12 -0.60952776 -0.44659755 -0.2474686

The first six rows of this summary table are estimates and 95% confidence intervals for the
fixed effects parameters, corresponding to the intercept and the predictors x1, . . . , x5. The last
three rows are estimates and 95% confidence intervals for the parameters σ1, σ2 and ρ12 within
the random effects covariance matrix:[

ui0

ui1

]
ind.∼ N

([
0
0

]
,

[
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

])
.

For example, the expectation propagation-approximate estimate of the fixed effect associated
with x1 is

∼̂
β

1
= 0.8804 with corresponding 95% confidence interval (0.6979, 1.0630).

The estimate of the standard deviation of the random slope is

∼̂σ2
= 0.9401 with corresponding 95% confidence interval (0.7618, 1.160).

The code
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uHat <- fitSimulRanIntAndSlp$randomEffects

plot(uHat[,1],uHat[,2],col="dodgerblue",xlab="random intercepts predicted values",

ylab="random slopes predicted values",bty="l",lwd=2,cex.lab=1.5,cex.axis=1.5)

abline(v=0,col="slateblue",lwd=2) ; abline(h=0,col="slateblue",lwd=2)

leads to the plot shown in Figure 1 concerning the expectation propagation-approximate best
predictions of the random effects.
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Figure 1: Scatterplot of the expectation propagation-approximate best predictions of the random
slopes and corresponding random intercepts, which are part of the fitSimulRanIntAndSlp fit
object.

3.3 Controlling the Convergence Parameters

The convergence parameters can be controlled using the function glmmEP.control() inside
the call to glmmEP(). For example, the default number of Nelder-Mead iterations is 100. To
increase this to 150 in the creation of fitSimulRanIntAndSlp the call to glmmEP() should be
changed to

fitSimultRanIntAndSlp <- glmmEP(y,Xfixed,Xrandom,idNum,

control=glmmEP.control(NMmaxit=150))

The command

help(glmmEP.control)

can be used to find the names and default values of each of the other convergence variables.

3.4 Other Control Parameters

There are three other control parameters apart from those concerning convergence criteria.
These are

confLev which controls the level of the confidence intervals (defaulted to 0.95),

quiet which controls whether or not a running commentary of the search for the maximum
of the expectation propagation-approximate log-likelihood is printed to the screen (de-
faulted to TRUE),
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preTransfData which controls whether or not each of the predictor data vectors (i.e. the
columns of Xfixed and Xrandom apart from the intercepts) are transformed to the unit in-
terval for the purposes of finding the expectation propagation-approximate log-likelihood
maximum (defaulted to FALSE),

Each of these parameters can be controlled via a call to glmmEP.control() within the call to
glmmEP().

4 Analysis of Data from a Contraception Use Study

Data from the 1988 Bangladesh Fertility Survey are stored in the data frame Contraception
within the R package mlmRev (Bates, Maechler and Bolker, 2014). Steele, Diamond and
Amin (1996) contains details of the study and some multilevel analyses. Variables in the
Contraception data frame include:

use a two-level factor variable indicating whether a woman is a user of contraception at the
time of the survey, with levels Y for use and N for non-use.

age age of the woman in years at the time of the survey, centred about the average age of all
women in the study.

district a multi-level factor variable that codes the district, out of 60 districts in total, in
which the woman lives,

urban a two-level factor variable indicating whether or not the district in which the woman
lives is urban, with levels Y for urban dwelling and N for rural dwelling.

livch a four-level factor variable that indicates the number of living children of the woman,
with levels 0 for no children, 1 for one child, 2 for two children and 3+ for three or more
children.

The following code leads to the visualisation of the data shown in Figure 2:

library(mlmRev) ; data(Contraception) ; library(lattice)

colourVec <- c("forestgreen","sienna")

ContraceptionHiLivCh <- Contraception[Contraception$livch=="3+",]

figRaw <- xyplot(jitter((as.numeric(use)-1),factor=0.5)

~ age|district,groups=district,data=ContraceptionHiLivCh,

layout=c(6,10),

xlab=list(label="age (years) centred about average",cex=1.35),

ylab=list(label="indicator of contraception use (jittered)",cex=1.35),

scales=list(cex=1.25),strip=FALSE,as.table=TRUE,

key=list(title="subset of data for women with three or more living children",

columns=2, points=list(pch=rep(1,2),col=colourVec[1:2]),

text=list(c("rural district","urban district"),cex=1.55)),

panel=function(x,y,subscripts,groups)

{

panel.grid()

colourInd <- 3 - as.numeric(ContraceptionHiLivCh$urban[subscripts[1]])

panel.superpose(x,y,subscripts,groups,col=colourVec[colourInd],

pch=1,cex=0.5)

})

print(figRaw)

In Figure 2 each panel corresponds to a different district and each point is the age/use
pair for a woman in that district. The use data are re-coded as 0 if the woman is a non-user of
contraception and 1 if the woman uses contraception. Jittering has been added to these data
to aid visualisation. Lastly, Figure 2 is restricted to the subset for which livch=3+, namely
women with three or more living children.

5



age (years) centred about average

in
di

ca
to

r 
of

 c
on

tr
ac

ep
tio

n 
us

e 
(ji

tte
re

d)

0.0
0.6

●● ●
● ● ●●

●●

● ●● ●

●

●

●

●
● ●

●
●

● ●●●
●●● ●

● ● ●●

●

●
●

●

●
●

●

●

●● ●●

●● ●●●
●●●

−10 0 5 15

● ●

● ●

●
●

●

−10 0 5 15
● ● ●●
●

● ●
●

● ●
●

●

● ●●
●

●
● ●

● ●

●

●

●

●

●●

●
●
● ●

●

● ●

−10 0 5 15
●

●

●

●●●
●

●

●●

●

● ●

●

●●
● ●● ●

●
●

●
●

●

●

●●

●

●●

●

●
● ●

●● ●

●

●●●

●
●

●

●

●

●

●
●

●

●

●
● ●

● ●
● ●

● ●
●

● 0.0
0.6

●

●●
●

●

●●● ●●
●

●

●

●

●

●

●●

0.0
0.6

●

●

● ●

●
●

●●

●
●

●

●

●●

●

● ●●
●

●
●

●

●

●● ●

●

●

●

● ●
●

●

●

● ●●●
● ●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

● ●
●●

●
●

●

●

●

● ●
●

●

●●

●
●

●●

●

●

● ●

●

●●● ● ● ● ●

● ●●

● ●

●
●

● ●

●

● ●
●

●●

●
●●

●
●

●● ●
● ●●●● ●●

●

●

●

● 0.0
0.6

●
●●

●
●

●

●

0.0
0.6

● ●

●

● ● ●

●
●
●●

● ●●●

●

●
●●

●

●
●

●●

●

● ●

●

●

●● ● ● ●

●

●● ●
●

●
●

●

●

●

● ●
● ● ●

●●
●● ●

●

●

●

●

●
●

●

●

●●

●●

●

●

● ●
●

●
● ●● ●

●
●

●
●

●

●

●

●● ●
● ●●

●
●

●
●

●

● ●

● ●●● ●

●● ●

●

● ●

●●

●●●●

● ● ●
●

●

●
●

●

●
●

●

●●

●

●

●

●● ● ●●
●

●● ●●●

● ● ●
●●

● ●● ●●
●

●

●

● ●●
● ●

●

●

●
●● ●

●●●● ●

●

●

●

●

● 0.0
0.6

● ●●

●

●●

0.0
0.6

●

●●

● ●
●

●

●

● ●
●

●
● ●●● ● ●

●

●

● ●●
●

●

●

●

●
●

●●●

●
●

●

●●

●●

●

●

●
●

●

● ● ●
●

●●●

●●

●

●

● ● ●

● ●

●●
● ●

●●

●
●

●

●

●

● ●● ●
●

●●
●

● ●

●●
● ●

●

●
●

●●
●

●

● ● ●●

● ●

●

●

●

● ●

●
●

●
● ●

●

●
●

●
●

●
●

●

●●

●

● ●

●

●

●
●

●

● 0.0
0.6

●

●

●

●
●

●

●
●

●

●

0.0
0.6

●

●
● ●●

●
●

● ●
●

●

●

●

●

●●
●

●●●
●

●

●

●

● ● ●

●

●
●

●

●●●
●

● ●

● ●

● ●●
●

●

●

●●●

●

●
●

●

●

●

●

●
●

●
●

−10 0 5 15

●
●

●●●

●●

●
●●

●

●

●
●

●

●
●●

●
●

●

●

●

● ●
● ●

−10 0 5 15

●

●
●

●

●
●

●

●
●

●
●

●●●

−10 0 5 15

●

●●

●●
●●

●

● 0.0
0.6

●

●

●
●

●
●●

●

●
●

● ● ●●●●

subset of data for women with three or more living children
● ●rural district urban district

Figure 2: Visualisation of the Contraception data frame for the livch=3+ subset, correspond-
ing to women with three or more living children. Each panel is for a different district with
colour-coding of the points according to whether the district is rural or urban. The indicators
of contraception use values have been jittered to aid visualisation.

4.1 Random Intercepts Model

Our first analysis of these data using glmmEP() involves a probit mixed model with the response
variable being the indicator of contraception use and predictors urban versus rural status, age
and number of living children. The district is the grouping variable. The following code sets
up the input data for fitting via glmmEP() (since the current release of glmmEP() does not
support factor-type variables we are required to use indicator variable coding for categorical
variables):

y <- as.numeric(as.character(Contraception$use)=="Y")

age <- Contraception$age

isUrban <- as.numeric(as.character(Contraception$urban)=="Y")

livchFactor <- Contraception$livch

livChEq1 <- as.numeric(as.character(Contraception$livch)=="1")

livChEq2 <- as.numeric(as.character(Contraception$livch)=="2")

livChGe3 <- as.numeric(as.character(Contraception$livch)=="3+")

Xfixed <- cbind(1,isUrban,age,livChEq1,livChEq2,livChGe3)

colnames(Xfixed) <- c("intercept","isUrban","age",

"livChEq1","livChEq2","livChGe3")

idNum <- as.numeric(as.character(Contraception$district))
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Xrandom <- as.matrix(rep(1,length(y)))

colnames(Xrandom) <- "intercept"

Fitting is then achieved via:

fitContracRanInt <- glmmEP(y,Xfixed,Xrandom,idNum)

and the inferential summary of the model parameters is produced from the command:

summary(fitContracRanInt)

resulting in the output:

95% C.I. low estimate 95% C.I. upp
intercept -1.18917625 -1.02853837 -0.867900420
isUrban 0.30660335 0.44911632 0.591629316
age -0.02568918 -0.01628592 -0.006882654
livChEq1 0.48452054 0.67017817 0.855835821
livChEq2 0.62921680 0.83480529 1.040393799
livChGe3 0.60436497 0.81479526 1.025225571
sigma 0.20312843 0.28250518 0.392900097

We see from this output that each of the fixed parameters are statistically significant. For ex-
ample, the coefficient of the indicator of the district being urban has an estimate of 0.4491163
and a corresponding 95% confidence interval of (0.3066, 0.5916). The random intercept stan-
dard deviation corresponds to the row labelled sigma and its estimate is 0.2825 with a 95%
confidence interval of (0.2031, 0.3929), indicating a significant amount of within-district corre-
lation.

The following code:

uHat <- as.numeric(fitContracRanInt$randomEffects)

hist(uHat,xlab="random intercepts predicted values",probability=TRUE,

col="dodgerblue",breaks=15,main="",cex.lab=1.5)

abline(v=0,col="slateblue",lwd=2)

leads to the histogram shown in Figure 3. This is a visual summary of the expectation
propagation-approximate best predictions of the random intercepts.
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Figure 3: Histogram of the expectation propagation-approximate best predictions of the random
intercepts, which are part of the fitContracRanInt fit object.
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Lastly, we embellish Figure 2 by computing the estimated probability of contraception use
curves. The code for this is:

betaHat <- fitContracRanInt$parameters[,2]

ng <- 101 ; ageg <- seq(min(age),max(age),length=ng)

probRanIntg <- vector("list",60)

idNumOrig <- idNum

idNum <- match(idNumOrig,unique(idNumOrig))

distSttInds <- c(1,(1:length(y))[diff(idNum)==1] + 1)

for (i in 1:60)

probRanIntg[[i]] <- pnorm(betaHat[1]+uHat[i]+betaHat[2]*ageg

+ betaHat[3]*isUrban[distSttInds[i]]+betaHat[6])

figFitRanInt <- xyplot(jitter((as.numeric(use)-1),factor=0.5)

~ age|district,groups=district,data=ContraceptionHiLivCh,

layout=c(6,10),

xlab=list(label="age (years) centred about average",cex=1.35),

ylab=list(label="indicator of contraception use (jittered)",cex=1.35),

scales=list(cex=1.25),strip=FALSE,as.table=TRUE,

key=list(title="subset of data for women with three or more living children",

columns=2,

points=list(pch=rep(1,2),col=colourVec[1:2],lwd=rep(2,2)),

text=list(c("rural district","urban district"),cex=1.55)),

panel=function(x,y,subscripts,groups)

{

iDistrict <- panel.number() ; panel.grid()

colourInd <- 3 - as.numeric(ContraceptionHiLivCh$urban[subscripts[1]])

panel.superpose(x,y,subscripts,groups,

col=colourVec[colourInd],pch=1,cex=0.5)

panel.xyplot(ageg,probRanIntg[[iDistrict]],col="blue",lwd=2,type="l")

})

Note that the calculation of the ordinate vectors in probRanIntg is simplified by the fact
that Figure 2 is restricted to the subset of women with three or more living children. The
plot that results from this code is shown in Figure 4. It shows that the estimated probability
of contraception use increases steeply with age about 5 years either side of the average age.
Differences between the districts and those with rural and urban status is difficult to discern
visually. However the confidence intervals given earlier in this subsection show that there are,
indeed, significant differences.

4.2 Random Intercepts and Slopes Model

We now extend the model to allow the slope of the urban district indicator to be random. The
only change in the design matrix set-up is that Xrandom is now:

Xrandom <- cbind(1,isUrban)

colnames(Xrandom) <- c("intercept","isUrban")

With this new version of Xrandom we call glmmEP() as before using:

fitContracRanIntAndSlp <- glmmEP(y,Xfixed,Xrandom,idNum)

The inferential summary from the command:

summary(fitContracRanIntAndSlp)

resulting in the output:

95% C.I. low estimate 95% C.I. upp
intercept -1.2184525 -1.04179990 -0.865142851
isUrban 0.2956345 0.50025501 0.704877047
age -0.0258905 -0.01634954 -0.006808459
livChEq1 0.4932917 0.68153267 0.869774289
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Figure 4: The data from Figure 2 with the addition of the estimated probability of contraception
use curves, according to the expectation propagation random intercepts model fit within the
fitContracRanInt fit object.

livChEq2 0.6222459 0.83057389 1.038903736
livChGe3 0.6101980 0.82444298 1.038693956
sigma1 0.2748112 0.37854225 0.521427402
sigma2 0.3095888 0.49648685 0.796214721
rho12 -0.9367186 -0.79843366 -0.444619228

Note that random slope coefficient has estimate

σ̂2 = 0.4965 with corresponding 95% confidence interval (0.3108, 0.7931).

The tight confidence interval well away from zero verifies significant variability in the random
slopes associated with the indicator of a district being urban.

The scatterplot shown in Figure 5 is a visual summary of the expectation propagation-
approximate best predictions of the bivariate random intercepts and slopes, and is produced
from the following code:

uHat <- fitContracRanIntAndSlp$randomEffects

plot(uHat[,1],uHat[,2],col="dodgerblue",lwd=2,xlab="random intercepts predicted values",

ylab="random slopes predicted values",bty="l",cex.lab=1.5,cex.axis=1.5)

abline(v=0,col="slateblue",lwd=2) ; abline(h=0,col="slateblue",lwd=2)
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Figure 5: Scatterplot of the expectation propagation-approximate best predictions of the random
slopes and corresponding random intercepts, which are part of the fitContracRanIntAndSlp
fit object.

Our final plot is the analogue of Figure 4 for the random intercepts and slopes model,
which is shown in Figure 6.

Figure 6 is produced using:

betaHat <- fitContracRanIntAndSlp$parameters[,2]

probRanIntAndSlpg <- vector("list",60)

for (i in 1:60)

probRanIntAndSlpg[[i]] <- pnorm(betaHat[1]+uHat[i,1]+betaHat[2]*ageg

+(betaHat[3]+uHat[i,2])*isUrban[distSttInds[i]]

+betaHat[6])

figFitRanIntAndSlp <- xyplot(jitter((as.numeric(use)-1),factor=0.5)

~ age|district,groups=district,data=ContraceptionHiLivCh,

layout=c(6,10),

xlab=list(label="age (years) centred about average",cex=1.35),

ylab=list(label="indicator of contraception use (jittered)",cex=1.35),

scales=list(cex=1.25),strip=FALSE,as.table=TRUE,

key=list(title="subset of data for women with three or more living children",

columns=2,

points=list(pch=rep(1,2),col=colourVec[1:2],lwd=rep(2,2)),

text=list(c("rural district","urban district"),cex=1.55)),

panel=function(x,y,subscripts,groups)

{

iDistrict <- panel.number() ; panel.grid()

colourInd <- 3 - as.numeric(ContraceptionHiLivCh$urban[subscripts[1]])

panel.superpose(x,y,subscripts,groups,

col=colourVec[colourInd],pch=1,cex=0.5)

panel.xyplot(ageg,probRanIntAndSlpg[[iDistrict]],col="blue",lwd=2,type="l")

})
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Figure 6: The data from Figure 2 with the addition of the estimated probability of contraception
use curves, according to the expectation propagation random intercepts and slopes model fit
within the fitContracRanIntAndSlp fit object.
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