CausalKinetiX: Learning Stable Structures in Kinetic Systems

Implementation of 'CausalKinetiX', a framework for learning stable structures in kinetic systems. Apart from the main functions CausalKinetiX() and CausalKinetiX.modelranking() it includes functions to generate data from three simulations models, which can be used to benchmark structure learning methods for linear ordinary differential equation models. A detailed description of the underlying methods as well as details on the examples are given in Pfister, Bauer and Peters (2018) <arXiv:1810.11776>.

Version: 0.2.1
Imports: fda, cvTools, quadprog, randomForest, deSolve, stats, graphics, pspline, utils, glmnet, sundialr (≥ 0.1.3)
Published: 2019-06-20
Author: Niklas Pfister [aut, cre], Stefan Bauer [aut], Jonas Peters [aut]
Maintainer: Niklas Pfister <niklas.pfister at>
License: GPL-3
NeedsCompilation: no
CRAN checks: CausalKinetiX results


Reference manual: CausalKinetiX.pdf


Package source: CausalKinetiX_0.2.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): CausalKinetiX_0.2.1.tgz, r-oldrel (arm64): CausalKinetiX_0.2.1.tgz, r-release (x86_64): CausalKinetiX_0.2.1.tgz, r-oldrel (x86_64): CausalKinetiX_0.2.1.tgz
Old sources: CausalKinetiX archive


Please use the canonical form to link to this page.