ConsRank: Compute the Median Ranking(s) According to the Kemeny's Axiomatic Approach

Compute the median ranking according to the Kemeny's axiomatic approach. Rankings can or cannot contain ties, rankings can be both complete or incomplete. The package contains both branch-and-bound algorithms and heuristic solutions recently proposed. The package also provide some useful utilities for deal with preference rankings. Essential references: Emond, E.J., and Mason, D.W. (2002) <doi:10.1002/mcda.313>; D'Ambrosio, A., Amodio, S., and Iorio, C. (2015) <doi:10.1285/i20705948v8n2p198>; Amodio, S., D'Ambrosio, A., and Siciliano R. (2016) <doi:10.1016/j.ejor.2015.08.048>; D'Ambrosio, A., Mazzeo, G., Iorio, C., and Siciliano, R. (2017) <doi:10.1016/j.cor.2017.01.017>.

Version: 2.0.0
Depends: proxy, rgl, gtools
Published: 2017-04-09
Author: Antonio D'Ambrosio, Sonia Amodio, Giulio Mazzeo
Maintainer: Antonio D'Ambrosio <antdambr at unina.it>
License: GPL-3
URL: https://www.r-project.org/
NeedsCompilation: no
CRAN checks: ConsRank results

Downloads:

Reference manual: ConsRank.pdf
Package source: ConsRank_2.0.0.tar.gz
Windows binaries: r-devel: ConsRank_2.0.0.zip, r-release: ConsRank_2.0.0.zip, r-oldrel: ConsRank_2.0.0.zip
OS X El Capitan binaries: r-release: ConsRank_2.0.0.tgz
OS X Mavericks binaries: r-oldrel: ConsRank_2.0.0.tgz
Old sources: ConsRank archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ConsRank to link to this page.