CovSelHigh: Model-Free Covariate Selection in High Dimensions

Model-free selection of covariates in high dimensions under unconfoundedness for situations where the parameter of interest is an average causal effect. This package is based on model-free backward elimination algorithms proposed in de Luna, Waernbaum and Richardson (2011) <doi:10.1093/biomet/asr041> and VanderWeele and Shpitser (2011) <doi:10.1111/j.1541-0420.2011.01619.x>. Confounder selection can be performed via either Markov/Bayesian networks, random forests or LASSO.

Version: 1.0.0
Depends: R (≥ 2.14.0)
Imports: bnlearn, MASS, bindata, Matching, doRNG, glmnet, randomForest, foreach, xtable, doParallel
Published: 2016-04-26
Author: Jenny Häggström
Maintainer: Jenny Häggström <jenny.haggstrom at>
License: GPL-3
NeedsCompilation: no
CRAN checks: CovSelHigh results


Reference manual: CovSelHigh.pdf
Package source: CovSelHigh_1.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: CovSelHigh_1.0.0.tgz
OS X Mavericks binaries: r-oldrel: CovSelHigh_1.0.0.tgz


Please use the canonical form to link to this page.