
Package ‘DBI’
February 9, 2024

Title R Database Interface

Version 1.2.2

Date 2024-02-09

Description A database interface definition for communication between R
and relational database management systems. All classes in this
package are virtual and need to be extended by the various R/DBMS
implementations.

License LGPL (>= 2.1)

URL https://dbi.r-dbi.org, https://github.com/r-dbi/DBI

BugReports https://github.com/r-dbi/DBI/issues

Depends methods,
R (>= 3.0.0)

Suggests arrow,
blob,
covr,
DBItest,
dbplyr,
downlit,
dplyr,
glue,
hms,
knitr,
magrittr,
nanoarrow (>= 0.3.0.1),
RMariaDB,
rmarkdown,
rprojroot,
RSQLite (>= 1.1-2),
testthat (>= 3.0.0),
vctrs,
xml2

VignetteBuilder knitr

Config/autostyle/scope line_breaks

Config/autostyle/strict false

Config/Needs/check r-dbi/DBItest

Encoding UTF-8

1

https://dbi.r-dbi.org
https://github.com/r-dbi/DBI
https://github.com/r-dbi/DBI/issues

2 R topics documented:

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.0.9000

Config/Needs/website r-dbi/DBItest,
r-dbi/dbitemplate,
adbi,
AzureKusto,
bigrquery,
DatabaseConnector,
dittodb,
duckdb,
implyr,
lazysf,
odbc,
pool,
RAthena,
IMSMWU/RClickhouse,
RH2,
RJDBC,
RMariaDB,
RMySQL,
RPostgres,
RPostgreSQL,
RPresto,
RSQLite,
sergeant,
sparklyr,
withr

Config/testthat/edition 3

R topics documented:
DBI-package . 3
.SQL92Keywords . 5
dbAppendTable . 5
dbAppendTableArrow . 7
dbBegin . 9
dbBind . 11
dbCanConnect . 16
dbClearResult . 17
dbColumnInfo . 19
dbConnect . 20
dbCreateTable . 22
dbCreateTableArrow . 24
dbDataType . 25
dbDisconnect . 27
dbExecute . 28
dbExistsTable . 30
dbFetch . 32
dbFetchArrow . 34
dbFetchArrowChunk . 36
dbGetConnectArgs . 37

DBI-package 3

dbGetInfo . 38
dbGetQuery . 39
dbGetQueryArrow . 42
dbGetRowCount . 44
dbGetRowsAffected . 45
dbGetStatement . 46
dbHasCompleted . 47
DBIConnection-class . 49
DBIConnector-class . 50
DBIDriver-class . 50
DBIObject-class . 51
DBIResult-class . 52
DBIResultArrow-class . 52
dbIsReadOnly . 53
dbIsValid . 53
dbListFields . 55
dbListObjects . 56
dbListTables . 57
dbQuoteIdentifier . 58
dbQuoteLiteral . 60
dbQuoteString . 61
dbReadTable . 62
dbReadTableArrow . 64
dbRemoveTable . 66
dbSendQuery . 67
dbSendQueryArrow . 70
dbSendStatement . 73
dbUnquoteIdentifier . 76
dbWithTransaction . 77
dbWriteTable . 79
dbWriteTableArrow . 82
Id-class . 84
rownames . 85
SQL . 86
sqlAppendTable . 87
sqlCreateTable . 88
sqlData . 89
sqlInterpolate . 90

Index 92

DBI-package DBI: R Database Interface

Description

DBI defines an interface for communication between R and relational database management sys-
tems. All classes in this package are virtual and need to be extended by the various R/DBMS
implementations (so-called DBI backends).

4 DBI-package

Definition

A DBI backend is an R package which imports the DBI and methods packages. For better or worse,
the names of many existing backends start with ‘R’, e.g., RSQLite, RMySQL, RSQLServer; it is
up to the backend author to adopt this convention or not.

DBI classes and methods

A backend defines three classes, which are subclasses of DBIDriver, DBIConnection, and DBIRe-
sult. The backend provides implementation for all methods of these base classes that are defined
but not implemented by DBI. All methods defined in DBI are reexported (so that the package can
be used without having to attach DBI), and have an ellipsis ... in their formals for extensibility.

Construction of the DBIDriver object

The backend must support creation of an instance of its DBIDriver subclass with a constructor
function. By default, its name is the package name without the leading ‘R’ (if it exists), e.g.,
SQLite for the RSQLite package. However, backend authors may choose a different name. The
constructor must be exported, and it must be a function that is callable without arguments. DBI
recommends to define a constructor with an empty argument list.

Author(s)

Maintainer: Kirill Müller <kirill@cynkra.com> (ORCID)

Authors:

• R Special Interest Group on Databases (R-SIG-DB)

• Hadley Wickham

Other contributors:

• R Consortium [funder]

See Also

Important generics: dbConnect(), dbGetQuery(), dbReadTable(), dbWriteTable(), dbDisconnect()

Formal specification (currently work in progress and incomplete): vignette("spec", package =
"DBI")

Examples

RSQLite::SQLite()

https://orcid.org/0000-0002-1416-3412

.SQL92Keywords 5

.SQL92Keywords Keywords according to the SQL-92 standard

Description

A character vector of SQL-92 keywords, uppercase.

Usage

.SQL92Keywords

Format

An object of class character of length 220.

Examples

"SELECT" %in% .SQL92Keywords

dbAppendTable Insert rows into a table

Description

The dbAppendTable() method assumes that the table has been created beforehand, e.g. with
dbCreateTable(). The default implementation calls sqlAppendTableTemplate() and then dbExecute()
with the param argument. Use dbAppendTableArrow() to append data from an Arrow stream.

Usage

dbAppendTable(conn, name, value, ..., row.names = NULL)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

value A data.frame (or coercible to data.frame).

... Other parameters passed on to methods.

row.names Must be NULL.

6 dbAppendTable

Details

Backends compliant to ANSI SQL 99 which use ? as a placeholder for prepared queries don’t need
to override it. Backends with a different SQL syntax which use ? as a placeholder for prepared
queries can override sqlAppendTable(). Other backends (with different placeholders or with en-
tirely different ways to create tables) need to override the dbAppendTable() method.

The row.names argument is not supported by this method. Process the values with sqlRownamesToColumn()
before calling this method.

Value

dbAppendTable() returns a scalar numeric.

Failure modes

If the table does not exist, or the new data in values is not a data frame or has different column
names, an error is raised; the remote table remains unchanged.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.
Invalid values for the row.names argument (non-scalars, unsupported data types, NA) also raise an
error.

Passing a value argument different to NULL to the row.names argument (in particular TRUE, NA, and
a string) raises an error.

Specification

SQL keywords can be used freely in table names, column names, and data. Quotes, commas,
spaces, and other special characters such as newlines and tabs, can also be used in the data, and, if
the database supports non-syntactic identifiers, also for table names and column names.

The following data types must be supported at least, and be read identically with dbReadTable():

• integer

• numeric (the behavior for Inf and NaN is not specified)

• logical

• NA as NULL

• 64-bit values (using "bigint" as field type); the result can be

– converted to a numeric, which may lose precision,
– converted a character vector, which gives the full decimal representation
– written to another table and read again unchanged

• character (in both UTF-8 and native encodings), supporting empty strings (before and after
non-empty strings)

• factor (returned as character, with a warning)

• list of raw (if supported by the database)

• objects of type blob::blob (if supported by the database)

• date (if supported by the database; returned as Date) also for dates prior to 1970 or 1900 or
after 2038

• time (if supported by the database; returned as objects that inherit from difftime)

dbAppendTableArrow 7

• timestamp (if supported by the database; returned as POSIXct respecting the time zone but not
necessarily preserving the input time zone), also for timestamps prior to 1970 or 1900 or after
2038 respecting the time zone but not necessarily preserving the input time zone)

Mixing column types in the same table is supported.

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbAppendTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done to support databases
that allow non-syntactic names for their objects:

The row.names argument must be NULL, the default value. Row names are ignored.

The value argument must be a data frame with a subset of the columns of the existing table. The
order of the columns does not matter.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTableArrow(), dbCreateTable(),
dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(), dbGetException(),
dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbCreateTable(con, "iris", iris)
dbAppendTable(con, "iris", iris)
dbReadTable(con, "iris")
dbDisconnect(con)

dbAppendTableArrow Insert rows into a table from an Arrow stream

Description

[Experimental]

The dbAppendTableArrow() method assumes that the table has been created beforehand, e.g. with
dbCreateTableArrow(). The default implementation calls dbAppendTable() for each chunk of
the stream. Use dbAppendTable() to append data from a data.frame.

Usage

dbAppendTableArrow(conn, name, value, ...)

8 dbAppendTableArrow

Arguments

conn A DBIConnection object, as returned by dbConnect().

name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

value An object coercible with nanoarrow::as_nanoarrow_array_stream().

... Other parameters passed on to methods.

Value

dbAppendTableArrow() returns a scalar numeric.

Failure modes

If the table does not exist, or the new data in values is not a data frame or has different column
names, an error is raised; the remote table remains unchanged.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.

Specification

SQL keywords can be used freely in table names, column names, and data. Quotes, commas,
spaces, and other special characters such as newlines and tabs, can also be used in the data, and, if
the database supports non-syntactic identifiers, also for table names and column names.

The following data types must be supported at least, and be read identically with dbReadTable():

• integer

• numeric (the behavior for Inf and NaN is not specified)

• logical

• NA as NULL

• 64-bit values (using "bigint" as field type); the result can be

– converted to a numeric, which may lose precision,
– converted a character vector, which gives the full decimal representation
– written to another table and read again unchanged

• character (in both UTF-8 and native encodings), supporting empty strings (before and after
non-empty strings)

• factor (possibly returned as character)

• objects of type blob::blob (if supported by the database)

• date (if supported by the database; returned as Date) also for dates prior to 1970 or 1900 or
after 2038

• time (if supported by the database; returned as objects that inherit from difftime)

• timestamp (if supported by the database; returned as POSIXct respecting the time zone but not
necessarily preserving the input time zone), also for timestamps prior to 1970 or 1900 or after
2038 respecting the time zone but not necessarily preserving the input time zone)

dbBegin 9

Mixing column types in the same table is supported.

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbAppendTableArrow() will do the quoting, perhaps by
calling dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done to support databases
that allow non-syntactic names for their objects:

The value argument must be a data frame with a subset of the columns of the existing table. The
order of the columns does not matter.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbCreateTable(),
dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(), dbGetException(),
dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbCreateTableArrow(con, "iris", iris[0,])
dbAppendTableArrow(con, "iris", iris[1:5,])
dbReadTable(con, "iris")
dbDisconnect(con)

dbBegin Begin/commit/rollback SQL transactions

Description

A transaction encapsulates several SQL statements in an atomic unit. It is initiated with dbBegin()
and either made persistent with dbCommit() or undone with dbRollback(). In any case, the DBMS
guarantees that either all or none of the statements have a permanent effect. This helps ensuring
consistency of write operations to multiple tables.

Usage

dbBegin(conn, ...)

dbCommit(conn, ...)

dbRollback(conn, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

... Other parameters passed on to methods.

10 dbBegin

Details

Not all database engines implement transaction management, in which case these methods should
not be implemented for the specific DBIConnection subclass.

Value

dbBegin(), dbCommit() and dbRollback() return TRUE, invisibly.

Failure modes

The implementations are expected to raise an error in case of failure, but this is not tested. In
any way, all generics throw an error with a closed or invalid connection. In addition, a call to
dbCommit() or dbRollback() without a prior call to dbBegin() raises an error. Nested transactions
are not supported by DBI, an attempt to call dbBegin() twice yields an error.

Specification

Actual support for transactions may vary between backends. A transaction is initiated by a call to
dbBegin() and committed by a call to dbCommit(). Data written in a transaction must persist after
the transaction is committed. For example, a record that is missing when the transaction is started
but is created during the transaction must exist both during and after the transaction, and also in a
new connection.

A transaction can also be aborted with dbRollback(). All data written in such a transaction must
be removed after the transaction is rolled back. For example, a record that is missing when the
transaction is started but is created during the transaction must not exist anymore after the rollback.

Disconnection from a connection with an open transaction effectively rolls back the transaction. All
data written in such a transaction must be removed after the transaction is rolled back.

The behavior is not specified if other arguments are passed to these functions. In particular, RSQLite
issues named transactions with support for nesting if the name argument is set.

The transaction isolation level is not specified by DBI.

See Also

Self-contained transactions: dbWithTransaction()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "cash", data.frame(amount = 100))
dbWriteTable(con, "account", data.frame(amount = 2000))

All operations are carried out as logical unit:
dbBegin(con)
withdrawal <- 300
dbExecute(con, "UPDATE cash SET amount = amount + ?", list(withdrawal))
dbExecute(con, "UPDATE account SET amount = amount - ?", list(withdrawal))
dbCommit(con)

dbReadTable(con, "cash")
dbReadTable(con, "account")

Rolling back after detecting negative value on account:

dbBind 11

dbBegin(con)
withdrawal <- 5000
dbExecute(con, "UPDATE cash SET amount = amount + ?", list(withdrawal))
dbExecute(con, "UPDATE account SET amount = amount - ?", list(withdrawal))
if (dbReadTable(con, "account")$amount >= 0) {

dbCommit(con)
} else {

dbRollback(con)
}

dbReadTable(con, "cash")
dbReadTable(con, "account")

dbDisconnect(con)

dbBind Bind values to a parameterized/prepared statement

Description

For parametrized or prepared statements, the dbSendQuery(), dbSendQueryArrow(), and dbSendStatement()
functions can be called with statements that contain placeholders for values. The dbBind() and
dbBindArrow() functions bind these placeholders to actual values, and are intended to be called on
the result set before calling dbFetch() or dbFetchArrow(). The values are passed to dbBind() as
lists or data frames, and to dbBindArrow() as a stream created by nanoarrow::as_nanoarrow_array_stream().

[Experimental]

dbBindArrow() is experimental, as are the other *Arrow functions. dbSendQuery() is compatible
with dbBindArrow(), and dbSendQueryArrow() is compatible with dbBind().

Usage

dbBind(res, params, ...)

dbBindArrow(res, params, ...)

Arguments

res An object inheriting from DBIResult.

params For dbBind(), a list of values, named or unnamed, or a data frame, with one el-
ement/column per query parameter. For dbBindArrow(), values as a nanoarrow
stream, with one column per query parameter.

... Other arguments passed on to methods.

Details

DBI supports parametrized (or prepared) queries and statements via the dbBind() and dbBindArrow()
generics. Parametrized queries are different from normal queries in that they allow an arbitrary
number of placeholders, which are later substituted by actual values. Parametrized queries (and
statements) serve two purposes:

12 dbBind

• The same query can be executed more than once with different values. The DBMS may cache
intermediate information for the query, such as the execution plan, and execute it faster.

• Separation of query syntax and parameters protects against SQL injection.

The placeholder format is currently not specified by DBI; in the future, a uniform placeholder syntax
may be supported. Consult the backend documentation for the supported formats. For automated
testing, backend authors specify the placeholder syntax with the placeholder_pattern tweak.
Known examples are:

• ? (positional matching in order of appearance) in RMariaDB and RSQLite
• $1 (positional matching by index) in RPostgres and RSQLite
• :name and $name (named matching) in RSQLite

Value

dbBind() returns the result set, invisibly, for queries issued by dbSendQuery() or dbSendQueryArrow()
and also for data manipulation statements issued by dbSendStatement().

The data retrieval flow

This section gives a complete overview over the flow for the execution of queries that return tabular
data as data frames.

Most of this flow, except repeated calling of dbBind() or dbBindArrow(), is implemented by
dbGetQuery(), which should be sufficient unless you want to access the results in a paged way or
you have a parameterized query that you want to reuse. This flow requires an active connection
established by dbConnect(). See also vignette("dbi-advanced") for a walkthrough.

1. Use dbSendQuery() to create a result set object of class DBIResult.

2. Optionally, bind query parameters with dbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbColumnInfo() to retrieve the structure of the result set without retrieving
actual data.

4. Use dbFetch() to get the entire result set, a page of results, or the remaining rows. Fetching
zero rows is also possible to retrieeve the structure of the result set as a data frame. This step
can be called multiple times. Only forward paging is supported, you need to cache previous
pages if you need to navigate backwards.

5. Use dbHasCompleted() to tell when you’re done. This method returns TRUE if no more rows
are available for fetching.

6. Repeat the last four steps as necessary.

7. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

The data retrieval flow for Arrow streams

This section gives a complete overview over the flow for the execution of queries that return tabular
data as an Arrow stream.

Most of this flow, except repeated calling of dbBindArrow() or dbBind(), is implemented by
dbGetQueryArrow(), which should be sufficient unless you have a parameterized query that you
want to reuse. This flow requires an active connection established by dbConnect(). See also
vignette("dbi-advanced") for a walkthrough.

dbBind 13

1. Use dbSendQueryArrow() to create a result set object of class DBIResultArrow.

2. Optionally, bind query parameters with dbBindArrow() or dbBind(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Use dbFetchArrow() to get a data stream.

4. Repeat the last two steps as necessary.

5. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

The command execution flow

This section gives a complete overview over the flow for the execution of SQL statements that
have side effects such as stored procedures, inserting or deleting data, or setting database or con-
nection options. Most of this flow, except repeated calling of dbBindArrow(), is implemented
by dbExecute(), which should be sufficient for non-parameterized queries. This flow requires an
active connection established by dbConnect(). See also vignette("dbi-advanced") for a walk-
through.

1. Use dbSendStatement() to create a result set object of class DBIResult. For some queries
you need to pass immediate = TRUE.

2. Optionally, bind query parameters withdbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbGetRowsAffected() to retrieve the number of rows affected by the query.

4. Repeat the last two steps as necessary.

5. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

Calling dbBind() for a query without parameters raises an error.

Binding too many or not enough values, or parameters with wrong names or unequal length, also
raises an error. If the placeholders in the query are named, all parameter values must have names
(which must not be empty or NA), and vice versa, otherwise an error is raised. The behavior for
mixing placeholders of different types (in particular mixing positional and named placeholders) is
not specified.

Calling dbBind() on a result set already cleared by dbClearResult() also raises an error.

Specification

DBI clients execute parametrized statements as follows:

1. Call dbSendQuery(), dbSendQueryArrow() or dbSendStatement() with a query or state-
ment that contains placeholders, store the returned DBIResult object in a variable. Mixing
placeholders (in particular, named and unnamed ones) is not recommended. It is good prac-
tice to register a call to dbClearResult() via on.exit() right after calling dbSendQuery()
or dbSendStatement() (see the last enumeration item). Until dbBind() or dbBindArrow()
have been called, the returned result set object has the following behavior:

• dbFetch() raises an error (for dbSendQuery() and dbSendQueryArrow())
• dbGetRowCount() returns zero (for dbSendQuery() and dbSendQueryArrow())

14 dbBind

• dbGetRowsAffected() returns an integer NA (for dbSendStatement())
• dbIsValid() returns TRUE
• dbHasCompleted() returns FALSE

2. Call dbBind() or dbBindArrow():

• For dbBind(), the params argument must be a list where all elements have the same
lengths and contain values supported by the backend. A data.frame is internally stored as
such a list.

• For dbBindArrow(), the params argument must be a nanoarrow array stream, with one
column per query parameter.

3. Retrieve the data or the number of affected rows from the DBIResult object.

• For queries issued by dbSendQuery() or dbSendQueryArrow(), call dbFetch().
• For statements issued by dbSendStatements(), call dbGetRowsAffected(). (Execution

begins immediately after the dbBind() call, the statement is processed entirely before the
function returns.)

4. Repeat 2. and 3. as necessary.

5. Close the result set via dbClearResult().

The elements of the params argument do not need to be scalars, vectors of arbitrary length (in-
cluding length 0) are supported. For queries, calling dbFetch() binding such parameters returns
concatenated results, equivalent to binding and fetching for each set of values and connecting via
rbind(). For data manipulation statements, dbGetRowsAffected() returns the total number of
rows affected if binding non-scalar parameters. dbBind() also accepts repeated calls on the same
result set for both queries and data manipulation statements, even if no results are fetched between
calls to dbBind(), for both queries and data manipulation statements.

If the placeholders in the query are named, their order in the params argument is not important.

At least the following data types are accepted on input (including NA):

• integer

• numeric

• logical for Boolean values

• character (also with special characters such as spaces, newlines, quotes, and backslashes)

• factor (bound as character, with warning)

• Date (also when stored internally as integer)

• POSIXct timestamps

• POSIXlt timestamps

• difftime values (also with units other than seconds and with the value stored as integer)

• lists of raw for blobs (with NULL entries for SQL NULL values)

• objects of type blob::blob

See Also

Other DBIResult generics: DBIResult-class, dbClearResult(), dbColumnInfo(), dbFetch(),
dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbClearResult(), dbFetchArrow(),
dbFetchArrowChunk(), dbHasCompleted(), dbIsValid()

dbBind 15

Other data retrieval generics: dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery(), dbGetQueryArrow(), dbHasCompleted(), dbSendQuery(), dbSendQueryArrow()

Other command execution generics: dbClearResult(), dbExecute(), dbGetRowsAffected(),
dbSendStatement()

Examples

Data frame flow:
con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "iris", iris)

Using the same query for different values
iris_result <- dbSendQuery(con, "SELECT * FROM iris WHERE [Petal.Width] > ?")
dbBind(iris_result, list(2.3))
dbFetch(iris_result)
dbBind(iris_result, list(3))
dbFetch(iris_result)
dbClearResult(iris_result)

Executing the same statement with different values at once
iris_result <- dbSendStatement(con, "DELETE FROM iris WHERE [Species] = $species")
dbBind(iris_result, list(species = c("setosa", "versicolor", "unknown")))
dbGetRowsAffected(iris_result)
dbClearResult(iris_result)

nrow(dbReadTable(con, "iris"))

dbDisconnect(con)

Arrow flow:
con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "iris", iris)

Using the same query for different values
iris_result <- dbSendQueryArrow(con, "SELECT * FROM iris WHERE [Petal.Width] > ?")
dbBindArrow(

iris_result,
nanoarrow::as_nanoarrow_array_stream(data.frame(2.3, fix.empty.names = FALSE))

)
as.data.frame(dbFetchArrow(iris_result))
dbBindArrow(

iris_result,
nanoarrow::as_nanoarrow_array_stream(data.frame(3, fix.empty.names = FALSE))

)
as.data.frame(dbFetchArrow(iris_result))
dbClearResult(iris_result)

Executing the same statement with different values at once
iris_result <- dbSendStatement(con, "DELETE FROM iris WHERE [Species] = $species")
dbBindArrow(iris_result, nanoarrow::as_nanoarrow_array_stream(data.frame(

species = c("setosa", "versicolor", "unknown")
)))
dbGetRowsAffected(iris_result)

16 dbCanConnect

dbClearResult(iris_result)

nrow(dbReadTable(con, "iris"))

dbDisconnect(con)

dbCanConnect Check if a connection to a DBMS can be established

Description

Like dbConnect(), but only checks validity without actually returning a connection object. The
default implementation opens a connection and disconnects on success, but individual backends
might implement a lighter-weight check.

Usage

dbCanConnect(drv, ...)

Arguments

drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).

... authentication arguments needed by the DBMS instance; these typically in-
clude user, password, host, port, dbname, etc. For details see the appropriate
DBIDriver.

Value

A scalar logical. If FALSE, the "reason" attribute indicates a reason for failure.

See Also

Other DBIDriver generics: DBIDriver-class, dbConnect(), dbDataType(), dbDriver(), dbGetInfo(),
dbIsReadOnly(), dbIsValid(), dbListConnections()

Examples

SQLite only needs a path to the database. (Here, ":memory:" is a special
path that creates an in-memory database.) Other database drivers
will require more details (like user, password, host, port, etc.)
dbCanConnect(RSQLite::SQLite(), ":memory:")

dbClearResult 17

dbClearResult Clear a result set

Description

Frees all resources (local and remote) associated with a result set. This step is mandatory for all
objects obtained by calling dbSendQuery() or dbSendStatement().

Usage

dbClearResult(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbClearResult() returns TRUE, invisibly, for result sets obtained from dbSendQuery(), dbSendStatement(),
or dbSendQueryArrow(),

The data retrieval flow

This section gives a complete overview over the flow for the execution of queries that return tabular
data as data frames.

Most of this flow, except repeated calling of dbBind() or dbBindArrow(), is implemented by
dbGetQuery(), which should be sufficient unless you want to access the results in a paged way or
you have a parameterized query that you want to reuse. This flow requires an active connection
established by dbConnect(). See also vignette("dbi-advanced") for a walkthrough.

1. Use dbSendQuery() to create a result set object of class DBIResult.

2. Optionally, bind query parameters with dbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbColumnInfo() to retrieve the structure of the result set without retrieving
actual data.

4. Use dbFetch() to get the entire result set, a page of results, or the remaining rows. Fetching
zero rows is also possible to retrieeve the structure of the result set as a data frame. This step
can be called multiple times. Only forward paging is supported, you need to cache previous
pages if you need to navigate backwards.

5. Use dbHasCompleted() to tell when you’re done. This method returns TRUE if no more rows
are available for fetching.

6. Repeat the last four steps as necessary.

7. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

18 dbClearResult

The command execution flow

This section gives a complete overview over the flow for the execution of SQL statements that
have side effects such as stored procedures, inserting or deleting data, or setting database or con-
nection options. Most of this flow, except repeated calling of dbBindArrow(), is implemented
by dbExecute(), which should be sufficient for non-parameterized queries. This flow requires an
active connection established by dbConnect(). See also vignette("dbi-advanced") for a walk-
through.

1. Use dbSendStatement() to create a result set object of class DBIResult. For some queries
you need to pass immediate = TRUE.

2. Optionally, bind query parameters withdbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbGetRowsAffected() to retrieve the number of rows affected by the query.

4. Repeat the last two steps as necessary.

5. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

An attempt to close an already closed result set issues a warning for dbSendQuery(), dbSendStatement(),
and dbSendQueryArrow(),

Specification

dbClearResult() frees all resources associated with retrieving the result of a query or update
operation. The DBI backend can expect a call to dbClearResult() for each dbSendQuery() or
dbSendStatement() call.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbColumnInfo(), dbFetch(), dbGetInfo(),
dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbFetchArrow(), dbFetchArrowChunk(),
dbHasCompleted(), dbIsValid()

Other data retrieval generics: dbBind(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery(), dbGetQueryArrow(), dbHasCompleted(), dbSendQuery(), dbSendQueryArrow()

Other command execution generics: dbBind(), dbExecute(), dbGetRowsAffected(), dbSendStatement()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

rs <- dbSendQuery(con, "SELECT 1")
print(dbFetch(rs))

dbClearResult(rs)
dbDisconnect(con)

dbColumnInfo 19

dbColumnInfo Information about result types

Description

Produces a data.frame that describes the output of a query. The data.frame should have as many
rows as there are output fields in the result set, and each column in the data.frame describes an
aspect of the result set field (field name, type, etc.)

Usage

dbColumnInfo(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbColumnInfo() returns a data frame with at least two columns "name" and "type" (in that order)
(and optional columns that start with a dot). The "name" and "type" columns contain the names
and types of the R columns of the data frame that is returned from dbFetch(). The "type" column
is of type character and only for information. Do not compute on the "type" column, instead use
dbFetch(res, n = 0) to create a zero-row data frame initialized with the correct data types.

The data retrieval flow

This section gives a complete overview over the flow for the execution of queries that return tabular
data as data frames.

Most of this flow, except repeated calling of dbBind() or dbBindArrow(), is implemented by
dbGetQuery(), which should be sufficient unless you want to access the results in a paged way or
you have a parameterized query that you want to reuse. This flow requires an active connection
established by dbConnect(). See also vignette("dbi-advanced") for a walkthrough.

1. Use dbSendQuery() to create a result set object of class DBIResult.

2. Optionally, bind query parameters with dbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbColumnInfo() to retrieve the structure of the result set without retrieving
actual data.

4. Use dbFetch() to get the entire result set, a page of results, or the remaining rows. Fetching
zero rows is also possible to retrieeve the structure of the result set as a data frame. This step
can be called multiple times. Only forward paging is supported, you need to cache previous
pages if you need to navigate backwards.

5. Use dbHasCompleted() to tell when you’re done. This method returns TRUE if no more rows
are available for fetching.

6. Repeat the last four steps as necessary.

7. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

20 dbConnect

Failure modes

An attempt to query columns for a closed result set raises an error.

Specification

A column named row_names is treated like any other column.

The column names are always consistent with the data returned by dbFetch().

If the query returns unnamed columns, non-empty and non-NA names are assigned.

Column names that correspond to SQL or R keywords are left unchanged.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbFetch(), dbGetInfo(),
dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

rs <- dbSendQuery(con, "SELECT 1 AS a, 2 AS b")
dbColumnInfo(rs)
dbFetch(rs)

dbClearResult(rs)
dbDisconnect(con)

dbConnect Create a connection to a DBMS

Description

Connect to a DBMS going through the appropriate authentication procedure. Some implementa-
tions may allow you to have multiple connections open, so you may invoke this function repeatedly
assigning its output to different objects. The authentication mechanism is left unspecified, so check
the documentation of individual drivers for details. Use dbCanConnect() to check if a connection
can be established.

Usage

dbConnect(drv, ...)

Arguments

drv an object that inherits from DBIDriver, or an existing DBIConnection object (in
order to clone an existing connection).

... authentication arguments needed by the DBMS instance; these typically in-
clude user, password, host, port, dbname, etc. For details see the appropriate
DBIDriver.

dbConnect 21

Value

dbConnect() returns an S4 object that inherits from DBIConnection. This object is used to com-
municate with the database engine.

A format() method is defined for the connection object. It returns a string that consists of a single
line of text.

Specification

DBI recommends using the following argument names for authentication parameters, with NULL
default:

• user for the user name (default: current user)
• password for the password
• host for the host name (default: local connection)
• port for the port number (default: local connection)
• dbname for the name of the database on the host, or the database file name

The defaults should provide reasonable behavior, in particular a local connection for host = NULL.
For some DBMS (e.g., PostgreSQL), this is different to a TCP/IP connection to localhost.

In addition, DBI supports the bigint argument that governs how 64-bit integer data is returned.
The following values are supported:

• "integer": always return as integer, silently overflow
• "numeric": always return as numeric, silently round
• "character": always return the decimal representation as character
• "integer64": return as a data type that can be coerced using as.integer() (with warning

on overflow), as.numeric() and as.character()

See Also

dbDisconnect() to disconnect from a database.

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbDataType(), dbDriver(),
dbGetInfo(), dbIsReadOnly(), dbIsValid(), dbListConnections()

Other DBIConnector generics: DBIConnector-class, dbDataType(), dbGetConnectArgs(), dbIsReadOnly()

Examples

SQLite only needs a path to the database. (Here, ":memory:" is a special
path that creates an in-memory database.) Other database drivers
will require more details (like user, password, host, port, etc.)
con <- dbConnect(RSQLite::SQLite(), ":memory:")
con

dbListTables(con)

dbDisconnect(con)

Bad, for subtle reasons:
This code fails when RSQLite isn't loaded yet,
because dbConnect() doesn't know yet about RSQLite.
dbListTables(con <- dbConnect(RSQLite::SQLite(), ":memory:"))

22 dbCreateTable

dbCreateTable Create a table in the database

Description

The default dbCreateTable() method calls sqlCreateTable() and dbExecute(). Use dbCreateTableArrow()
to create a table from an Arrow schema.

Usage

dbCreateTable(conn, name, fields, ..., row.names = NULL, temporary = FALSE)

Arguments

conn A DBIConnection object, as returned by dbConnect().
name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

fields Either a character vector or a data frame.
A named character vector: Names are column names, values are types. Names
are escaped with dbQuoteIdentifier(). Field types are unescaped.
A data frame: field types are generated using dbDataType().

... Other parameters passed on to methods.
row.names Must be NULL.
temporary If TRUE, will generate a temporary table.

Details

Backends compliant to ANSI SQL 99 don’t need to override it. Backends with a different SQL
syntax can override sqlCreateTable(), backends with entirely different ways to create tables need
to override this method.

The row.names argument is not supported by this method. Process the values with sqlRownamesToColumn()
before calling this method.

The argument order is different from the sqlCreateTable() method, the latter will be adapted in
a later release of DBI.

Value

dbCreateTable() returns TRUE, invisibly.

Failure modes

If the table exists, an error is raised; the remote table remains unchanged.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.
Invalid values for the row.names and temporary arguments (non-scalars, unsupported data types,
NA, incompatible values, duplicate names) also raise an error.

dbCreateTable 23

Additional arguments

The following arguments are not part of the dbCreateTable() generic (to improve compatibility
across backends) but are part of the DBI specification:

• temporary (default: FALSE)

They must be provided as named arguments. See the "Specification" and "Value" sections for details
on their usage.

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbCreateTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

The value argument can be:

• a data frame,

• a named list of SQL types

If the temporary argument is TRUE, the table is not available in a second connection and is gone
after reconnecting. Not all backends support this argument. A regular, non-temporary table is
visible in a second connection, in a pre-existing connection, and after reconnecting to the database.

SQL keywords can be used freely in table names, column names, and data. Quotes, commas, and
spaces can also be used for table names and column names, if the database supports non-syntactic
identifiers.

The row.names argument must be missing or NULL, the default value. All other values for the
row.names argument (in particular TRUE, NA, and a string) raise an error.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(), dbGetException(),
dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbCreateTable(con, "iris", iris)
dbReadTable(con, "iris")
dbDisconnect(con)

24 dbCreateTableArrow

dbCreateTableArrow Create a table in the database based on an Arrow object

Description

[Experimental]
The default dbCreateTableArrow() method determines the R data types of the Arrow schema as-
sociated with the Arrow object, and calls dbCreateTable(). Backends that implement dbAppendTableArrow()
should typically also implement this generic. Use dbCreateTable() to create a table from the col-
umn types as defined in a data frame.

Usage

dbCreateTableArrow(conn, name, value, ..., temporary = FALSE)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

value An object for which a schema can be determined via nanoarrow::infer_nanoarrow_schema().

... Other parameters passed on to methods.

temporary If TRUE, will generate a temporary table.

Value

dbCreateTableArrow() returns TRUE, invisibly.

Failure modes

If the table exists, an error is raised; the remote table remains unchanged.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.
Invalid values for the temporary argument (non-scalars, unsupported data types, NA, incompatible
values, duplicate names) also raise an error.

Additional arguments

The following arguments are not part of the dbCreateTableArrow() generic (to improve compati-
bility across backends) but are part of the DBI specification:

• temporary (default: FALSE)

They must be provided as named arguments. See the "Specification" and "Value" sections for details
on their usage.

dbDataType 25

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbCreateTableArrow() will do the quoting, perhaps by
calling dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

The value argument can be:

• a data frame,

• a nanoarrow array

• a nanoarrow array stream (which will still contain the data after the call)

• a nanoarrow schema

If the temporary argument is TRUE, the table is not available in a second connection and is gone
after reconnecting. Not all backends support this argument. A regular, non-temporary table is
visible in a second connection, in a pre-existing connection, and after reconnecting to the database.

SQL keywords can be used freely in table names, column names, and data. Quotes, commas, and
spaces can also be used for table names and column names, if the database supports non-syntactic
identifiers.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(), dbGetException(),
dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")
ptype <- data.frame(a = numeric())
dbCreateTableArrow(con, "df", nanoarrow::infer_nanoarrow_schema(ptype))
dbReadTable(con, "df")
dbDisconnect(con)

dbDataType Determine the SQL data type of an object

Description

Returns an SQL string that describes the SQL data type to be used for an object. The default
implementation of this generic determines the SQL type of an R object according to the SQL 92
specification, which may serve as a starting point for driver implementations. DBI also provides an
implementation for data.frame which will return a character vector giving the type for each column
in the dataframe.

26 dbDataType

Usage

dbDataType(dbObj, obj, ...)

Arguments

dbObj A object inheriting from DBIDriver or DBIConnection

obj An R object whose SQL type we want to determine.

... Other arguments passed on to methods.

Details

The data types supported by databases are different than the data types in R, but the mapping
between the primitive types is straightforward:

• Any of the many fixed and varying length character types are mapped to character vectors

• Fixed-precision (non-IEEE) numbers are mapped into either numeric or integer vectors.

Notice that many DBMS do not follow IEEE arithmetic, so there are potential problems with un-
der/overflows and loss of precision.

Value

dbDataType() returns the SQL type that corresponds to the obj argument as a non-empty character
string. For data frames, a character vector with one element per column is returned.

Failure modes

An error is raised for invalid values for the obj argument such as a NULL value.

Specification

The backend can override the dbDataType() generic for its driver class.

This generic expects an arbitrary object as second argument. To query the values returned by the
default implementation, run example(dbDataType, package = "DBI"). If the backend needs to
override this generic, it must accept all basic R data types as its second argument, namely logical,
integer, numeric, character, dates (see Dates), date-time (see DateTimeClasses), and difftime. If
the database supports blobs, this method also must accept lists of raw vectors, and blob::blob ob-
jects. As-is objects (i.e., wrapped by I()) must be supported and return the same results as their
unwrapped counterparts. The SQL data type for factor and ordered is the same as for character. The
behavior for other object types is not specified.

All data types returned by dbDataType() are usable in an SQL statement of the form "CREATE
TABLE test (a ...)".

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDriver(), dbGetInfo(),
dbIsReadOnly(), dbIsValid(), dbListConnections()

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),

dbDisconnect 27

dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(),
dbSendStatement(), dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other DBIConnector generics: DBIConnector-class, dbConnect(), dbGetConnectArgs(), dbIsReadOnly()

Examples

dbDataType(ANSI(), 1:5)
dbDataType(ANSI(), 1)
dbDataType(ANSI(), TRUE)
dbDataType(ANSI(), Sys.Date())
dbDataType(ANSI(), Sys.time())
dbDataType(ANSI(), Sys.time() - as.POSIXct(Sys.Date()))
dbDataType(ANSI(), c("x", "abc"))
dbDataType(ANSI(), list(raw(10), raw(20)))
dbDataType(ANSI(), I(3))

dbDataType(ANSI(), iris)

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbDataType(con, 1:5)
dbDataType(con, 1)
dbDataType(con, TRUE)
dbDataType(con, Sys.Date())
dbDataType(con, Sys.time())
dbDataType(con, Sys.time() - as.POSIXct(Sys.Date()))
dbDataType(con, c("x", "abc"))
dbDataType(con, list(raw(10), raw(20)))
dbDataType(con, I(3))

dbDataType(con, iris)

dbDisconnect(con)

dbDisconnect Disconnect (close) a connection

Description

This closes the connection, discards all pending work, and frees resources (e.g., memory, sockets).

Usage

dbDisconnect(conn, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

... Other parameters passed on to methods.

28 dbExecute

Value

dbDisconnect() returns TRUE, invisibly.

Failure modes

A warning is issued on garbage collection when a connection has been released without calling
dbDisconnect(), but this cannot be tested automatically. A warning is issued immediately when
calling dbDisconnect() on an already disconnected or invalid connection.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(),
dbSendStatement(), dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbDisconnect(con)

dbExecute Change database state

Description

Executes a statement and returns the number of rows affected. dbExecute() comes with a de-
fault implementation (which should work with most backends) that calls dbSendStatement(), then
dbGetRowsAffected(), ensuring that the result is always freed by dbClearResult(). For passing
query parameters, see dbBind(), in particular the "The command execution flow" section.

Usage

dbExecute(conn, statement, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

You can also use dbExecute() to call a stored procedure that performs data manipulation or other
actions that do not return a result set. To execute a stored procedure that returns a result set, or a
data manipulation query that also returns a result set such as INSERT INTO ... RETURNING ...,
use dbGetQuery() instead.

dbExecute 29

Value

dbExecute() always returns a scalar numeric that specifies the number of rows affected by the
statement.

Implementation notes

Subclasses should override this method only if they provide some sort of performance optimization.

Failure modes

An error is raised when issuing a statement over a closed or invalid connection, if the syntax of the
statement is invalid, or if the statement is not a non-NA string.

Additional arguments

The following arguments are not part of the dbExecute() generic (to improve compatibility across
backends) but are part of the DBI specification:

• params (default: NULL)

• immediate (default: NULL)

They must be provided as named arguments. See the "Specification" sections for details on their
usage.

Specification

The param argument allows passing query parameters, see dbBind() for details.

Specification for the immediate argument

The immediate argument supports distinguishing between "direct" and "prepared" APIs offered
by many database drivers. Passing immediate = TRUE leads to immediate execution of the query
or statement, via the "direct" API (if supported by the driver). The default NULL means that the
backend should choose whatever API makes the most sense for the database, and (if relevant) tries
the other API if the first attempt fails. A successful second attempt should result in a message that
suggests passing the correct immediate argument. Examples for possible behaviors:

1. DBI backend defaults to immediate = TRUE internally

(a) A query without parameters is passed: query is executed
(b) A query with parameters is passed:

i. params not given: rejected immediately by the database because of a syntax error in
the query, the backend tries immediate = FALSE (and gives a message)

ii. params given: query is executed using immediate = FALSE

2. DBI backend defaults to immediate = FALSE internally

(a) A query without parameters is passed:
i. simple query: query is executed

ii. "special" query (such as setting a config options): fails, the backend tries immediate
= TRUE (and gives a message)

(b) A query with parameters is passed:
i. params not given: waiting for parameters via dbBind()

ii. params given: query is executed

30 dbExistsTable

See Also

For queries: dbSendQuery() and dbGetQuery().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(),
dbSendStatement(), dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other command execution generics: dbBind(), dbClearResult(), dbGetRowsAffected(), dbSendStatement()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "cars", head(cars, 3))
dbReadTable(con, "cars") # there are 3 rows
dbExecute(

con,
"INSERT INTO cars (speed, dist) VALUES (1, 1), (2, 2), (3, 3)"

)
dbReadTable(con, "cars") # there are now 6 rows

Pass values using the param argument:
dbExecute(

con,
"INSERT INTO cars (speed, dist) VALUES (?, ?)",
params = list(4:7, 5:8)

)
dbReadTable(con, "cars") # there are now 10 rows

dbDisconnect(con)

dbExistsTable Does a table exist?

Description

Returns if a table given by name exists in the database.

Usage

dbExistsTable(conn, name, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

dbExistsTable 31

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

... Other parameters passed on to methods.

Value

dbExistsTable() returns a logical scalar, TRUE if the table or view specified by the name argument
exists, FALSE otherwise.

This includes temporary tables if supported by the database.

Failure modes

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbExistsTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

For all tables listed by dbListTables(), dbExistsTable() returns TRUE.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbGetException(),
dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbExistsTable(con, "iris")
dbWriteTable(con, "iris", iris)
dbExistsTable(con, "iris")

dbDisconnect(con)

32 dbFetch

dbFetch Fetch records from a previously executed query

Description

Fetch the next n elements (rows) from the result set and return them as a data.frame.

Usage

dbFetch(res, n = -1, ...)

fetch(res, n = -1, ...)

Arguments

res An object inheriting from DBIResult, created by dbSendQuery().

n maximum number of records to retrieve per fetch. Use n = -1 or n = Inf to
retrieve all pending records. Some implementations may recognize other special
values.

... Other arguments passed on to methods.

Details

fetch() is provided for compatibility with older DBI clients - for all new code you are strongly
encouraged to use dbFetch(). The default implementation for dbFetch() calls fetch() so that it
is compatible with existing code. Modern backends should implement for dbFetch() only.

Value

dbFetch() always returns a data.frame with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows.
Passing n = NA is supported and returns an arbitrary number of rows (at least one) as specified by
the driver, but at most the remaining rows in the result set.

The data retrieval flow

This section gives a complete overview over the flow for the execution of queries that return tabular
data as data frames.

Most of this flow, except repeated calling of dbBind() or dbBindArrow(), is implemented by
dbGetQuery(), which should be sufficient unless you want to access the results in a paged way or
you have a parameterized query that you want to reuse. This flow requires an active connection
established by dbConnect(). See also vignette("dbi-advanced") for a walkthrough.

1. Use dbSendQuery() to create a result set object of class DBIResult.

2. Optionally, bind query parameters with dbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbColumnInfo() to retrieve the structure of the result set without retrieving
actual data.

dbFetch 33

4. Use dbFetch() to get the entire result set, a page of results, or the remaining rows. Fetching
zero rows is also possible to retrieeve the structure of the result set as a data frame. This step
can be called multiple times. Only forward paging is supported, you need to cache previous
pages if you need to navigate backwards.

5. Use dbHasCompleted() to tell when you’re done. This method returns TRUE if no more rows
are available for fetching.

6. Repeat the last four steps as necessary.

7. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

An attempt to fetch from a closed result set raises an error. If the n argument is not an atomic whole
number greater or equal to -1 or Inf, an error is raised, but a subsequent call to dbFetch() with
proper n argument succeeds.

Calling dbFetch() on a result set from a data manipulation query created by dbSendStatement()
can be fetched and return an empty data frame, with a warning.

Specification

Fetching multi-row queries with one or more columns by default returns the entire result. Multi-row
queries can also be fetched progressively by passing a whole number (integer or numeric) as the n
argument. A value of Inf for the n argument is supported and also returns the full result. If more
rows than available are fetched, the result is returned in full without warning. If fewer rows than
requested are returned, further fetches will return a data frame with zero rows. If zero rows are
fetched, the columns of the data frame are still fully typed. Fetching fewer rows than available is
permitted, no warning is issued when clearing the result set.

A column named row_names is treated like any other column.

The column types of the returned data frame depend on the data returned:

• integer (or coercible to an integer) for integer values between -2^31 and 2^31 - 1, with NA for
SQL NULL values

• numeric for numbers with a fractional component, with NA for SQL NULL values

• logical for Boolean values (some backends may return an integer); with NA for SQL NULL
values

• character for text, with NA for SQL NULL values

• lists of raw for blobs with NULL entries for SQL NULL values

• coercible using as.Date() for dates, with NA for SQL NULL values (also applies to the return
value of the SQL function current_date)

• coercible using hms::as_hms() for times, with NA for SQL NULL values (also applies to the
return value of the SQL function current_time)

• coercible using as.POSIXct() for timestamps, with NA for SQL NULL values (also applies to
the return value of the SQL function current_timestamp)

If dates and timestamps are supported by the backend, the following R types are used:

• Date for dates (also applies to the return value of the SQL function current_date)

• POSIXct for timestamps (also applies to the return value of the SQL function current_timestamp)

34 dbFetchArrow

R has no built-in type with lossless support for the full range of 64-bit or larger integers. If 64-bit
integers are returned from a query, the following rules apply:

• Values are returned in a container with support for the full range of valid 64-bit values (such
as the integer64 class of the bit64 package)

• Coercion to numeric always returns a number that is as close as possible to the true value

• Loss of precision when converting to numeric gives a warning

• Conversion to character always returns a lossless decimal representation of the data

See Also

Close the result set with dbClearResult() as soon as you finish retrieving the records you want.

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery(), dbGetQueryArrow(), dbHasCompleted(), dbSendQuery(), dbSendQueryArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)

Fetch all results
rs <- dbSendQuery(con, "SELECT * FROM mtcars WHERE cyl = 4")
dbFetch(rs)
dbClearResult(rs)

Fetch in chunks
rs <- dbSendQuery(con, "SELECT * FROM mtcars")
while (!dbHasCompleted(rs)) {

chunk <- dbFetch(rs, 10)
print(nrow(chunk))

}

dbClearResult(rs)
dbDisconnect(con)

dbFetchArrow Fetch records from a previously executed query as an Arrow object

Description

[Experimental]
Fetch the result set and return it as an Arrow object. Use dbFetchArrowChunk() to fetch results in
chunks.

Usage

dbFetchArrow(res, ...)

dbFetchArrow 35

Arguments

res An object inheriting from DBIResultArrow, created by dbSendQueryArrow().

... Other arguments passed on to methods.

Value

dbFetchArrow() always returns an object coercible to a data.frame with as many rows as records
were fetched and as many columns as fields in the result set, even if the result is a single value or
has one or zero rows.

The data retrieval flow for Arrow streams

This section gives a complete overview over the flow for the execution of queries that return tabular
data as an Arrow stream.

Most of this flow, except repeated calling of dbBindArrow() or dbBind(), is implemented by
dbGetQueryArrow(), which should be sufficient unless you have a parameterized query that you
want to reuse. This flow requires an active connection established by dbConnect(). See also
vignette("dbi-advanced") for a walkthrough.

1. Use dbSendQueryArrow() to create a result set object of class DBIResultArrow.

2. Optionally, bind query parameters with dbBindArrow() or dbBind(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Use dbFetchArrow() to get a data stream.

4. Repeat the last two steps as necessary.

5. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

An attempt to fetch from a closed result set raises an error.

Specification

Fetching multi-row queries with one or more columns by default returns the entire result. The object
returned by dbFetchArrow() can also be passed to nanoarrow::as_nanoarrow_array_stream()
to create a nanoarrow array stream object that can be used to read the result set in batches. The
chunk size is implementation-specific.

See Also

Close the result set with dbClearResult() as soon as you finish retrieving the records you want.

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbClearResult(), dbFetchArrowChunk(),
dbHasCompleted(), dbIsValid()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrowChunk(),
dbGetQuery(), dbGetQueryArrow(), dbHasCompleted(), dbSendQuery(), dbSendQueryArrow()

36 dbFetchArrowChunk

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)

Fetch all results
rs <- dbSendQueryArrow(con, "SELECT * FROM mtcars WHERE cyl = 4")
as.data.frame(dbFetchArrow(rs))
dbClearResult(rs)

dbDisconnect(con)

dbFetchArrowChunk Fetch the next batch of records from a previously executed query as an
Arrow object

Description

[Experimental]
Fetch the next chunk of the result set and return it as an Arrow object. The chunk size is implementation-
specific. Use dbFetchArrow() to fetch all results.

Usage

dbFetchArrowChunk(res, ...)

Arguments

res An object inheriting from DBIResultArrow, created by dbSendQueryArrow().

... Other arguments passed on to methods.

Value

dbFetchArrowChunk() always returns an object coercible to a data.frame with as many rows as
records were fetched and as many columns as fields in the result set, even if the result is a single
value or has one or zero rows.

The data retrieval flow for Arrow streams

This section gives a complete overview over the flow for the execution of queries that return tabular
data as an Arrow stream.

Most of this flow, except repeated calling of dbBindArrow() or dbBind(), is implemented by
dbGetQueryArrow(), which should be sufficient unless you have a parameterized query that you
want to reuse. This flow requires an active connection established by dbConnect(). See also
vignette("dbi-advanced") for a walkthrough.

1. Use dbSendQueryArrow() to create a result set object of class DBIResultArrow.

2. Optionally, bind query parameters with dbBindArrow() or dbBind(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Use dbFetchArrow() to get a data stream.

dbGetConnectArgs 37

4. Repeat the last two steps as necessary.

5. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

An attempt to fetch from a closed result set raises an error.

Specification

Fetching multi-row queries with one or more columns returns the next chunk. The size of the chunk
is implementation-specific. The object returned by dbFetchArrowChunk() can also be passed
to nanoarrow::as_nanoarrow_array() to create a nanoarrow array object. The chunk size is
implementation-specific.

See Also

Close the result set with dbClearResult() as soon as you finish retrieving the records you want.

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbClearResult(), dbFetchArrow(),
dbHasCompleted(), dbIsValid()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbGetQuery(),
dbGetQueryArrow(), dbHasCompleted(), dbSendQuery(), dbSendQueryArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)

Fetch all results
rs <- dbSendQueryArrow(con, "SELECT * FROM mtcars WHERE cyl = 4")
dbHasCompleted(rs)
as.data.frame(dbFetchArrowChunk(rs))
dbHasCompleted(rs)
as.data.frame(dbFetchArrowChunk(rs))
dbClearResult(rs)

dbDisconnect(con)

dbGetConnectArgs Get connection arguments

Description

Returns the arguments stored in a DBIConnector object for inspection, optionally evaluating them.
This function is called by dbConnect() and usually does not need to be called directly.

Usage

dbGetConnectArgs(drv, eval = TRUE, ...)

38 dbGetInfo

Arguments

drv A object inheriting from DBIConnector.

eval Set to FALSE to return the functions that generate the argument instead of evalu-
ating them.

... Other arguments passed on to methods. Not otherwise used.

See Also

Other DBIConnector generics: DBIConnector-class, dbConnect(), dbDataType(), dbIsReadOnly()

Examples

cnr <- new("DBIConnector",
.drv = RSQLite::SQLite(),
.conn_args = list(dbname = ":memory:", password = function() "supersecret")

)
dbGetConnectArgs(cnr)
dbGetConnectArgs(cnr, eval = FALSE)

dbGetInfo Get DBMS metadata

Description

Retrieves information on objects of class DBIDriver, DBIConnection or DBIResult.

Usage

dbGetInfo(dbObj, ...)

Arguments

dbObj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult

... Other arguments to methods.

Value

For objects of class DBIDriver, dbGetInfo() returns a named list that contains at least the following
components:

• driver.version: the package version of the DBI backend,

• client.version: the version of the DBMS client library.

For objects of class DBIConnection, dbGetInfo() returns a named list that contains at least the
following components:

• db.version: version of the database server,

• dbname: database name,

• username: username to connect to the database,

dbGetQuery 39

• host: hostname of the database server,

• port: port on the database server. It must not contain a password component. Components
that are not applicable should be set to NA.

For objects of class DBIResult, dbGetInfo() returns a named list that contains at least the following
components:

• statatment: the statement used with dbSendQuery() or dbExecute(), as returned by dbGetStatement(),

• row.count: the number of rows fetched so far (for queries), as returned by dbGetRowCount(),

• rows.affected: the number of rows affected (for statements), as returned by dbGetRowsAffected()

• has.completed: a logical that indicates if the query or statement has completed, as returned
by dbHasCompleted().

Implementation notes

The default implementation for DBIResult objects constructs such a list from the return values of
the corresponding methods, dbGetStatement(), dbGetRowCount(), dbGetRowsAffected(), and
dbHasCompleted().

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDataType(),
dbDriver(), dbIsReadOnly(), dbIsValid(), dbListConnections()

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbIsValid(), dbQuoteLiteral(), dbQuoteString()

dbGetQuery Retrieve results from a query

Description

Returns the result of a query as a data frame. dbGetQuery() comes with a default implementation
(which should work with most backends) that calls dbSendQuery(), then dbFetch(), ensuring
that the result is always freed by dbClearResult(). For retrieving chunked/paged results or for
passing query parameters, see dbSendQuery(), in particular the "The data retrieval flow" section.
For retrieving results as an Arrow object, see dbGetQueryArrow().

Usage

dbGetQuery(conn, statement, ...)

40 dbGetQuery

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

This method is for SELECT queries only (incl. other SQL statements that return a SELECT-alike re-
sult, e.g., execution of a stored procedure or data manipulation queries like INSERT INTO ... RETURNING ...).
To execute a stored procedure that does not return a result set, use dbExecute().

Some backends may support data manipulation statements through this method for compatibility
reasons. However, callers are strongly advised to use dbExecute() for data manipulation state-
ments.

Value

dbGetQuery() always returns a data.frame, with as many rows as records were fetched and as many
columns as fields in the result set, even if the result is a single value or has one or zero rows.

Implementation notes

Subclasses should override this method only if they provide some sort of performance optimization.

Failure modes

An error is raised when issuing a query over a closed or invalid connection, if the syntax of the
query is invalid, or if the query is not a non-NA string. If the n argument is not an atomic whole
number greater or equal to -1 or Inf, an error is raised, but a subsequent call to dbGetQuery() with
proper n argument succeeds.

Additional arguments

The following arguments are not part of the dbGetQuery() generic (to improve compatibility across
backends) but are part of the DBI specification:

• n (default: -1)

• params (default: NULL)

• immediate (default: NULL)

They must be provided as named arguments. See the "Specification" and "Value" sections for details
on their usage.

Specification

A column named row_names is treated like any other column.

The n argument specifies the number of rows to be fetched. If omitted, fetching multi-row queries
with one or more columns returns the entire result. A value of Inf for the n argument is supported
and also returns the full result. If more rows than available are fetched (by passing a too large value
for n), the result is returned in full without warning. If zero rows are requested, the columns of
the data frame are still fully typed. Fetching fewer rows than available is permitted, no warning is
issued.

The param argument allows passing query parameters, see dbBind() for details.

dbGetQuery 41

Specification for the immediate argument

The immediate argument supports distinguishing between "direct" and "prepared" APIs offered
by many database drivers. Passing immediate = TRUE leads to immediate execution of the query
or statement, via the "direct" API (if supported by the driver). The default NULL means that the
backend should choose whatever API makes the most sense for the database, and (if relevant) tries
the other API if the first attempt fails. A successful second attempt should result in a message that
suggests passing the correct immediate argument. Examples for possible behaviors:

1. DBI backend defaults to immediate = TRUE internally

(a) A query without parameters is passed: query is executed
(b) A query with parameters is passed:

i. params not given: rejected immediately by the database because of a syntax error in
the query, the backend tries immediate = FALSE (and gives a message)

ii. params given: query is executed using immediate = FALSE

2. DBI backend defaults to immediate = FALSE internally

(a) A query without parameters is passed:
i. simple query: query is executed

ii. "special" query (such as setting a config options): fails, the backend tries immediate
= TRUE (and gives a message)

(b) A query with parameters is passed:
i. params not given: waiting for parameters via dbBind()

ii. params given: query is executed

See Also

For updates: dbSendStatement() and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQueryArrow(), dbHasCompleted(), dbSendQuery(), dbSendQueryArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
dbGetQuery(con, "SELECT * FROM mtcars")
dbGetQuery(con, "SELECT * FROM mtcars", n = 6)

Pass values using the param argument:
(This query runs eight times, once for each different
parameter. The resulting rows are combined into a single
data frame.)
dbGetQuery(

con,
"SELECT COUNT(*) FROM mtcars WHERE cyl = ?",
params = list(1:8)

42 dbGetQueryArrow

)

dbDisconnect(con)

dbGetQueryArrow Retrieve results from a query as an Arrow object

Description

[Experimental]
Returns the result of a query as an Arrow object. dbGetQueryArrow() comes with a default
implementation (which should work with most backends) that calls dbSendQueryArrow(), then
dbFetchArrow(), ensuring that the result is always freed by dbClearResult(). For passing query
parameters, see dbSendQueryArrow(), in particular the "The data retrieval flow for Arrow streams"
section. For retrieving results as a data frame, see dbGetQuery().

Usage

dbGetQueryArrow(conn, statement, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

This method is for SELECT queries only (incl. other SQL statements that return a SELECT-alike re-
sult, e.g., execution of a stored procedure or data manipulation queries like INSERT INTO ... RETURNING ...).
To execute a stored procedure that does not return a result set, use dbExecute().

Some backends may support data manipulation statements through this method. However, callers
are strongly advised to use dbExecute() for data manipulation statements.

Value

dbGetQueryArrow() always returns an object coercible to a data.frame, with as many rows as
records were fetched and as many columns as fields in the result set, even if the result is a single
value or has one or zero rows.

Implementation notes

Subclasses should override this method only if they provide some sort of performance optimization.

Failure modes

An error is raised when issuing a query over a closed or invalid connection, if the syntax of the
query is invalid, or if the query is not a non-NA string. The object returned by dbGetQueryArrow()
can also be passed to nanoarrow::as_nanoarrow_array_stream() to create a nanoarrow array
stream object that can be used to read the result set in batches. The chunk size is implementation-
specific.

dbGetQueryArrow 43

Additional arguments

The following arguments are not part of the dbGetQueryArrow() generic (to improve compatibility
across backends) but are part of the DBI specification:

• params (default: NULL)

• immediate (default: NULL)

They must be provided as named arguments. See the "Specification" and "Value" sections for details
on their usage.

The param argument allows passing query parameters, see dbBind() for details.

Specification for the immediate argument

The immediate argument supports distinguishing between "direct" and "prepared" APIs offered
by many database drivers. Passing immediate = TRUE leads to immediate execution of the query
or statement, via the "direct" API (if supported by the driver). The default NULL means that the
backend should choose whatever API makes the most sense for the database, and (if relevant) tries
the other API if the first attempt fails. A successful second attempt should result in a message that
suggests passing the correct immediate argument. Examples for possible behaviors:

1. DBI backend defaults to immediate = TRUE internally

(a) A query without parameters is passed: query is executed
(b) A query with parameters is passed:

i. params not given: rejected immediately by the database because of a syntax error in
the query, the backend tries immediate = FALSE (and gives a message)

ii. params given: query is executed using immediate = FALSE

2. DBI backend defaults to immediate = FALSE internally

(a) A query without parameters is passed:
i. simple query: query is executed

ii. "special" query (such as setting a config options): fails, the backend tries immediate
= TRUE (and gives a message)

(b) A query with parameters is passed:
i. params not given: waiting for parameters via dbBind()

ii. params given: query is executed

See Also

For updates: dbSendStatement() and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery(), dbHasCompleted(), dbSendQuery(), dbSendQueryArrow()

44 dbGetRowCount

Examples

Retrieve data as arrow table
con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
dbGetQueryArrow(con, "SELECT * FROM mtcars")

dbDisconnect(con)

dbGetRowCount The number of rows fetched so far

Description

Returns the total number of rows actually fetched with calls to dbFetch() for this result set.

Usage

dbGetRowCount(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbGetRowCount() returns a scalar number (integer or numeric), the number of rows fetched so far.
After calling dbSendQuery(), the row count is initially zero. After a call to dbFetch() without
limit, the row count matches the total number of rows returned. Fetching a limited number of rows
increases the number of rows by the number of rows returned, even if fetching past the end of
the result set. For queries with an empty result set, zero is returned even after fetching. For data
manipulation statements issued with dbSendStatement(), zero is returned before and after calling
dbFetch().

Failure modes

Attempting to get the row count for a result set cleared with dbClearResult() gives an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

dbGetRowsAffected 45

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendQuery(con, "SELECT * FROM mtcars")

dbGetRowCount(rs)
ret1 <- dbFetch(rs, 10)
dbGetRowCount(rs)
ret2 <- dbFetch(rs)
dbGetRowCount(rs)
nrow(ret1) + nrow(ret2)

dbClearResult(rs)
dbDisconnect(con)

dbGetRowsAffected The number of rows affected

Description

This method returns the number of rows that were added, deleted, or updated by a data manipulation
statement.

Usage

dbGetRowsAffected(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbGetRowsAffected() returns a scalar number (integer or numeric), the number of rows affected
by a data manipulation statement issued with dbSendStatement(). The value is available directly
after the call and does not change after calling dbFetch(). NA_integer_ or NA_numeric_ are
allowed if the number of rows affected is not known.

For queries issued with dbSendQuery(), zero is returned before and after the call to dbFetch(). NA
values are not allowed.

The command execution flow

This section gives a complete overview over the flow for the execution of SQL statements that
have side effects such as stored procedures, inserting or deleting data, or setting database or con-
nection options. Most of this flow, except repeated calling of dbBindArrow(), is implemented
by dbExecute(), which should be sufficient for non-parameterized queries. This flow requires an
active connection established by dbConnect(). See also vignette("dbi-advanced") for a walk-
through.

46 dbGetStatement

1. Use dbSendStatement() to create a result set object of class DBIResult. For some queries
you need to pass immediate = TRUE.

2. Optionally, bind query parameters withdbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbGetRowsAffected() to retrieve the number of rows affected by the query.

4. Repeat the last two steps as necessary.

5. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

Attempting to get the rows affected for a result set cleared with dbClearResult() gives an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetStatement(), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other command execution generics: dbBind(), dbClearResult(), dbExecute(), dbSendStatement()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendStatement(con, "DELETE FROM mtcars")
dbGetRowsAffected(rs)
nrow(mtcars)

dbClearResult(rs)
dbDisconnect(con)

dbGetStatement Get the statement associated with a result set

Description

Returns the statement that was passed to dbSendQuery() or dbSendStatement().

Usage

dbGetStatement(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

dbHasCompleted 47

Value

dbGetStatement() returns a string, the query used in either dbSendQuery() or dbSendStatement().

Failure modes

Attempting to query the statement for a result set cleared with dbClearResult() gives an error.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendQuery(con, "SELECT * FROM mtcars")
dbGetStatement(rs)

dbClearResult(rs)
dbDisconnect(con)

dbHasCompleted Completion status

Description

This method returns if the operation has completed. A SELECT query is completed if all rows have
been fetched. A data manipulation statement is always completed.

Usage

dbHasCompleted(res, ...)

Arguments

res An object inheriting from DBIResult.

... Other arguments passed on to methods.

Value

dbHasCompleted() returns a logical scalar. For a query initiated by dbSendQuery() with non-
empty result set, dbHasCompleted() returns FALSE initially and TRUE after calling dbFetch()
without limit. For a query initiated by dbSendStatement(), dbHasCompleted() always returns
TRUE.

48 dbHasCompleted

The data retrieval flow

This section gives a complete overview over the flow for the execution of queries that return tabular
data as data frames.

Most of this flow, except repeated calling of dbBind() or dbBindArrow(), is implemented by
dbGetQuery(), which should be sufficient unless you want to access the results in a paged way or
you have a parameterized query that you want to reuse. This flow requires an active connection
established by dbConnect(). See also vignette("dbi-advanced") for a walkthrough.

1. Use dbSendQuery() to create a result set object of class DBIResult.

2. Optionally, bind query parameters with dbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbColumnInfo() to retrieve the structure of the result set without retrieving
actual data.

4. Use dbFetch() to get the entire result set, a page of results, or the remaining rows. Fetching
zero rows is also possible to retrieeve the structure of the result set as a data frame. This step
can be called multiple times. Only forward paging is supported, you need to cache previous
pages if you need to navigate backwards.

5. Use dbHasCompleted() to tell when you’re done. This method returns TRUE if no more rows
are available for fetching.

6. Repeat the last four steps as necessary.

7. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

Attempting to query completion status for a result set cleared with dbClearResult() gives an error.

Specification

The completion status for a query is only guaranteed to be set to FALSE after attempting to fetch
past the end of the entire result. Therefore, for a query with an empty result set, the initial return
value is unspecified, but the result value is TRUE after trying to fetch only one row.

Similarly, for a query with a result set of length n, the return value is unspecified after fetching n
rows, but the result value is TRUE after trying to fetch only one more row.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbClearResult(), dbFetchArrow(),
dbFetchArrowChunk(), dbIsValid()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery(), dbGetQueryArrow(), dbSendQuery(), dbSendQueryArrow()

DBIConnection-class 49

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendQuery(con, "SELECT * FROM mtcars")

dbHasCompleted(rs)
ret1 <- dbFetch(rs, 10)
dbHasCompleted(rs)
ret2 <- dbFetch(rs)
dbHasCompleted(rs)

dbClearResult(rs)
dbDisconnect(con)

DBIConnection-class DBIConnection class

Description

This virtual class encapsulates the connection to a DBMS, and it provides access to dynamic queries,
result sets, DBMS session management (transactions), etc.

Implementation note

Individual drivers are free to implement single or multiple simultaneous connections.

See Also

Other DBI classes: DBIConnector-class, DBIDriver-class, DBIObject-class, DBIResult-class,
DBIResultArrow-class

Other DBIConnection generics: dbAppendTable(), dbAppendTableArrow(), dbCreateTable(),
dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(), dbGetException(),
dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")
con
dbDisconnect(con)
Not run:
con <- dbConnect(RPostgreSQL::PostgreSQL(), "username", "passsword")
con
dbDisconnect(con)

End(Not run)

50 DBIDriver-class

DBIConnector-class DBIConnector class

Description

Wraps objects of the DBIDriver class to include connection options. The purpose of this class is to
store both the driver and the connection options. A database connection can be established with a
call to dbConnect(), passing only that object without additional arguments.

Details

To prevent leakage of passwords and other credentials, this class supports delayed evaluation. All
arguments can optionally be a function (callable without arguments). In such a case, the function is
evaluated transparently when connecting in dbGetConnectArgs().

See Also

Other DBI classes: DBIConnection-class, DBIDriver-class, DBIObject-class, DBIResult-class,
DBIResultArrow-class

Other DBIConnector generics: dbConnect(), dbDataType(), dbGetConnectArgs(), dbIsReadOnly()

Examples

Create a connector:
cnr <- new("DBIConnector",

.drv = RSQLite::SQLite(),

.conn_args = list(dbname = ":memory:")
)
cnr

Establish a connection through this connector:
con <- dbConnect(cnr)
con

Access the database through this connection:
dbGetQuery(con, "SELECT 1 AS a")
dbDisconnect(con)

DBIDriver-class DBIDriver class

Description

Base class for all DBMS drivers (e.g., RSQLite, MySQL, PostgreSQL). The virtual class DBIDriver
defines the operations for creating connections and defining data type mappings. Actual driver
classes, for instance RPostgres, RMariaDB, etc. implement these operations in a DBMS-specific
manner.

DBIObject-class 51

See Also

Other DBI classes: DBIConnection-class, DBIConnector-class, DBIObject-class, DBIResult-class,
DBIResultArrow-class

Other DBIDriver generics: dbCanConnect(), dbConnect(), dbDataType(), dbDriver(), dbGetInfo(),
dbIsReadOnly(), dbIsValid(), dbListConnections()

DBIObject-class DBIObject class

Description

Base class for all other DBI classes (e.g., drivers, connections). This is a virtual Class: No objects
may be created from it.

Details

More generally, the DBI defines a very small set of classes and generics that allows users and appli-
cations access DBMS with a common interface. The virtual classes are DBIDriver that individual
drivers extend, DBIConnection that represent instances of DBMS connections, and DBIResult that
represent the result of a DBMS statement. These three classes extend the basic class of DBIObject,
which serves as the root or parent of the class hierarchy.

Implementation notes

An implementation MUST provide methods for the following generics:

• dbGetInfo().

It MAY also provide methods for:

• summary(). Print a concise description of the object. The default method invokes dbGetInfo(dbObj)
and prints the name-value pairs one per line. Individual implementations may tailor this ap-
propriately.

See Also

Other DBI classes: DBIConnection-class, DBIConnector-class, DBIDriver-class, DBIResult-class,
DBIResultArrow-class

Examples

drv <- RSQLite::SQLite()
con <- dbConnect(drv)

rs <- dbSendQuery(con, "SELECT 1")
is(drv, "DBIObject") ## True
is(con, "DBIObject") ## True
is(rs, "DBIObject")

dbClearResult(rs)
dbDisconnect(con)

52 DBIResultArrow-class

DBIResult-class DBIResult class

Description

This virtual class describes the result and state of execution of a DBMS statement (any statement,
query or non-query). The result set keeps track of whether the statement produces output how many
rows were affected by the operation, how many rows have been fetched (if statement is a query),
whether there are more rows to fetch, etc.

Implementation notes

Individual drivers are free to allow single or multiple active results per connection.

The default show method displays a summary of the query using other DBI generics.

See Also

Other DBI classes: DBIConnection-class, DBIConnector-class, DBIDriver-class, DBIObject-class,
DBIResultArrow-class

Other DBIResult generics: dbBind(), dbClearResult(), dbColumnInfo(), dbFetch(), dbGetInfo(),
dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(), dbIsReadOnly(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

DBIResultArrow-class DBIResultArrow class

Description

[Experimental]

This virtual class describes the result and state of execution of a DBMS statement (any statement,
query or non-query) for returning data as an Arrow object.

Implementation notes

Individual drivers are free to allow single or multiple active results per connection.

The default show method displays a summary of the query using other DBI generics.

See Also

Other DBI classes: DBIConnection-class, DBIConnector-class, DBIDriver-class, DBIObject-class,
DBIResult-class

Other DBIResultArrow generics: dbBind(), dbClearResult(), dbFetchArrow(), dbFetchArrowChunk(),
dbHasCompleted(), dbIsValid()

dbIsReadOnly 53

dbIsReadOnly Is this DBMS object read only?

Description

This generic tests whether a database object is read only.

Usage

dbIsReadOnly(dbObj, ...)

Arguments

dbObj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult

... Other arguments to methods.

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDataType(),
dbDriver(), dbGetInfo(), dbIsValid(), dbListConnections()

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsValid(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsValid(), dbQuoteLiteral(), dbQuoteString()

Other DBIConnector generics: DBIConnector-class, dbConnect(), dbDataType(), dbGetConnectArgs()

Examples

dbIsReadOnly(ANSI())

dbIsValid Is this DBMS object still valid?

Description

This generic tests whether a database object is still valid (i.e. it hasn’t been disconnected or cleared).

Usage

dbIsValid(dbObj, ...)

54 dbIsValid

Arguments

dbObj An object inheriting from DBIObject, i.e. DBIDriver, DBIConnection, or a
DBIResult

... Other arguments to methods.

Value

dbIsValid() returns a logical scalar, TRUE if the object specified by dbObj is valid, FALSE oth-
erwise. A DBIConnection object is initially valid, and becomes invalid after disconnecting with
dbDisconnect(). For an invalid connection object (e.g., for some drivers if the object is saved
to a file and then restored), the method also returns FALSE. A DBIResult object is valid after a
call to dbSendQuery(), and stays valid even after all rows have been fetched; only clearing it with
dbClearResult() invalidates it. A DBIResult object is also valid after a call to dbSendStatement(),
and stays valid after querying the number of rows affected; only clearing it with dbClearResult()
invalidates it. If the connection to the database system is dropped (e.g., due to connectivity prob-
lems, server failure, etc.), dbIsValid() should return FALSE. This is not tested automatically.

See Also

Other DBIDriver generics: DBIDriver-class, dbCanConnect(), dbConnect(), dbDataType(),
dbDriver(), dbGetInfo(), dbIsReadOnly(), dbListConnections()

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbListFields(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbQuoteLiteral(), dbQuoteString()

Other DBIResultArrow generics: DBIResultArrow-class, dbBind(), dbClearResult(), dbFetchArrow(),
dbFetchArrowChunk(), dbHasCompleted()

Examples

dbIsValid(RSQLite::SQLite())

con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbIsValid(con)

rs <- dbSendQuery(con, "SELECT 1")
dbIsValid(rs)

dbClearResult(rs)
dbIsValid(rs)

dbDisconnect(con)
dbIsValid(con)

dbListFields 55

dbListFields List field names of a remote table

Description

Returns the field names of a remote table as a character vector.

Usage

dbListFields(conn, name, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",

• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

... Other parameters passed on to methods.

Value

dbListFields() returns a character vector that enumerates all fields in the table in the correct
order. This also works for temporary tables if supported by the database. The returned names are
suitable for quoting with dbQuoteIdentifier().

Failure modes

If the table does not exist, an error is raised. Invalid types for the name argument (e.g., character
of length not equal to one, or numeric) lead to an error. An error is also raised when calling this
method for a closed or invalid connection.

Specification

The name argument can be

• a string

• the return value of dbQuoteIdentifier()

• a value from the table column from the return value of dbListObjects() where is_prefix
is FALSE

A column named row_names is treated like any other column.

56 dbListObjects

See Also

dbColumnInfo() to get the type of the fields.

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
dbListFields(con, "mtcars")

dbDisconnect(con)

dbListObjects List remote objects

Description

Returns the names of remote objects accessible through this connection as a data frame. This should
include temporary objects, but not all database backends (in particular RMariaDB and RMySQL)
support this. Compared to dbListTables(), this method also enumerates tables and views in
schemas, and returns fully qualified identifiers to access these objects. This allows exploration of
all database objects available to the current user, including those that can only be accessed by giving
the full namespace.

Usage

dbListObjects(conn, prefix = NULL, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

prefix A fully qualified path in the database’s namespace, or NULL. This argument will
be processed with dbUnquoteIdentifier(). If given the method will return all
objects accessible through this prefix.

... Other parameters passed on to methods.

Value

dbListObjects() returns a data frame with columns table and is_prefix (in that order), op-
tionally with other columns with a dot (.) prefix. The table column is of type list. Each object
in this list is suitable for use as argument in dbQuoteIdentifier(). The is_prefix column is
a logical. This data frame contains one row for each object (schema, table and view) accessible
from the prefix (if passed) or from the global namespace (if prefix is omitted). Tables added with

dbListTables 57

dbWriteTable() are part of the data frame. As soon a table is removed from the database, it is also
removed from the data frame of database objects.

The same applies to temporary objects if supported by the database.

The returned names are suitable for quoting with dbQuoteIdentifier().

Failure modes

An error is raised when calling this method for a closed or invalid connection.

Specification

The prefix column indicates if the table value refers to a table or a prefix. For a call with the
default prefix = NULL, the table values that have is_prefix == FALSE correspond to the tables
returned from dbListTables(),

The table object can be quoted with dbQuoteIdentifier(). The result of quoting can be passed
to dbUnquoteIdentifier(). (For backends it may be convenient to use the Id class, but this is not
required.)

Values in table column that have is_prefix == TRUE can be passed as the prefix argument to
another call to dbListObjects(). For the data frame returned from a dbListObject() call with
the prefix argument set, all table values where is_prefix is FALSE can be used in a call to
dbExistsTable() which returns TRUE.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListResults(), dbListTables(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbListObjects(con)
dbWriteTable(con, "mtcars", mtcars)
dbListObjects(con)

dbDisconnect(con)

dbListTables List remote tables

Description

Returns the unquoted names of remote tables accessible through this connection. This should in-
clude views and temporary objects, but not all database backends (in particular RMariaDB and
RMySQL) support this.

58 dbQuoteIdentifier

Usage

dbListTables(conn, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

... Other parameters passed on to methods.

Value

dbListTables() returns a character vector that enumerates all tables and views in the database. Ta-
bles added with dbWriteTable() are part of the list. As soon a table is removed from the database,
it is also removed from the list of database tables.

The same applies to temporary tables if supported by the database.

The returned names are suitable for quoting with dbQuoteIdentifier().

Failure modes

An error is raised when calling this method for a closed or invalid connection.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbQuoteIdentifier(), dbReadTable(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbListTables(con)
dbWriteTable(con, "mtcars", mtcars)
dbListTables(con)

dbDisconnect(con)

dbQuoteIdentifier Quote identifiers

Description

Call this method to generate a string that is suitable for use in a query as a column or table name,
to make sure that you generate valid SQL and protect against SQL injection attacks. The inverse
operation is dbUnquoteIdentifier().

Usage

dbQuoteIdentifier(conn, x, ...)

dbQuoteIdentifier 59

Arguments

conn A DBIConnection object, as returned by dbConnect().

x A character vector, SQL or Id object to quote as identifier.

... Other arguments passed on to methods.

Value

dbQuoteIdentifier() returns an object that can be coerced to character, of the same length as
the input. For an empty character vector this function returns a length-0 object. The names
of the input argument are preserved in the output. When passing the returned object again to
dbQuoteIdentifier() as x argument, it is returned unchanged. Passing objects of class SQL
should also return them unchanged. (For backends it may be most convenient to return SQL objects
to achieve this behavior, but this is not required.)

Failure modes

An error is raised if the input contains NA, but not for an empty string.

Specification

Calling dbGetQuery() for a query of the format SELECT 1 AS ... returns a data frame with the
identifier, unquoted, as column name. Quoted identifiers can be used as table and column names in
SQL queries, in particular in queries like SELECT 1 AS ... and SELECT * FROM (SELECT 1)
The method must use a quoting mechanism that is unambiguously different from the quoting mech-
anism used for strings, so that a query like SELECT ... FROM (SELECT 1 AS ...) throws an error
if the column names do not match.

The method can quote column names that contain special characters such as a space, a dot, a
comma, or quotes used to mark strings or identifiers, if the database supports this. In any case,
checking the validity of the identifier should be performed only when executing a query, and not by
dbQuoteIdentifier().

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbReadTable(), dbReadTableArrow(),
dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(), dbUnquoteIdentifier(),
dbWriteTable(), dbWriteTableArrow()

Examples

Quoting ensures that arbitrary input is safe for use in a query
name <- "Robert'); DROP TABLE Students;--"
dbQuoteIdentifier(ANSI(), name)

Use Id() to specify other components such as the schema
id_name <- Id(schema = "schema_name", table = "table_name")
id_name
dbQuoteIdentifier(ANSI(), id_name)

SQL vectors are always passed through as is
var_name <- SQL("select")

60 dbQuoteLiteral

var_name
dbQuoteIdentifier(ANSI(), var_name)

This mechanism is used to prevent double escaping
dbQuoteIdentifier(ANSI(), dbQuoteIdentifier(ANSI(), name))

dbQuoteLiteral Quote literal values

Description

Call these methods to generate a string that is suitable for use in a query as a literal value of the
correct type, to make sure that you generate valid SQL and protect against SQL injection attacks.

Usage

dbQuoteLiteral(conn, x, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

x A vector to quote as string.

... Other arguments passed on to methods.

Value

dbQuoteLiteral() returns an object that can be coerced to character, of the same length as the
input. For an empty integer, numeric, character, logical, date, time, or blob vector, this function
returns a length-0 object.

When passing the returned object again to dbQuoteLiteral() as x argument, it is returned un-
changed. Passing objects of class SQL should also return them unchanged. (For backends it may
be most convenient to return SQL objects to achieve this behavior, but this is not required.)

Failure modes

Passing a list for the x argument raises an error.

Specification

The returned expression can be used in a SELECT ... query, and the value of dbGetQuery(paste0("SELECT
", dbQuoteLiteral(x)))[[1]] must be equal to x for any scalar integer, numeric, string, and log-
ical. If x is NA, the result must merely satisfy is.na(). The literals "NA" or "NULL" are not treated
specially.

NA should be translated to an unquoted SQL NULL, so that the query SELECT * FROM (SELECT 1) a WHERE ... IS NULL
returns one row.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbIsValid(), dbQuoteString()

dbQuoteString 61

Examples

Quoting ensures that arbitrary input is safe for use in a query
name <- "Robert'); DROP TABLE Students;--"
dbQuoteLiteral(ANSI(), name)

NAs become NULL
dbQuoteLiteral(ANSI(), c(1:3, NA))

Logicals become integers by default
dbQuoteLiteral(ANSI(), c(TRUE, FALSE, NA))

Raw vectors become hex strings by default
dbQuoteLiteral(ANSI(), list(as.raw(1:3), NULL))

SQL vectors are always passed through as is
var_name <- SQL("select")
var_name
dbQuoteLiteral(ANSI(), var_name)

This mechanism is used to prevent double escaping
dbQuoteLiteral(ANSI(), dbQuoteLiteral(ANSI(), name))

dbQuoteString Quote literal strings

Description

Call this method to generate a string that is suitable for use in a query as a string literal, to make
sure that you generate valid SQL and protect against SQL injection attacks.

Usage

dbQuoteString(conn, x, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

x A character vector to quote as string.

... Other arguments passed on to methods.

Value

dbQuoteString() returns an object that can be coerced to character, of the same length as the input.
For an empty character vector this function returns a length-0 object.

When passing the returned object again to dbQuoteString() as x argument, it is returned un-
changed. Passing objects of class SQL should also return them unchanged. (For backends it may
be most convenient to return SQL objects to achieve this behavior, but this is not required.)

Failure modes

Passing a numeric, integer, logical, or raw vector, or a list for the x argument raises an error.

62 dbReadTable

Specification

The returned expression can be used in a SELECT ... query, and for any scalar character x the value
of dbGetQuery(paste0("SELECT ", dbQuoteString(x)))[[1]] must be identical to x, even if x
contains spaces, tabs, quotes (single or double), backticks, or newlines (in any combination) or is
itself the result of a dbQuoteString() call coerced back to character (even repeatedly). If x is NA,
the result must merely satisfy is.na(). The strings "NA" or "NULL" are not treated specially.

NA should be translated to an unquoted SQL NULL, so that the query SELECT * FROM (SELECT 1) a WHERE ... IS NULL
returns one row.

See Also

Other DBIResult generics: DBIResult-class, dbBind(), dbClearResult(), dbColumnInfo(),
dbFetch(), dbGetInfo(), dbGetRowCount(), dbGetRowsAffected(), dbGetStatement(), dbHasCompleted(),
dbIsReadOnly(), dbIsValid(), dbQuoteLiteral()

Examples

Quoting ensures that arbitrary input is safe for use in a query
name <- "Robert'); DROP TABLE Students;--"
dbQuoteString(ANSI(), name)

NAs become NULL
dbQuoteString(ANSI(), c("x", NA))

SQL vectors are always passed through as is
var_name <- SQL("select")
var_name
dbQuoteString(ANSI(), var_name)

This mechanism is used to prevent double escaping
dbQuoteString(ANSI(), dbQuoteString(ANSI(), name))

dbReadTable Read database tables as data frames

Description

Reads a database table to a data frame, optionally converting a column to row names and converting
the column names to valid R identifiers. Use dbReadTableArrow() instead to obtain an Arrow
object.

Usage

dbReadTable(conn, name, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",

dbReadTable 63

• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

... Other parameters passed on to methods.

Details

This function returns a data frame. Use dbReadTableArrow() to obtain an Arrow object.

Value

dbReadTable() returns a data frame that contains the complete data from the remote table, effec-
tively the result of calling dbGetQuery() with SELECT * FROM <name>.

An empty table is returned as a data frame with zero rows.

The presence of rownames depends on the row.names argument, see sqlColumnToRownames() for
details:

• If FALSE or NULL, the returned data frame doesn’t have row names.

• If TRUE, a column named "row_names" is converted to row names.

• If NA, a column named "row_names" is converted to row names if it exists, otherwise no
translation occurs.

• If a string, this specifies the name of the column in the remote table that contains the row
names.

The default is row.names = FALSE.

If the database supports identifiers with special characters, the columns in the returned data frame
are converted to valid R identifiers if the check.names argument is TRUE, If check.names = FALSE,
the returned table has non-syntactic column names without quotes.

Failure modes

An error is raised if the table does not exist.

An error is raised if row.names is TRUE and no "row_names" column exists,

An error is raised if row.names is set to a string and no corresponding column exists.

An error is raised when calling this method for a closed or invalid connection. An error is raised
if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar. Un-
supported values for row.names and check.names (non-scalars, unsupported data types, NA for
check.names) also raise an error.

Additional arguments

The following arguments are not part of the dbReadTable() generic (to improve compatibility
across backends) but are part of the DBI specification:

• row.names (default: FALSE)

• check.names

They must be provided as named arguments. See the "Value" section for details on their usage.

64 dbReadTableArrow

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbReadTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars[1:10,])
dbReadTable(con, "mtcars")

dbDisconnect(con)

dbReadTableArrow Read database tables as Arrow objects

Description

[Experimental]

Reads a database table as an Arrow object. Use dbReadTable() instead to obtain a data frame.

Usage

dbReadTableArrow(conn, name, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

... Other parameters passed on to methods.

dbReadTableArrow 65

Details

This function returns an Arrow object. Convert it to a data frame with as.data.frame() or use
dbReadTable() to obtain a data frame.

Value

dbReadTableArrow() returns an Arrow object that contains the complete data from the remote
table, effectively the result of calling dbGetQueryArrow() with SELECT * FROM <name>.

An empty table is returned as an Arrow object with zero rows.

Failure modes

An error is raised if the table does not exist.

An error is raised when calling this method for a closed or invalid connection. An error is raised if
name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbReadTableArrow() will do the quoting, perhaps by
calling dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

Read data as Arrow table
con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars[1:10,])
dbReadTableArrow(con, "mtcars")

dbDisconnect(con)

66 dbRemoveTable

dbRemoveTable Remove a table from the database

Description

Remove a remote table (e.g., created by dbWriteTable()) from the database.

Usage

dbRemoveTable(conn, name, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

... Other parameters passed on to methods.

Value

dbRemoveTable() returns TRUE, invisibly.

Failure modes

If the table does not exist, an error is raised. An attempt to remove a view with this function may
result in an error.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.

Additional arguments

The following arguments are not part of the dbRemoveTable() generic (to improve compatibility
across backends) but are part of the DBI specification:

• temporary (default: FALSE)

• fail_if_missing (default: TRUE)

These arguments must be provided as named arguments.

If temporary is TRUE, the call to dbRemoveTable() will consider only temporary tables. Not all
backends support this argument. In particular, permanent tables of the same name are left un-
touched.

If fail_if_missing is FALSE, the call to dbRemoveTable() succeeds if the table does not exist.

dbSendQuery 67

Specification

A table removed by dbRemoveTable() doesn’t appear in the list of tables returned by dbListTables(),
and dbExistsTable() returns FALSE. The removal propagates immediately to other connections to
the same database. This function can also be used to remove a temporary table.

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbRemoveTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbReadTableArrow(), dbSendQuery(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbExistsTable(con, "iris")
dbWriteTable(con, "iris", iris)
dbExistsTable(con, "iris")
dbRemoveTable(con, "iris")
dbExistsTable(con, "iris")

dbDisconnect(con)

dbSendQuery Execute a query on a given database connection

Description

The dbSendQuery() method only submits and synchronously executes the SQL query to the database
engine. It does not extract any records — for that you need to use the dbFetch() method, and then
you must call dbClearResult() when you finish fetching the records you need. For interactive use,
you should almost always prefer dbGetQuery(). Use dbSendQueryArrow() or dbGetQueryArrow()
instead to retrieve the results as an Arrow object.

Usage

dbSendQuery(conn, statement, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().
statement a character string containing SQL.
... Other parameters passed on to methods.

68 dbSendQuery

Details

This method is for SELECT queries only. Some backends may support data manipulation queries
through this method for compatibility reasons. However, callers are strongly encouraged to use
dbSendStatement() for data manipulation statements.

The query is submitted to the database server and the DBMS executes it, possibly generating vast
amounts of data. Where these data live is driver-specific: some drivers may choose to leave the
output on the server and transfer them piecemeal to R, others may transfer all the data to the client
– but not necessarily to the memory that R manages. See individual drivers’ dbSendQuery() docu-
mentation for details.

Value

dbSendQuery() returns an S4 object that inherits from DBIResult. The result set can be used with
dbFetch() to extract records. Once you have finished using a result, make sure to clear it with
dbClearResult().

The data retrieval flow

This section gives a complete overview over the flow for the execution of queries that return tabular
data as data frames.

Most of this flow, except repeated calling of dbBind() or dbBindArrow(), is implemented by
dbGetQuery(), which should be sufficient unless you want to access the results in a paged way or
you have a parameterized query that you want to reuse. This flow requires an active connection
established by dbConnect(). See also vignette("dbi-advanced") for a walkthrough.

1. Use dbSendQuery() to create a result set object of class DBIResult.

2. Optionally, bind query parameters with dbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbColumnInfo() to retrieve the structure of the result set without retrieving
actual data.

4. Use dbFetch() to get the entire result set, a page of results, or the remaining rows. Fetching
zero rows is also possible to retrieeve the structure of the result set as a data frame. This step
can be called multiple times. Only forward paging is supported, you need to cache previous
pages if you need to navigate backwards.

5. Use dbHasCompleted() to tell when you’re done. This method returns TRUE if no more rows
are available for fetching.

6. Repeat the last four steps as necessary.

7. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

An error is raised when issuing a query over a closed or invalid connection, or if the query is not a
non-NA string. An error is also raised if the syntax of the query is invalid and all query parameters
are given (by passing the params argument) or the immediate argument is set to TRUE.

dbSendQuery 69

Additional arguments

The following arguments are not part of the dbSendQuery() generic (to improve compatibility
across backends) but are part of the DBI specification:

• params (default: NULL)

• immediate (default: NULL)

They must be provided as named arguments. See the "Specification" sections for details on their
usage.

Specification

No warnings occur under normal conditions. When done, the DBIResult object must be cleared with
a call to dbClearResult(). Failure to clear the result set leads to a warning when the connection
is closed.

If the backend supports only one open result set per connection, issuing a second query invalidates
an already open result set and raises a warning. The newly opened result set is valid and must be
cleared with dbClearResult().

The param argument allows passing query parameters, see dbBind() for details.

Specification for the immediate argument

The immediate argument supports distinguishing between "direct" and "prepared" APIs offered
by many database drivers. Passing immediate = TRUE leads to immediate execution of the query
or statement, via the "direct" API (if supported by the driver). The default NULL means that the
backend should choose whatever API makes the most sense for the database, and (if relevant) tries
the other API if the first attempt fails. A successful second attempt should result in a message that
suggests passing the correct immediate argument. Examples for possible behaviors:

1. DBI backend defaults to immediate = TRUE internally

(a) A query without parameters is passed: query is executed
(b) A query with parameters is passed:

i. params not given: rejected immediately by the database because of a syntax error in
the query, the backend tries immediate = FALSE (and gives a message)

ii. params given: query is executed using immediate = FALSE

2. DBI backend defaults to immediate = FALSE internally

(a) A query without parameters is passed:
i. simple query: query is executed

ii. "special" query (such as setting a config options): fails, the backend tries immediate
= TRUE (and gives a message)

(b) A query with parameters is passed:
i. params not given: waiting for parameters via dbBind()

ii. params given: query is executed

See Also

For updates: dbSendStatement() and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),

70 dbSendQueryArrow

dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQueryArrow(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery(), dbGetQueryArrow(), dbHasCompleted(), dbSendQueryArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendQuery(con, "SELECT * FROM mtcars WHERE cyl = 4")
dbFetch(rs)
dbClearResult(rs)

Pass one set of values with the param argument:
rs <- dbSendQuery(

con,
"SELECT * FROM mtcars WHERE cyl = ?",
params = list(4L)

)
dbFetch(rs)
dbClearResult(rs)

Pass multiple sets of values with dbBind():
rs <- dbSendQuery(con, "SELECT * FROM mtcars WHERE cyl = ?")
dbBind(rs, list(6L))
dbFetch(rs)
dbBind(rs, list(8L))
dbFetch(rs)
dbClearResult(rs)

dbDisconnect(con)

dbSendQueryArrow Execute a query on a given database connection for retrieval via Ar-
row

Description

[Experimental]

The dbSendQueryArrow() method only submits and synchronously executes the SQL query to the
database engine. It does not extract any records — for that you need to use the dbFetchArrow()
method, and then you must call dbClearResult() when you finish fetching the records you need.
For interactive use, you should almost always prefer dbGetQueryArrow(). Use dbSendQuery() or
dbGetQuery() instead to retrieve the results as a data frame.

Usage

dbSendQueryArrow(conn, statement, ...)

dbSendQueryArrow 71

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

This method is for SELECT queries only. Some backends may support data manipulation queries
through this method for compatibility reasons. However, callers are strongly encouraged to use
dbSendStatement() for data manipulation statements.

Value

dbSendQueryArrow() returns an S4 object that inherits from DBIResultArrow. The result set can
be used with dbFetchArrow() to extract records. Once you have finished using a result, make sure
to clear it with dbClearResult().

The data retrieval flow for Arrow streams

This section gives a complete overview over the flow for the execution of queries that return tabular
data as an Arrow stream.

Most of this flow, except repeated calling of dbBindArrow() or dbBind(), is implemented by
dbGetQueryArrow(), which should be sufficient unless you have a parameterized query that you
want to reuse. This flow requires an active connection established by dbConnect(). See also
vignette("dbi-advanced") for a walkthrough.

1. Use dbSendQueryArrow() to create a result set object of class DBIResultArrow.

2. Optionally, bind query parameters with dbBindArrow() or dbBind(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Use dbFetchArrow() to get a data stream.

4. Repeat the last two steps as necessary.

5. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

An error is raised when issuing a query over a closed or invalid connection, or if the query is not a
non-NA string. An error is also raised if the syntax of the query is invalid and all query parameters
are given (by passing the params argument) or the immediate argument is set to TRUE.

Additional arguments

The following arguments are not part of the dbSendQueryArrow() generic (to improve compatibil-
ity across backends) but are part of the DBI specification:

• params (default: NULL)

• immediate (default: NULL)

They must be provided as named arguments. See the "Specification" sections for details on their
usage.

72 dbSendQueryArrow

Specification

No warnings occur under normal conditions. When done, the DBIResult object must be cleared with
a call to dbClearResult(). Failure to clear the result set leads to a warning when the connection
is closed.

If the backend supports only one open result set per connection, issuing a second query invalidates
an already open result set and raises a warning. The newly opened result set is valid and must be
cleared with dbClearResult().

The param argument allows passing query parameters, see dbBind() for details.

Specification for the immediate argument

The immediate argument supports distinguishing between "direct" and "prepared" APIs offered
by many database drivers. Passing immediate = TRUE leads to immediate execution of the query
or statement, via the "direct" API (if supported by the driver). The default NULL means that the
backend should choose whatever API makes the most sense for the database, and (if relevant) tries
the other API if the first attempt fails. A successful second attempt should result in a message that
suggests passing the correct immediate argument. Examples for possible behaviors:

1. DBI backend defaults to immediate = TRUE internally

(a) A query without parameters is passed: query is executed
(b) A query with parameters is passed:

i. params not given: rejected immediately by the database because of a syntax error in
the query, the backend tries immediate = FALSE (and gives a message)

ii. params given: query is executed using immediate = FALSE

2. DBI backend defaults to immediate = FALSE internally

(a) A query without parameters is passed:
i. simple query: query is executed

ii. "special" query (such as setting a config options): fails, the backend tries immediate
= TRUE (and gives a message)

(b) A query with parameters is passed:
i. params not given: waiting for parameters via dbBind()

ii. params given: query is executed

See Also

For updates: dbSendStatement() and dbExecute().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendStatement(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other data retrieval generics: dbBind(), dbClearResult(), dbFetch(), dbFetchArrow(), dbFetchArrowChunk(),
dbGetQuery(), dbGetQueryArrow(), dbHasCompleted(), dbSendQuery()

Examples

Retrieve data as arrow table
con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbSendStatement 73

dbWriteTable(con, "mtcars", mtcars)
rs <- dbSendQueryArrow(con, "SELECT * FROM mtcars WHERE cyl = 4")
dbFetchArrow(rs)
dbClearResult(rs)

dbDisconnect(con)

dbSendStatement Execute a data manipulation statement on a given database connec-
tion

Description

The dbSendStatement() method only submits and synchronously executes the SQL data manipu-
lation statement (e.g., UPDATE, DELETE, INSERT INTO, DROP TABLE, ...) to the database engine. To
query the number of affected rows, call dbGetRowsAffected() on the returned result object. You
must also call dbClearResult() after that. For interactive use, you should almost always prefer
dbExecute().

Usage

dbSendStatement(conn, statement, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

statement a character string containing SQL.

... Other parameters passed on to methods.

Details

dbSendStatement() comes with a default implementation that simply forwards to dbSendQuery(),
to support backends that only implement the latter.

Value

dbSendStatement() returns an S4 object that inherits from DBIResult. The result set can be used
with dbGetRowsAffected() to determine the number of rows affected by the query. Once you have
finished using a result, make sure to clear it with dbClearResult().

The command execution flow

This section gives a complete overview over the flow for the execution of SQL statements that
have side effects such as stored procedures, inserting or deleting data, or setting database or con-
nection options. Most of this flow, except repeated calling of dbBindArrow(), is implemented
by dbExecute(), which should be sufficient for non-parameterized queries. This flow requires an
active connection established by dbConnect(). See also vignette("dbi-advanced") for a walk-
through.

1. Use dbSendStatement() to create a result set object of class DBIResult. For some queries
you need to pass immediate = TRUE.

74 dbSendStatement

2. Optionally, bind query parameters withdbBind() or dbBindArrow(). This is required only if
the query contains placeholders such as ? or $1, depending on the database backend.

3. Optionally, use dbGetRowsAffected() to retrieve the number of rows affected by the query.

4. Repeat the last two steps as necessary.

5. Use dbClearResult() to clean up the result set object. This step is mandatory even if no
rows have been fetched or if an error has occurred during the processing. It is good practice
to use on.exit() or withr::defer() to ensure that this step is always executed.

Failure modes

An error is raised when issuing a statement over a closed or invalid connection, or if the statement
is not a non-NA string. An error is also raised if the syntax of the query is invalid and all query
parameters are given (by passing the params argument) or the immediate argument is set to TRUE.

Additional arguments

The following arguments are not part of the dbSendStatement() generic (to improve compatibility
across backends) but are part of the DBI specification:

• params (default: NULL)

• immediate (default: NULL)

They must be provided as named arguments. See the "Specification" sections for details on their
usage.

Specification

No warnings occur under normal conditions. When done, the DBIResult object must be cleared with
a call to dbClearResult(). Failure to clear the result set leads to a warning when the connection
is closed. If the backend supports only one open result set per connection, issuing a second query
invalidates an already open result set and raises a warning. The newly opened result set is valid and
must be cleared with dbClearResult().

The param argument allows passing query parameters, see dbBind() for details.

Specification for the immediate argument

The immediate argument supports distinguishing between "direct" and "prepared" APIs offered
by many database drivers. Passing immediate = TRUE leads to immediate execution of the query
or statement, via the "direct" API (if supported by the driver). The default NULL means that the
backend should choose whatever API makes the most sense for the database, and (if relevant) tries
the other API if the first attempt fails. A successful second attempt should result in a message that
suggests passing the correct immediate argument. Examples for possible behaviors:

1. DBI backend defaults to immediate = TRUE internally

(a) A query without parameters is passed: query is executed
(b) A query with parameters is passed:

i. params not given: rejected immediately by the database because of a syntax error in
the query, the backend tries immediate = FALSE (and gives a message)

ii. params given: query is executed using immediate = FALSE

2. DBI backend defaults to immediate = FALSE internally

(a) A query without parameters is passed:

dbSendStatement 75

i. simple query: query is executed
ii. "special" query (such as setting a config options): fails, the backend tries immediate

= TRUE (and gives a message)
(b) A query with parameters is passed:

i. params not given: waiting for parameters via dbBind()

ii. params given: query is executed

See Also

For queries: dbSendQuery() and dbGetQuery().

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(),
dbUnquoteIdentifier(), dbWriteTable(), dbWriteTableArrow()

Other command execution generics: dbBind(), dbClearResult(), dbExecute(), dbGetRowsAffected()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "cars", head(cars, 3))

rs <- dbSendStatement(
con,
"INSERT INTO cars (speed, dist) VALUES (1, 1), (2, 2), (3, 3)"

)
dbHasCompleted(rs)
dbGetRowsAffected(rs)
dbClearResult(rs)
dbReadTable(con, "cars") # there are now 6 rows

Pass one set of values directly using the param argument:
rs <- dbSendStatement(

con,
"INSERT INTO cars (speed, dist) VALUES (?, ?)",
params = list(4L, 5L)

)
dbClearResult(rs)

Pass multiple sets of values using dbBind():
rs <- dbSendStatement(

con,
"INSERT INTO cars (speed, dist) VALUES (?, ?)"

)
dbBind(rs, list(5:6, 6:7))
dbBind(rs, list(7L, 8L))
dbClearResult(rs)
dbReadTable(con, "cars") # there are now 10 rows

dbDisconnect(con)

76 dbUnquoteIdentifier

dbUnquoteIdentifier Unquote identifiers

Description

Call this method to convert a SQL object created by dbQuoteIdentifier() back to a list of Id
objects.

Usage

dbUnquoteIdentifier(conn, x, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

x An SQL or Id object.

... Other arguments passed on to methods.

Value

dbUnquoteIdentifier() returns a list of objects of the same length as the input. For an empty
vector, this function returns a length-0 object. The names of the input argument are preserved in the
output. If x is a value returned by dbUnquoteIdentifier(), calling dbUnquoteIdentifier(...,
dbQuoteIdentifier(..., x)) returns list(x). If x is an object of class Id, calling dbUnquoteIdentifier(...,
x) returns list(x). (For backends it may be most convenient to return Id objects to achieve this
behavior, but this is not required.)

Plain character vectors can also be passed to dbUnquoteIdentifier().

Failure modes

An error is raised if a character vectors with a missing value is passed as the x argument.

Specification

For any character vector of length one, quoting (with dbQuoteIdentifier()) then unquoting then
quoting the first element is identical to just quoting. This is also true for strings that contain special
characters such as a space, a dot, a comma, or quotes used to mark strings or identifiers, if the
database supports this.

Unquoting simple strings (consisting of only letters) wrapped with SQL() and then quoting via
dbQuoteIdentifier() gives the same result as just quoting the string. Similarly, unquoting ex-
pressions of the form SQL("schema.table") and then quoting gives the same result as quoting the
identifier constructed by Id("schema", "table").

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(),
dbSendStatement(), dbWriteTable(), dbWriteTableArrow()

dbWithTransaction 77

Examples

Unquoting allows to understand the structure of a
possibly complex quoted identifier
dbUnquoteIdentifier(

ANSI(),
SQL(c('"Catalog"."Schema"."Table"', '"Schema"."Table"', '"UnqualifiedTable"'))

)

The returned object is always a list,
also for Id objects
dbUnquoteIdentifier(ANSI(), Id("Catalog", "Schema", "Table"))

Quoting and unquoting are inverses
dbQuoteIdentifier(

ANSI(),
dbUnquoteIdentifier(ANSI(), SQL("UnqualifiedTable"))[[1]]

)

dbQuoteIdentifier(
ANSI(),
dbUnquoteIdentifier(ANSI(), Id("Schema", "Table"))[[1]]

)

dbWithTransaction Self-contained SQL transactions

Description

Given that transactions are implemented, this function allows you to pass in code that is run in
a transaction. The default method of dbWithTransaction() calls dbBegin() before executing
the code, and dbCommit() after successful completion, or dbRollback() in case of an error. The
advantage is that you don’t have to remember to do dbBegin() and dbCommit() or dbRollback()
– that is all taken care of. The special function dbBreak() allows an early exit with rollback, it can
be called only inside dbWithTransaction().

Usage

dbWithTransaction(conn, code, ...)

dbBreak()

Arguments

conn A DBIConnection object, as returned by dbConnect().

code An arbitrary block of R code.

... Other parameters passed on to methods.

Details

DBI implements dbWithTransaction(), backends should need to override this generic only if they
implement specialized handling.

78 dbWithTransaction

Value

dbWithTransaction() returns the value of the executed code.

Failure modes

Failure to initiate the transaction (e.g., if the connection is closed or invalid of if dbBegin() has
been called already) gives an error.

Specification

dbWithTransaction() initiates a transaction with dbBegin(), executes the code given in the code
argument, and commits the transaction with dbCommit(). If the code raises an error, the transaction
is instead aborted with dbRollback(), and the error is propagated. If the code calls dbBreak(),
execution of the code stops and the transaction is silently aborted. All side effects caused by the
code (such as the creation of new variables) propagate to the calling environment.

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "cash", data.frame(amount = 100))
dbWriteTable(con, "account", data.frame(amount = 2000))

All operations are carried out as logical unit:
dbWithTransaction(

con,
{
withdrawal <- 300
dbExecute(con, "UPDATE cash SET amount = amount + ?", list(withdrawal))
dbExecute(con, "UPDATE account SET amount = amount - ?", list(withdrawal))

}
)

The code is executed as if in the curent environment:
withdrawal

The changes are committed to the database after successful execution:
dbReadTable(con, "cash")
dbReadTable(con, "account")

Rolling back with dbBreak():
dbWithTransaction(

con,
{

withdrawal <- 5000
dbExecute(con, "UPDATE cash SET amount = amount + ?", list(withdrawal))
dbExecute(con, "UPDATE account SET amount = amount - ?", list(withdrawal))
if (dbReadTable(con, "account")$amount < 0) {

dbBreak()
}

}
)

These changes were not committed to the database:
dbReadTable(con, "cash")
dbReadTable(con, "account")

dbWriteTable 79

dbDisconnect(con)

dbWriteTable Copy data frames to database tables

Description

Writes, overwrites or appends a data frame to a database table, optionally converting row names to
a column and specifying SQL data types for fields.

Usage

dbWriteTable(conn, name, value, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().
name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

value A data.frame (or coercible to data.frame).
... Other parameters passed on to methods.

Details

This function expects a data frame. Use dbWriteTableArrow() to write an Arrow object.

This function is useful if you want to create and load a table at the same time. Use dbAppendTable()
or dbAppendTableArrow() for appending data to an existing table, dbCreateTable() or dbCreateTableArrow()
for creating a table, and dbExistsTable() and dbRemoveTable() for overwriting tables.

DBI only standardizes writing data frames with dbWriteTable(). Some backends might imple-
ment methods that can consume CSV files or other data formats. For details, see the documentation
for the individual methods.

Value

dbWriteTable() returns TRUE, invisibly.

Failure modes

If the table exists, and both append and overwrite arguments are unset, or append = TRUE and
the data frame with the new data has different column names, an error is raised; the remote table
remains unchanged.

An error is raised when calling this method for a closed or invalid connection. An error is also
raised if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar.
Invalid values for the additional arguments row.names, overwrite, append, field.types, and
temporary (non-scalars, unsupported data types, NA, incompatible values, duplicate or missing
names, incompatible columns) also raise an error.

80 dbWriteTable

Additional arguments

The following arguments are not part of the dbWriteTable() generic (to improve compatibility
across backends) but are part of the DBI specification:

• row.names (default: FALSE)

• overwrite (default: FALSE)

• append (default: FALSE)

• field.types (default: NULL)

• temporary (default: FALSE)

They must be provided as named arguments. See the "Specification" and "Value" sections for details
on their usage.

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbWriteTable() will do the quoting, perhaps by calling
dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

The value argument must be a data frame with a subset of the columns of the existing table if
append = TRUE. The order of the columns does not matter with append = TRUE.

If the overwrite argument is TRUE, an existing table of the same name will be overwritten. This
argument doesn’t change behavior if the table does not exist yet.

If the append argument is TRUE, the rows in an existing table are preserved, and the new data are
appended. If the table doesn’t exist yet, it is created.

If the temporary argument is TRUE, the table is not available in a second connection and is gone
after reconnecting. Not all backends support this argument. A regular, non-temporary table is
visible in a second connection, in a pre-existing connection, and after reconnecting to the database.

SQL keywords can be used freely in table names, column names, and data. Quotes, commas,
spaces, and other special characters such as newlines and tabs, can also be used in the data, and, if
the database supports non-syntactic identifiers, also for table names and column names.

The following data types must be supported at least, and be read identically with dbReadTable():

• integer

• numeric (the behavior for Inf and NaN is not specified)

• logical

• NA as NULL

• 64-bit values (using "bigint" as field type); the result can be

– converted to a numeric, which may lose precision,
– converted a character vector, which gives the full decimal representation
– written to another table and read again unchanged

• character (in both UTF-8 and native encodings), supporting empty strings before and after a
non-empty string

• factor (returned as character)

• list of raw (if supported by the database)

dbWriteTable 81

• objects of type blob::blob (if supported by the database)

• date (if supported by the database; returned as Date), also for dates prior to 1970 or 1900 or
after 2038

• time (if supported by the database; returned as objects that inherit from difftime)

• timestamp (if supported by the database; returned as POSIXct respecting the time zone but not
necessarily preserving the input time zone), also for timestamps prior to 1970 or 1900 or after
2038 respecting the time zone but not necessarily preserving the input time zone)

Mixing column types in the same table is supported.

The field.types argument must be a named character vector with at most one entry for each
column. It indicates the SQL data type to be used for a new column. If a column is missed from
field.types, the type is inferred from the input data with dbDataType().

The interpretation of rownames depends on the row.names argument, see sqlRownamesToColumn()
for details:

• If FALSE or NULL, row names are ignored.

• If TRUE, row names are converted to a column named "row_names", even if the input data
frame only has natural row names from 1 to nrow(...).

• If NA, a column named "row_names" is created if the data has custom row names, no extra
column is created in the case of natural row names.

• If a string, this specifies the name of the column in the remote table that contains the row
names, even if the input data frame only has natural row names.

The default is row.names = FALSE.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(),
dbSendStatement(), dbUnquoteIdentifier(), dbWriteTableArrow()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTable(con, "mtcars", mtcars[1:5,])
dbReadTable(con, "mtcars")

dbWriteTable(con, "mtcars", mtcars[6:10,], append = TRUE)
dbReadTable(con, "mtcars")

dbWriteTable(con, "mtcars", mtcars[1:10,], overwrite = TRUE)
dbReadTable(con, "mtcars")

No row names
dbWriteTable(con, "mtcars", mtcars[1:10,], overwrite = TRUE, row.names = FALSE)
dbReadTable(con, "mtcars")

82 dbWriteTableArrow

dbWriteTableArrow Copy Arrow objects to database tables

Description

[Experimental]

Writes, overwrites or appends an Arrow object to a database table.

Usage

dbWriteTableArrow(conn, name, value, ...)

Arguments

conn A DBIConnection object, as returned by dbConnect().

name The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

value An nanoarray stream, or an object coercible to a nanoarray stream with nanoarrow::as_nanoarrow_array_stream().

... Other parameters passed on to methods.

Details

This function expects an Arrow object. Convert a data frame to an Arrow object with nanoarrow::as_nanoarrow_array_stream()
or use dbWriteTable() to write a data frame.

This function is useful if you want to create and load a table at the same time. Use dbAppendTableArrow()
for appending data to an existing table, dbCreateTableArrow() for creating a table and specifying
field types, and dbRemoveTable() for overwriting tables.

Value

dbWriteTableArrow() returns TRUE, invisibly.

Failure modes

If the table exists, and both append and overwrite arguments are unset, or append = TRUE and
the data frame with the new data has different column names, an error is raised; the remote table
remains unchanged.

An error is raised when calling this method for a closed or invalid connection. An error is also raised
if name cannot be processed with dbQuoteIdentifier() or if this results in a non-scalar. Invalid
values for the additional arguments overwrite, append, and temporary (non-scalars, unsupported
data types, NA, incompatible values, incompatible columns) also raise an error.

dbWriteTableArrow 83

Additional arguments

The following arguments are not part of the dbWriteTableArrow() generic (to improve compati-
bility across backends) but are part of the DBI specification:

• overwrite (default: FALSE)

• append (default: FALSE)

• temporary (default: FALSE)

They must be provided as named arguments. See the "Specification" and "Value" sections for details
on their usage.

Specification

The name argument is processed as follows, to support databases that allow non-syntactic names for
their objects:

• If an unquoted table name as string: dbWriteTableArrow() will do the quoting, perhaps by
calling dbQuoteIdentifier(conn, x = name)

• If the result of a call to dbQuoteIdentifier(): no more quoting is done

The value argument must be a data frame with a subset of the columns of the existing table if
append = TRUE. The order of the columns does not matter with append = TRUE.

If the overwrite argument is TRUE, an existing table of the same name will be overwritten. This
argument doesn’t change behavior if the table does not exist yet.

If the append argument is TRUE, the rows in an existing table are preserved, and the new data are
appended. If the table doesn’t exist yet, it is created.

If the temporary argument is TRUE, the table is not available in a second connection and is gone
after reconnecting. Not all backends support this argument. A regular, non-temporary table is
visible in a second connection, in a pre-existing connection, and after reconnecting to the database.

SQL keywords can be used freely in table names, column names, and data. Quotes, commas,
spaces, and other special characters such as newlines and tabs, can also be used in the data, and, if
the database supports non-syntactic identifiers, also for table names and column names.

The following data types must be supported at least, and be read identically with dbReadTable():

• integer

• numeric (the behavior for Inf and NaN is not specified)

• logical

• NA as NULL

• 64-bit values (using "bigint" as field type); the result can be

– converted to a numeric, which may lose precision,
– converted a character vector, which gives the full decimal representation
– written to another table and read again unchanged

• character (in both UTF-8 and native encodings), supporting empty strings before and after a
non-empty string

• factor (possibly returned as character)

• objects of type blob::blob (if supported by the database)

• date (if supported by the database; returned as Date), also for dates prior to 1970 or 1900 or
after 2038

84 Id-class

• time (if supported by the database; returned as objects that inherit from difftime)
• timestamp (if supported by the database; returned as POSIXct respecting the time zone but not

necessarily preserving the input time zone), also for timestamps prior to 1970 or 1900 or after
2038 respecting the time zone but not necessarily preserving the input time zone)

Mixing column types in the same table is supported.

See Also

Other DBIConnection generics: DBIConnection-class, dbAppendTable(), dbAppendTableArrow(),
dbCreateTable(), dbCreateTableArrow(), dbDataType(), dbDisconnect(), dbExecute(), dbExistsTable(),
dbGetException(), dbGetInfo(), dbGetQuery(), dbGetQueryArrow(), dbIsReadOnly(), dbIsValid(),
dbListFields(), dbListObjects(), dbListResults(), dbListTables(), dbQuoteIdentifier(),
dbReadTable(), dbReadTableArrow(), dbRemoveTable(), dbSendQuery(), dbSendQueryArrow(),
dbSendStatement(), dbUnquoteIdentifier(), dbWriteTable()

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

dbWriteTableArrow(con, "mtcars", nanoarrow::as_nanoarrow_array_stream(mtcars[1:5,]))
dbReadTable(con, "mtcars")

dbDisconnect(con)

Id-class Refer to a table nested in a hierarchy (e.g. within a schema)

Description

Objects of class Id have a single slot name, which is a character vector. The dbQuoteIdentifier()
method converts Id objects to strings. Support for Id objects depends on the database backend.

They can be used in the following methods as name or table argument:

• dbCreateTable()

• dbAppendTable()

• dbReadTable()

• dbWriteTable()

• dbExistsTable()

• dbRemoveTable()

Objects of this class are also returned from dbListObjects().

Usage

Id(...)

Arguments

... Components of the hierarchy, e.g. cluster, catalog, schema, or table, de-
pending on the database backend. For more on these concepts, see https:
//stackoverflow.com/questions/7022755/

https://stackoverflow.com/questions/7022755/
https://stackoverflow.com/questions/7022755/

rownames 85

Examples

Identifies a table in a specific schema:
Id("dbo", "Customer")
You can name the components if you want, but it's not needed
Id(table = "Customer", schema = "dbo")

Create a SQL expression for an identifier:
dbQuoteIdentifier(ANSI(), Id("nycflights13", "flights"))

Write a table in a specific schema:
Not run:
dbWriteTable(con, Id("myschema", "mytable"), data.frame(a = 1))

End(Not run)

rownames Convert row names back and forth between columns

Description

These functions provide a reasonably automatic way of preserving the row names of data frame
during back-and-forth translation to an SQL table. By default, row names will be converted to
an explicit column called "row_names", and any query returning a column called "row_names"
will have those automatically set as row names. These methods are mostly useful for backend
implementers.

Usage

sqlRownamesToColumn(df, row.names = NA)

sqlColumnToRownames(df, row.names = NA)

Arguments

df A data frame
row.names Either TRUE, FALSE, NA or a string.

If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

Examples

If have row names
sqlRownamesToColumn(head(mtcars))
sqlRownamesToColumn(head(mtcars), FALSE)
sqlRownamesToColumn(head(mtcars), "ROWNAMES")

If don't have
sqlRownamesToColumn(head(iris))
sqlRownamesToColumn(head(iris), TRUE)
sqlRownamesToColumn(head(iris), "ROWNAMES")

86 SQL

SQL SQL quoting

Description

This set of classes and generics make it possible to flexibly deal with SQL escaping needs. By
default, any user supplied input to a query should be escaped using either dbQuoteIdentifier()
or dbQuoteString() depending on whether it refers to a table or variable name, or is a literal
string. These functions may return an object of the SQL class, which tells DBI functions that a
character string does not need to be escaped anymore, to prevent double escaping. The SQL class
has associated the SQL() constructor function.

Usage

SQL(x, ..., names = NULL)

Arguments

x A character vector to label as being escaped SQL.

... Other arguments passed on to methods. Not otherwise used.

names Names for the returned object, must have the same length as x.

Value

An object of class SQL.

Implementation notes

DBI provides default generics for SQL-92 compatible quoting. If the database uses a different
convention, you will need to provide your own methods. Note that because of the way that S4 dis-
patch finds methods and because SQL inherits from character, if you implement (e.g.) a method for
dbQuoteString(MyConnection, character), you will also need to implement dbQuoteString(MyConnection,
SQL) - this should simply return x unchanged.

Examples

dbQuoteIdentifier(ANSI(), "SELECT")
dbQuoteString(ANSI(), "SELECT")

SQL vectors are always passed through as is
var_name <- SQL("SELECT")
var_name

dbQuoteIdentifier(ANSI(), var_name)
dbQuoteString(ANSI(), var_name)

This mechanism is used to prevent double escaping
dbQuoteString(ANSI(), dbQuoteString(ANSI(), "SELECT"))

sqlAppendTable 87

sqlAppendTable Compose query to insert rows into a table

Description

sqlAppendTable() generates a single SQL string that inserts a data frame into an existing table.
sqlAppendTableTemplate() generates a template suitable for use with dbBind(). The default
methods are ANSI SQL 99 compliant. These methods are mostly useful for backend implementers.

Usage

sqlAppendTable(con, table, values, row.names = NA, ...)

sqlAppendTableTemplate(
con,
table,
values,
row.names = NA,
prefix = "?",
...,
pattern = ""

)

Arguments

con A database connection.

table The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

values A data frame. Factors will be converted to character vectors. Character vectors
will be escaped with dbQuoteString().

row.names Either TRUE, FALSE, NA or a string.
If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

... Other arguments used by individual methods.

prefix Parameter prefix to use for placeholders.

pattern Parameter pattern to use for placeholders:

• "": no pattern
• "1": position
• anything else: field name

88 sqlCreateTable

Details

The row.names argument must be passed explicitly in order to avoid a compatibility warning. The
default will be changed in a later release.

Examples

sqlAppendTable(ANSI(), "iris", head(iris))

sqlAppendTable(ANSI(), "mtcars", head(mtcars))
sqlAppendTable(ANSI(), "mtcars", head(mtcars), row.names = FALSE)
sqlAppendTableTemplate(ANSI(), "iris", iris)

sqlAppendTableTemplate(ANSI(), "mtcars", mtcars)
sqlAppendTableTemplate(ANSI(), "mtcars", mtcars, row.names = FALSE)

sqlCreateTable Compose query to create a simple table

Description

Exposes an interface to simple CREATE TABLE commands. The default method is ANSI SQL 99
compliant. This method is mostly useful for backend implementers.

Usage

sqlCreateTable(con, table, fields, row.names = NA, temporary = FALSE, ...)

Arguments

con A database connection.

table The table name, passed on to dbQuoteIdentifier(). Options are:

• a character string with the unquoted DBMS table name, e.g. "table_name",
• a call to Id() with components to the fully qualified table name, e.g. Id(schema
= "my_schema", table = "table_name")

• a call to SQL() with the quoted and fully qualified table name given verba-
tim, e.g. SQL('"my_schema"."table_name"')

fields Either a character vector or a data frame.
A named character vector: Names are column names, values are types. Names
are escaped with dbQuoteIdentifier(). Field types are unescaped.
A data frame: field types are generated using dbDataType().

row.names Either TRUE, FALSE, NA or a string.
If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

temporary If TRUE, will generate a temporary table.

... Other arguments used by individual methods.

sqlData 89

Details

The row.names argument must be passed explicitly in order to avoid a compatibility warning. The
default will be changed in a later release.

Examples

sqlCreateTable(ANSI(), "my-table", c(a = "integer", b = "text"))
sqlCreateTable(ANSI(), "my-table", iris)

By default, character row names are converted to a row_names colum
sqlCreateTable(ANSI(), "mtcars", mtcars[, 1:5])
sqlCreateTable(ANSI(), "mtcars", mtcars[, 1:5], row.names = FALSE)

sqlData Convert a data frame into form suitable for upload to an SQL database

Description

This is a generic method that coerces R objects into vectors suitable for upload to the database. The
output will vary a little from method to method depending on whether the main upload device is
through a single SQL string or multiple parameterized queries. This method is mostly useful for
backend implementers.

Usage

sqlData(con, value, row.names = NA, ...)

Arguments

con A database connection.

value A data frame

row.names Either TRUE, FALSE, NA or a string.
If TRUE, always translate row names to a column called "row_names". If FALSE,
never translate row names. If NA, translate rownames only if they’re a character
vector.
A string is equivalent to TRUE, but allows you to override the default name.
For backward compatibility, NULL is equivalent to FALSE.

... Other arguments used by individual methods.

Details

The default method:

• Converts factors to characters

• Quotes all strings with dbQuoteIdentifier()

• Converts all columns to strings with dbQuoteLiteral()

• Replaces NA with NULL

90 sqlInterpolate

Examples

con <- dbConnect(RSQLite::SQLite(), ":memory:")

sqlData(con, head(iris))
sqlData(con, head(mtcars))

dbDisconnect(con)

sqlInterpolate Safely interpolate values into an SQL string

Description

Accepts a query string with placeholders for values, and returns a string with the values embedded.
The function is careful to quote all of its inputs with dbQuoteLiteral() to protect against SQL
injection attacks.

Placeholders can be specified with one of two syntaxes:

• ?: each occurrence of a standalone ? is replaced with a value

• ?name1, ?name2, ...: values are given as named arguments or a named list, the names are used
to match the values

Mixing ? and ?name syntaxes is an error. The number and names of values supplied must corre-
spond to the placeholders used in the query.

Usage

sqlInterpolate(conn, sql, ..., .dots = list())

Arguments

conn A DBIConnection object, as returned by dbConnect().

sql A SQL string containing variables to interpolate. Variables must start with a
question mark and can be any valid R identifier, i.e. it must start with a letter or
., and be followed by a letter, digit, . or _.

..., .dots Values (for ...) or a list (for .dots) to interpolate into a string. Names are
required if sql uses the ?name syntax for placeholders. All values will be first
escaped with dbQuoteLiteral() prior to interpolation to protect against SQL
injection attacks. Arguments created by SQL() or dbQuoteIdentifier() re-
main unchanged.

Value

The sql query with the values from ... and .dots safely embedded.

Backend authors

If you are implementing an SQL backend with non-ANSI quoting rules, you’ll need to implement a
method for sqlParseVariables(). Failure to do so does not expose you to SQL injection attacks,
but will (rarely) result in errors matching supplied and interpolated variables.

sqlInterpolate 91

Examples

sql <- "SELECT * FROM X WHERE name = ?name"
sqlInterpolate(ANSI(), sql, name = "Hadley")

This is safe because the single quote has been double escaped
sqlInterpolate(ANSI(), sql, name = "H'); DROP TABLE--;")

Using paste0() could lead to dangerous SQL with carefully crafted inputs
(SQL injection)
name <- "H'); DROP TABLE--;"
paste0("SELECT * FROM X WHERE name = '", name, "'")

Use SQL() or dbQuoteIdentifier() to avoid escaping
sql2 <- "SELECT * FROM ?table WHERE name in ?names"
sqlInterpolate(ANSI(), sql2,

table = dbQuoteIdentifier(ANSI(), "X"),
names = SQL("('a', 'b')")

)

Don't use SQL() to escape identifiers to avoid SQL injection
sqlInterpolate(ANSI(), sql2,

table = SQL("X; DELETE FROM X; SELECT * FROM X"),
names = SQL("('a', 'b')")

)

Use dbGetQuery() or dbExecute() to process these queries:
if (requireNamespace("RSQLite", quietly = TRUE)) {

con <- dbConnect(RSQLite::SQLite())
sql <- "SELECT ?value AS value"
query <- sqlInterpolate(con, sql, value = 3)
print(dbGetQuery(con, query))
dbDisconnect(con)

}

Index

∗ DBI classes
DBIConnection-class, 49
DBIConnector-class, 50
DBIDriver-class, 50
DBIObject-class, 51
DBIResult-class, 52
DBIResultArrow-class, 52

∗ DBIConnection generics
dbAppendTable, 5
dbAppendTableArrow, 7
dbCreateTable, 22
dbCreateTableArrow, 24
dbDataType, 25
dbDisconnect, 27
dbExecute, 28
dbExistsTable, 30
dbGetInfo, 38
dbGetQuery, 39
dbGetQueryArrow, 42
DBIConnection-class, 49
dbIsReadOnly, 53
dbIsValid, 53
dbListFields, 55
dbListObjects, 56
dbListTables, 57
dbQuoteIdentifier, 58
dbReadTable, 62
dbReadTableArrow, 64
dbRemoveTable, 66
dbSendQuery, 67
dbSendQueryArrow, 70
dbSendStatement, 73
dbUnquoteIdentifier, 76
dbWriteTable, 79
dbWriteTableArrow, 82

∗ DBIConnector generics
dbConnect, 20
dbDataType, 25
dbGetConnectArgs, 37
DBIConnector-class, 50
dbIsReadOnly, 53

∗ DBIDriver generics
dbCanConnect, 16

dbConnect, 20
dbDataType, 25
dbGetInfo, 38
DBIDriver-class, 50
dbIsReadOnly, 53
dbIsValid, 53

∗ DBIResult generics
dbBind, 11
dbClearResult, 17
dbColumnInfo, 19
dbFetch, 32
dbGetInfo, 38
dbGetRowCount, 44
dbGetRowsAffected, 45
dbGetStatement, 46
dbHasCompleted, 47
DBIResult-class, 52
dbIsReadOnly, 53
dbIsValid, 53
dbQuoteLiteral, 60
dbQuoteString, 61

∗ DBIResultArrow generics
dbBind, 11
dbClearResult, 17
dbFetchArrow, 34
dbFetchArrowChunk, 36
dbHasCompleted, 47
DBIResultArrow-class, 52
dbIsValid, 53

∗ SQL generation
sqlAppendTable, 87

∗ command execution generics
dbBind, 11
dbClearResult, 17
dbExecute, 28
dbGetRowsAffected, 45
dbSendStatement, 73

∗ data retrieval generics
dbBind, 11
dbClearResult, 17
dbFetch, 32
dbFetchArrow, 34
dbFetchArrowChunk, 36

92

INDEX 93

dbGetQuery, 39
dbGetQueryArrow, 42
dbHasCompleted, 47
dbSendQuery, 67
dbSendQueryArrow, 70

∗ datasets
.SQL92Keywords, 5

.SQL92Keywords, 5

as.character(), 21
as.data.frame(), 65
as.Date(), 33
as.integer(), 21
as.numeric(), 21
as.POSIXct(), 33

blob::blob, 6, 8, 14, 26, 81, 83

character, 14, 26, 33, 59–61

data.frame, 5, 14, 32, 35, 36, 40, 42, 79
Date, 14, 33
Dates, 26
DateTimeClasses, 26
dbAppendTable, 5, 9, 23, 25, 26, 28, 30, 31,

39, 41, 43, 49, 53, 54, 56–59, 64, 65,
67, 69, 72, 75, 76, 81, 84

dbAppendTable(), 7, 79, 84
dbAppendTableArrow, 7, 7, 23, 25, 26, 28, 30,

31, 39, 41, 43, 49, 53, 54, 56–59, 64,
65, 67, 69, 72, 75, 76, 81, 84

dbAppendTableArrow(), 5, 24, 79, 82
dbBegin, 9
dbBegin(), 77, 78
dbBind, 11, 18, 20, 30, 34, 35, 37, 39, 41, 43,

44, 46–48, 52–54, 60, 62, 70, 72, 75
dbBind(), 12–14, 17–19, 28, 29, 32, 35, 36,

40, 41, 43, 46, 48, 68, 69, 71, 72, 74,
75, 87

dbBindArrow (dbBind), 11
dbBindArrow(), 12–14, 17–19, 32, 35, 36, 45,

46, 48, 68, 71, 73, 74
dbBreak (dbWithTransaction), 77
dbCanConnect, 16, 21, 26, 39, 51, 53, 54
dbCanConnect(), 20
dbClearResult, 14, 15, 17, 20, 30, 34, 35, 37,

39, 41, 43, 44, 46–48, 52–54, 60, 62,
70, 72, 75

dbClearResult(), 12–14, 17–19, 28, 33–35,
37, 39, 42, 44, 46–48, 54, 67–74

dbColumnInfo, 14, 18, 19, 34, 39, 44, 46–48,
52–54, 60, 62

dbColumnInfo(), 12, 17, 19, 32, 48, 56, 68

dbCommit (dbBegin), 9
dbCommit(), 77, 78
dbConnect, 16, 20, 26, 27, 38, 39, 50, 51, 53,

54
dbConnect(), 4, 5, 8, 9, 12, 13, 16–19, 22, 24,

27, 28, 30, 32, 35–37, 40, 42, 45, 48,
50, 55, 56, 58–62, 64, 66–68, 71, 73,
76, 77, 79, 82, 90

dbCreateTable, 7, 9, 22, 25, 26, 28, 30, 31,
39, 41, 43, 49, 53, 54, 56–59, 64, 65,
67, 69, 72, 75, 76, 81, 84

dbCreateTable(), 5, 24, 79, 84
dbCreateTableArrow, 7, 9, 23, 24, 26, 28, 30,

31, 39, 41, 43, 49, 53, 54, 56–59, 64,
65, 67, 69, 72, 75, 76, 81, 84

dbCreateTableArrow(), 7, 22, 79, 82
dbDataType, 7, 9, 16, 21, 23, 25, 25, 28, 30,

31, 38, 39, 41, 43, 49–51, 53, 54,
56–59, 64, 65, 67, 69, 72, 75, 76, 81,
84

dbDataType(), 22, 26, 81, 88
dbDisconnect, 7, 9, 23, 25, 26, 27, 30, 31, 39,

41, 43, 49, 53, 54, 56–59, 64, 65, 67,
69, 72, 75, 76, 81, 84

dbDisconnect(), 4, 21, 54
dbDriver, 16, 21, 26, 39, 51, 53, 54
dbExecute, 7, 9, 15, 18, 23, 25, 26, 28, 28, 31,

39, 41, 43, 46, 49, 53, 54, 56–59, 64,
65, 67, 69, 72, 75, 76, 81, 84

dbExecute(), 5, 13, 18, 22, 39–43, 45, 69, 72,
73

dbExistsTable, 7, 9, 23, 25, 26, 28, 30, 30,
39, 41, 43, 49, 53, 54, 56–59, 64, 65,
67, 69, 72, 75, 76, 81, 84

dbExistsTable(), 57, 67, 79, 84
dbFetch, 14, 15, 18, 20, 32, 35, 37, 39, 41, 43,

44, 46–48, 52–54, 60, 62, 70, 72
dbFetch(), 11–14, 17, 19, 33, 39, 44, 45, 47,

48, 67, 68
dbFetchArrow, 14, 15, 18, 34, 34, 37, 41, 43,

48, 52, 54, 70, 72
dbFetchArrow(), 11, 13, 35, 36, 42, 70, 71
dbFetchArrowChunk, 14, 15, 18, 34, 35, 36,

41, 43, 48, 52, 54, 70, 72
dbFetchArrowChunk(), 34
dbGetConnectArgs, 21, 27, 37, 50, 53
dbGetConnectArgs(), 50
dbGetException, 7, 9, 23, 25, 26, 28, 30, 31,

39, 41, 43, 49, 53, 54, 56–59, 64, 65,
67, 69, 72, 75, 76, 81, 84

dbGetInfo, 7, 9, 14, 16, 18, 20, 21, 23, 25, 26,
28, 30, 31, 34, 38, 41, 43, 44, 46–49,

94 INDEX

51–54, 56–60, 62, 64, 65, 67, 69, 72,
75, 76, 81, 84

dbGetInfo(), 51
dbGetQuery, 7, 9, 15, 18, 23, 25, 26, 28, 30,

31, 34, 35, 37, 39, 39, 43, 48, 49, 53,
54, 56–59, 64, 65, 67, 69, 70, 72, 75,
76, 81, 84

dbGetQuery(), 4, 12, 17, 19, 28, 30, 32, 42,
48, 59, 63, 67, 68, 70, 75

dbGetQueryArrow, 7, 9, 15, 18, 23, 25, 26, 28,
30, 31, 34, 35, 37, 39, 41, 42, 48, 49,
53, 54, 56–59, 64, 65, 67, 69, 70, 72,
75, 76, 81, 84

dbGetQueryArrow(), 12, 35, 36, 39, 65, 67,
70, 71

dbGetRowCount, 14, 18, 20, 34, 39, 44, 46–48,
52–54, 60, 62

dbGetRowCount(), 13, 39
dbGetRowsAffected, 14, 15, 18, 20, 30, 34,

39, 44, 45, 47, 48, 52–54, 60, 62, 75
dbGetRowsAffected(), 13, 14, 18, 28, 39, 46,

73, 74
dbGetStatement, 14, 18, 20, 34, 39, 44, 46,

46, 48, 52–54, 60, 62
dbGetStatement(), 39
dbHasCompleted, 14, 15, 18, 20, 34, 35, 37,

39, 41, 43, 44, 46, 47, 47, 52–54, 60,
62, 70, 72

dbHasCompleted(), 12, 14, 17, 19, 33, 39, 48,
68

DBI (DBI-package), 3
DBI-package, 3
DBIConnection, 4, 5, 8–10, 16, 20–22, 24,

26–28, 30, 38, 40, 42, 53–56, 58–62,
64, 66, 67, 71, 73, 76, 77, 79, 82, 90

DBIConnection-class, 49
DBIConnector, 37, 38
DBIConnector-class, 50
DBIDriver, 4, 16, 20, 26, 38, 50, 53, 54
DBIDriver-class, 50
DBIObject, 38, 53, 54
DBIObject-class, 51
DBIResult, 4, 11–13, 17–19, 32, 38, 39,

44–48, 53, 54, 68, 73
DBIResult-class, 52
DBIResultArrow, 13, 35, 36, 71
DBIResultArrow-class, 52
DBIResultArrowDefault-class

(DBIResultArrow-class), 52
dbIsReadOnly, 7, 9, 14, 16, 18, 20, 21, 23,

25–28, 30, 31, 34, 38, 39, 41, 43, 44,
46–52, 53, 54, 56–60, 62, 64, 65, 67,

69, 72, 75, 76, 81, 84
dbIsValid, 7, 9, 14, 16, 18, 20, 21, 23, 25, 26,

28, 30, 31, 34, 35, 37, 39, 41, 43, 44,
46–49, 51–53, 53, 56–60, 62, 64, 65,
67, 69, 72, 75, 76, 81, 84

dbIsValid(), 14
dbListConnections, 16, 21, 26, 39, 51, 53, 54
dbListFields, 7, 9, 23, 25, 26, 28, 30, 31, 39,

41, 43, 49, 53, 54, 55, 57–59, 64, 65,
67, 70, 72, 75, 76, 81, 84

dbListObjects, 7, 9, 23, 25, 26, 28, 30, 31,
39, 41, 43, 49, 53, 54, 56, 56, 58, 59,
64, 65, 67, 70, 72, 75, 76, 81, 84

dbListObjects(), 55, 84
dbListResults, 7, 9, 23, 25, 26, 28, 30, 31,

39, 41, 43, 49, 53, 54, 56–59, 64, 65,
67, 70, 72, 75, 76, 81, 84

dbListTables, 7, 9, 23, 25, 26, 28, 30, 31, 39,
41, 43, 49, 53, 54, 56, 57, 57, 59, 64,
65, 67, 70, 72, 75, 76, 81, 84

dbListTables(), 31, 56, 57, 67
dbQuoteIdentifier, 7, 9, 23, 25, 26, 28, 30,

31, 39, 41, 43, 49, 53, 54, 56–58, 58,
64, 65, 67, 70, 72, 75, 76, 81, 84

dbQuoteIdentifier(), 5–9, 22–25, 30, 31,
55–57, 62–67, 76, 79, 80, 82–84,
86–90

dbQuoteLiteral, 14, 18, 20, 34, 39, 44,
46–48, 52–54, 60, 62

dbQuoteLiteral(), 89, 90
dbQuoteString, 14, 18, 20, 34, 39, 44, 46–48,

52–54, 60, 61
dbQuoteString(), 86, 87
dbReadTable, 7, 9, 23, 25, 27, 28, 30, 31, 39,

41, 43, 49, 53, 54, 56–59, 62, 65, 67,
70, 72, 75, 76, 81, 84

dbReadTable(), 4, 6, 8, 64, 65, 80, 83, 84
dbReadTableArrow, 7, 9, 23, 25, 27, 28, 30,

31, 39, 41, 43, 49, 53, 54, 56–59, 64,
64, 67, 70, 72, 75, 76, 81, 84

dbReadTableArrow(), 62, 63
dbRemoveTable, 7, 9, 23, 25, 27, 28, 30, 31,

39, 41, 43, 49, 53, 54, 56–59, 64, 65,
66, 70, 72, 75, 76, 81, 84

dbRemoveTable(), 79, 82, 84
dbRollback (dbBegin), 9
dbRollback(), 77, 78
dbSendQuery, 7, 9, 15, 18, 23, 25, 27, 28, 30,

31, 34, 35, 37, 39, 41, 43, 48, 49, 53,
54, 56–59, 64, 65, 67, 67, 72, 75, 76,
81, 84

dbSendQuery(), 11–13, 17–19, 30, 32, 39,

INDEX 95

44–48, 54, 68, 70, 73, 75
dbSendQueryArrow, 7, 9, 15, 18, 23, 25, 27,

28, 30, 31, 34, 35, 37, 39, 41, 43, 48,
49, 53, 54, 56–59, 64, 65, 67, 70, 70,
75, 76, 81, 84

dbSendQueryArrow(), 11–13, 35, 36, 42, 67,
71

dbSendStatement, 7, 9, 15, 18, 23, 25, 27, 28,
30, 31, 39, 41, 43, 46, 49, 53, 54,
56–59, 64, 65, 67, 70, 72, 73, 76, 81,
84

dbSendStatement(), 11–13, 17, 18, 28, 33,
41, 43–47, 54, 68, 69, 71–73

dbUnquoteIdentifier, 7, 9, 23, 25, 27, 28,
30, 31, 39, 41, 43, 49, 53, 54, 56–59,
64, 65, 67, 70, 72, 75, 76, 81, 84

dbUnquoteIdentifier(), 56–58
dbWithTransaction, 77
dbWithTransaction(), 10
dbWriteTable, 7, 9, 23, 25, 27, 28, 30, 31, 39,

41, 43, 49, 53, 54, 56–59, 64, 65, 67,
70, 72, 75, 76, 79, 84

dbWriteTable(), 4, 57, 58, 66, 82, 84
dbWriteTableArrow, 7, 9, 23, 25, 27, 28, 30,

31, 39, 41, 43, 49, 53, 54, 56–59, 64,
65, 67, 70, 72, 75, 76, 81, 82

dbWriteTableArrow(), 79
difftime, 14, 26

factor, 14, 26
fetch (dbFetch), 32
format(), 21

hms::as_hms(), 33

I(), 26
Id, 57, 59, 76
Id (Id-class), 84
Id(), 5, 8, 22, 24, 30, 55, 63, 64, 66, 79, 82,

87, 88
Id-class, 84
Inf, 33, 40
integer, 14, 26, 33
is.na(), 60, 62

logical, 14, 26, 33

NA, 14, 33
nanoarrow::as_nanoarrow_array(), 37
nanoarrow::as_nanoarrow_array_stream(),

8, 11, 35, 42, 82
nanoarrow::infer_nanoarrow_schema(),

24

NULL, 33
numeric, 14, 26, 33

on.exit(), 12, 13, 17–19, 33, 35, 37, 46, 48,
68, 71, 74

ordered, 26

POSIXct, 14, 33
POSIXlt, 14

raw, 14, 26, 33
rbind(), 14
rownames, 63, 81, 85

SQL, 59–61, 76, 86
SQL(), 5, 8, 22, 24, 31, 55, 63, 64, 66, 76, 79,

82, 87, 88, 90
SQL-class (SQL), 86
sqlAppendTable, 87
sqlAppendTable(), 6
sqlAppendTableTemplate

(sqlAppendTable), 87
sqlAppendTableTemplate(), 5
sqlColumnToRownames (rownames), 85
sqlColumnToRownames(), 63
sqlCreateTable, 88
sqlCreateTable(), 22
sqlData, 89
sqlInterpolate, 90
sqlParseVariables(), 90
sqlRownamesToColumn (rownames), 85
sqlRownamesToColumn(), 6, 22, 81
summary(), 51

transactions, 77
transactions (dbBegin), 9

withr::defer(), 12, 13, 17–19, 33, 35, 37,
46, 48, 68, 71, 74

	DBI-package
	.SQL92Keywords
	dbAppendTable
	dbAppendTableArrow
	dbBegin
	dbBind
	dbCanConnect
	dbClearResult
	dbColumnInfo
	dbConnect
	dbCreateTable
	dbCreateTableArrow
	dbDataType
	dbDisconnect
	dbExecute
	dbExistsTable
	dbFetch
	dbFetchArrow
	dbFetchArrowChunk
	dbGetConnectArgs
	dbGetInfo
	dbGetQuery
	dbGetQueryArrow
	dbGetRowCount
	dbGetRowsAffected
	dbGetStatement
	dbHasCompleted
	DBIConnection-class
	DBIConnector-class
	DBIDriver-class
	DBIObject-class
	DBIResult-class
	DBIResultArrow-class
	dbIsReadOnly
	dbIsValid
	dbListFields
	dbListObjects
	dbListTables
	dbQuoteIdentifier
	dbQuoteLiteral
	dbQuoteString
	dbReadTable
	dbReadTableArrow
	dbRemoveTable
	dbSendQuery
	dbSendQueryArrow
	dbSendStatement
	dbUnquoteIdentifier
	dbWithTransaction
	dbWriteTable
	dbWriteTableArrow
	Id-class
	rownames
	SQL
	sqlAppendTable
	sqlCreateTable
	sqlData
	sqlInterpolate
	Index

