Estimation of the instantaneous reproduction number with Laplacian-P-splines following the methodology of Gressani et al. (2022) <doi:10.1371/journal.pcbi.1010618>. The negative binomial distribution is used to model the time series of incidence data. Two methods are available for inference : (1) a sampling-free approach based on a maximum a posteriori calibration of the hyperparameter vector and (2) a fully stochastic approach with a Metropolis-adjusted Langevin algorithm for efficient sampling of the posterior distribution.
Version: | 1.1.0 |
Depends: | R (≥ 4.1.0) |
Imports: | Rcpp (≥ 1.0.7), coda (≥ 0.19-4), EpiEstim (≥ 2.2-4), ggplot2 (≥ 3.3.5), gridExtra (≥ 2.3) |
LinkingTo: | RcppArmadillo, Rcpp |
Suggests: | rmarkdown, knitr |
Published: | 2023-04-05 |
Author: | Oswaldo Gressani |
Maintainer: | Oswaldo Gressani <oswaldo_gressani at hotmail.fr> |
BugReports: | https://github.com/oswaldogressani/EpiLPS/issues |
License: | GPL-3 |
Copyright: | see file COPYRIGHTS |
URL: | <https://github.com/oswaldogressani/EpiLPS> |
NeedsCompilation: | yes |
Citation: | EpiLPS citation info |
Materials: | README NEWS |
CRAN checks: | EpiLPS results |
Reference manual: | EpiLPS.pdf |
Vignettes: |
EpiLPS-vignette |
Package source: | EpiLPS_1.1.0.tar.gz |
Windows binaries: | r-devel: EpiLPS_1.1.0.zip, r-release: EpiLPS_1.1.0.zip, r-oldrel: EpiLPS_1.1.0.zip |
macOS binaries: | r-release (arm64): EpiLPS_1.1.0.tgz, r-oldrel (arm64): EpiLPS_1.1.0.tgz, r-release (x86_64): EpiLPS_1.1.0.tgz, r-oldrel (x86_64): EpiLPS_1.1.0.tgz |
Old sources: | EpiLPS archive |
Please use the canonical form https://CRAN.R-project.org/package=EpiLPS to link to this page.