Calculating incidence or prevalence requires first identifying an
appropriate denominator population. To find such a denominator
population (or multiple denominator populations) we can use the
generateDenominatorCohortSet()
function. This function will
identify the time that people in the database satisfy a set of criteria
related to the study period and individuals´ age, sex, and amount of
prior observed history.
When using generateDenominatorCohortSet()
, and in the
absence of a strata cohort (see below), individuals will enter a
denominator population on the respective date of the latest of the
following:
They will then exit on the respective date of the earliest of the following:
Let´s go through a few examples to make this logic a little more concrete.
The simplest case is that no study start and end dates are specified, no prior history requirement is imposed, nor any age or sex criteria. In this case individuals will enter the denominator population once they have entered the database (start of observation period) and will leave when they exit the database (end of observation period). Note that in some databases a person can have multiple observation periods, in which case their contribution of person time would look like the the last person below.
#> Warning: package 'knitr' was built under R version 4.2.3
#> Warning: package 'here' was built under R version 4.2.2
If we specify a study start and end date then only observation time during this period will be included.
If we also add some requirement of prior history then somebody will only contribute time at risk once this is reached.
Lastly we can also impose age and sex criteria, and now individuals will only contribute time when they also satisfy these criteria. Not shown in the below figure is a person´s sex, but we could also stratify a denominator population by this as well.
generateDenominatorCohortSet()
is the function we use to
identify a set of denominator populations. To demonstrate its use, let´s
load the IncidencePrevalence package (along with a couple of packages to
help for subsequent plots) and generate 500 example patients using the
mockIncidencePrevalenceRef()
function.
library(IncidencePrevalence)
library(ggplot2)
library(tidyr)
<- mockIncidencePrevalenceRef(sampleSize = 500) cdm
We can get a denominator population without including any particular requirements like so
<- generateDenominatorCohortSet(
cdm cdm = cdm,
cohortDateRange = NULL,
ageGroup = list(c(0, 150)),
sex = "Both",
daysPriorHistory = 0
)$denominator
cdm#> # Source: table<dbplyr_032> [?? x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 2 2018-11-27 2020-07-15
#> 2 1 3 2008-04-30 2008-09-19
#> 3 1 4 2016-02-24 2016-07-14
#> 4 1 6 2006-04-29 2007-03-15
#> 5 1 7 2014-05-19 2016-03-09
#> 6 1 8 2016-05-19 2018-01-01
#> 7 1 9 2006-11-14 2008-09-29
#> 8 1 10 2009-12-16 2011-11-26
#> 9 1 11 2011-12-20 2012-07-30
#> 10 1 12 2015-05-09 2016-03-25
#> # ℹ more rows
$denominator %>%
cdmfilter(subject_id %in% c("1", "2", "3", "4", "5"))
#> # Source: SQL [5 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 2 2018-11-27 2020-07-15
#> 2 1 3 2008-04-30 2008-09-19
#> 3 1 4 2016-02-24 2016-07-14
#> 4 1 5 2019-03-01 2019-03-18
#> 5 1 1 2008-10-12 2010-01-09
Let´s have a look at the included time of the first five patients
We can also plot a histogram of start and end dates of the 500 simulated patients
$denominator %>%
cdmcollect() %>%
ggplot() +
theme_minimal() +
geom_histogram(aes(cohort_start_date),
colour = "black", fill = "grey"
)
$denominator %>%
cdmcollect() %>%
ggplot() +
theme_minimal() +
geom_histogram(aes(cohort_end_date),
colour = "black", fill = "grey"
)
We can get specify a study period like so
<- generateDenominatorCohortSet(
cdm cdm = cdm,
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
ageGroup = list(c(0, 150)),
sex = "Both",
daysPriorHistory = 0
)$denominator
cdm#> # Source: table<dbplyr_040> [?? x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 3 2008-04-30 2008-09-19
#> 2 1 9 2008-01-01 2008-09-29
#> 3 1 10 2009-12-16 2010-01-01
#> 4 1 20 2008-01-01 2008-05-28
#> 5 1 22 2008-10-23 2008-12-12
#> 6 1 24 2008-01-01 2008-06-21
#> 7 1 35 2008-02-29 2008-08-09
#> 8 1 43 2008-08-01 2009-01-20
#> 9 1 48 2008-01-01 2009-02-19
#> 10 1 54 2008-01-01 2009-04-03
#> # ℹ more rows
cohortCount(cdm$denominator)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <dbl> <dbl>
#> 1 1 106 106
$denominator %>%
cdmfilter(subject_id %in% c("1", "2", "3", "4", "5"))
#> # Source: SQL [2 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 3 2008-04-30 2008-09-19
#> 2 1 1 2008-10-12 2010-01-01
Now we can see the person “2”, “4” and “5” haven´t been included as they don´t have any observation time during the study period. Indeed, we´re now including 106 of the original 500 simulated patients.
$denominator %>%
cdmfilter(subject_id %in% c("1", "2", "3", "4", "5")) %>%
collect() %>%
pivot_longer(cols = c(
"cohort_start_date",
"cohort_end_date"
%>%
)) ggplot() +
geom_point(aes(x = value, y = subject_id)) +
geom_line(aes(x = value, y = subject_id)) +
theme_minimal() +
xlab("Year")
We can also plot a histogram of start and end dates and we can see that now most people enter at the start of the study period and leave at the end.
$denominator %>%
cdmcollect() %>%
ggplot() +
theme_minimal() +
geom_histogram(aes(cohort_start_date),
colour = "black", fill = "grey"
)
$denominator %>%
cdmcollect() %>%
ggplot() +
theme_minimal() +
geom_histogram(aes(cohort_end_date),
colour = "black", fill = "grey"
)
We can add some requirement of prior history
<- generateDenominatorCohortSet(
cdm cdm = cdm,
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
ageGroup = list(c(0, 150)),
sex = "Both",
daysPriorHistory = 365
)$denominator
cdm#> # Source: table<dbplyr_048> [?? x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 9 2008-01-01 2008-09-29
#> 2 1 20 2008-01-01 2008-05-28
#> 3 1 48 2008-02-28 2009-02-19
#> 4 1 54 2008-01-01 2009-04-03
#> 5 1 76 2008-01-01 2008-01-16
#> 6 1 78 2008-04-20 2008-06-02
#> 7 1 87 2009-11-07 2010-01-01
#> 8 1 99 2008-06-08 2008-12-16
#> 9 1 103 2009-06-23 2009-07-07
#> 10 1 105 2008-01-01 2008-05-16
#> # ℹ more rows
cohortCount(cdm$denominator)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <dbl> <dbl>
#> 1 1 57 57
$denominator %>%
cdmfilter(subject_id %in% c("1", "2", "3", "4", "5"))
#> # Source: SQL [1 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 1 2009-10-12 2010-01-01
Now we only include patient “1” of the original first five and we´re now including 57 of the original 500 simulated patients.
$denominator %>%
cdmfilter(subject_id %in% c("1", "2", "3", "4", "5")) %>%
collect() %>%
pivot_longer(cols = c(
"cohort_start_date",
"cohort_end_date"
%>%
)) ggplot() +
geom_point(aes(x = value, y = subject_id)) +
geom_line(aes(x = value, y = subject_id)) +
theme_minimal() +
xlab("Year")
With the histograms of start and end dates now looking like
$denominator %>%
cdmcollect() %>%
ggplot() +
theme_minimal() +
geom_histogram(aes(cohort_start_date),
colour = "black", fill = "grey"
)
$denominator %>%
cdmcollect() %>%
ggplot() +
theme_minimal() +
geom_histogram(aes(cohort_end_date),
colour = "black", fill = "grey"
)
In addition to all the above we could also add some requirements around age and sex. One thing to note is that the age upper limit will include time from a person up to the day before their reach the age upper limit + 1 year. For instance, when the upper limit is 65, that means we will include time from a person up to and including the day before their 66th birthday.
<- generateDenominatorCohortSet(
cdm cdm = cdm,
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
ageGroup = list(c(18, 65)),
sex = "Female",
daysPriorHistory = 365
)$denominator %>%
cdmglimpse()
#> Rows: ??
#> Columns: 4
#> Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> $ cohort_definition_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
#> $ subject_id <chr> "20", "54", "78", "99", "155", "168", "176", "182…
#> $ cohort_start_date <date> 2008-01-01, 2008-01-01, 2008-04-20, 2008-06-08, …
#> $ cohort_end_date <date> 2008-05-28, 2009-03-05, 2008-06-02, 2008-12-16, …
cohortCount(cdm$denominator)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <dbl> <dbl>
#> 1 1 20 20
$denominator %>%
cdmfilter(subject_id %in% c("1", "2", "3", "4", "5"))
#> # Source: SQL [0 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> # ℹ 4 variables: cohort_definition_id <int>, subject_id <chr>,
#> # cohort_start_date <date>, cohort_end_date <date>
Now none of the original first five are included and we´re including 20 of the original 500 simulated patients.
The histograms of start and end dates now looking like
$denominator %>%
cdmcollect() %>%
ggplot() +
theme_minimal() +
geom_histogram(aes(cohort_start_date),
colour = "black", fill = "grey"
)
$denominator %>%
cdmcollect() %>%
ggplot() +
theme_minimal() +
geom_histogram(aes(cohort_end_date),
colour = "black", fill = "grey"
)
A closed cohort is one where membership begins at a defined time. No one can be added to the cohort after this time. A closed cohort can be defined by setting closedCohort to TRUE. Note a start date for the cohortDateRange must have been specified as this will be the date in which cohort membership will be defined. Only individuals satisfying eligibility criteria on this day will be included.
<- cdm %>%
cdm generateDenominatorCohortSet(
name = "denominator_open",
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
closedCohort = FALSE
%>%
) generateDenominatorCohortSet(
name = "denominator_closed",
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
closedCohort = TRUE
)
::bind_rows(
dplyr$denominator_open %>%
cdmcollect() %>%
mutate(cohort = "Open cohort"),
$denominator_closed %>%
cdmcollect() %>%
mutate(cohort = "Closed cohort")
%>%
) ggplot() +
theme_minimal() +
geom_histogram(aes(cohort_start_date),
colour = "black", fill = "grey"
+
) facet_wrap(vars(cohort))
More than one age, sex and prior history requirements can be specified at the same time. First, we can take a look at having two age groups. We can see below that those individuals who have their 41st birthday during the study period will go from the first cohort (age_group: 0;40) to the second (age_group: 41;100) on this day.
<- generateDenominatorCohortSet(
cdm cdm = cdm,
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
ageGroup = list(
c(0, 40),
c(41, 100)
),sex = "Both",
daysPriorHistory = 0
)<- cdm$denominator %>%
dpop collect() %>%
left_join(cohortSet(cdm$denominator))
%>%
dpop glimpse()
#> Rows: 106
#> Columns: 13
#> $ cohort_definition_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ subject_id <chr> "3", "24", "43", "48", "76", "78", "79", "…
#> $ cohort_start_date <date> 2008-04-30, 2008-01-01, 2008-08-01, 2008-…
#> $ cohort_end_date <date> 2008-09-19, 2008-06-21, 2009-01-20, 2009-…
#> $ cohort_name <chr> "Denominator cohort 1", "Denominator cohor…
#> $ age_group <chr> "0 to 40", "0 to 40", "0 to 40", "0 to 40"…
#> $ sex <chr> "Both", "Both", "Both", "Both", "Both", "B…
#> $ days_prior_history <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ start_date <date> 2008-01-01, 2008-01-01, 2008-01-01, 2008-…
#> $ end_date <date> 2010-01-01, 2010-01-01, 2010-01-01, 2010-…
#> $ strata_cohort_definition_id <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ strata_cohort_name <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ closed_cohort <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
%>%
dpop group_by(cohort_definition_id, age_group) %>%
tally()
#> # A tibble: 2 × 3
#> # Groups: cohort_definition_id [2]
#> cohort_definition_id age_group n
#> <int> <chr> <int>
#> 1 1 0 to 40 50
#> 2 2 41 to 100 56
%>%
dpop filter(subject_id %in% c("1", "3", "57", "353", "393", "496")) %>%
collect() %>%
pivot_longer(cols = c(
"cohort_start_date",
"cohort_end_date"
%>%
)) mutate(cohort_definition_id = as.character(cohort_definition_id)) %>%
ggplot(aes(x = subject_id, y = value, colour = cohort_definition_id)) +
geom_point(position = position_dodge(width = 0.5)) +
geom_line(position = position_dodge(width = 0.5)) +
theme_minimal() +
theme(legend.position = "top") +
ylab("Year") +
coord_flip()
We can then also
<- generateDenominatorCohortSet(
cdm cdm = cdm,
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
ageGroup = list(
c(0, 40),
c(41, 100)
),sex = c("Male", "Female", "Both"),
daysPriorHistory = 0
)<- cdm$denominator %>%
dpop collect() %>%
left_join(cohortSet(cdm$denominator))
%>% glimpse()
dpop #> Rows: 212
#> Columns: 13
#> $ cohort_definition_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ subject_id <chr> "3", "48", "87", "191", "194", "203", "219…
#> $ cohort_start_date <date> 2008-04-30, 2008-01-01, 2008-11-07, 2008-…
#> $ cohort_end_date <date> 2008-09-19, 2009-02-19, 2010-01-01, 2010-…
#> $ cohort_name <chr> "Denominator cohort 1", "Denominator cohor…
#> $ age_group <chr> "0 to 40", "0 to 40", "0 to 40", "0 to 40"…
#> $ sex <chr> "Male", "Male", "Male", "Male", "Male", "M…
#> $ days_prior_history <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ start_date <date> 2008-01-01, 2008-01-01, 2008-01-01, 2008-…
#> $ end_date <date> 2010-01-01, 2010-01-01, 2010-01-01, 2010-…
#> $ strata_cohort_definition_id <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ strata_cohort_name <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ closed_cohort <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
%>%
dpop group_by(cohort_definition_id, age_group, sex) %>%
tally()
#> # A tibble: 6 × 4
#> # Groups: cohort_definition_id, age_group [6]
#> cohort_definition_id age_group sex n
#> <int> <chr> <chr> <int>
#> 1 1 0 to 40 Male 19
#> 2 2 0 to 40 Female 31
#> 3 3 0 to 40 Both 50
#> 4 4 41 to 100 Male 31
#> 5 5 41 to 100 Female 25
#> 6 6 41 to 100 Both 56
%>%
dpop filter(subject_id %in% c("1", "3", "57", "353", "393", "496")) %>%
pivot_longer(cols = c(
"cohort_start_date",
"cohort_end_date"
%>%
)) mutate(cohort_definition_id = as.character(cohort_definition_id)) %>%
ggplot(aes(x = subject_id, y = value, colour = cohort_definition_id)) +
facet_grid(sex ~ ., space = "free_y") +
geom_point(position = position_dodge(width = 0.5)) +
geom_line(position = position_dodge(width = 0.5)) +
theme_bw() +
theme(legend.position = "top") +
ylab("Year") +
coord_flip()
And then also specifying multiple prior history requirements
<- generateDenominatorCohortSet(
cdm cdm = cdm,
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
ageGroup = list(
c(0, 40),
c(41, 100)
),sex = c("Male", "Female", "Both"),
daysPriorHistory = c(0, 365)
)<- cdm$denominator %>%
dpop collect() %>%
left_join(cohortSet(cdm$denominator))
%>% glimpse()
dpop #> Rows: 326
#> Columns: 13
#> $ cohort_definition_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ subject_id <chr> "3", "48", "87", "191", "194", "203", "219…
#> $ cohort_start_date <date> 2008-04-30, 2008-01-01, 2008-11-07, 2008-…
#> $ cohort_end_date <date> 2008-09-19, 2009-02-19, 2010-01-01, 2010-…
#> $ cohort_name <chr> "Denominator cohort 1", "Denominator cohor…
#> $ age_group <chr> "0 to 40", "0 to 40", "0 to 40", "0 to 40"…
#> $ sex <chr> "Male", "Male", "Male", "Male", "Male", "M…
#> $ days_prior_history <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ start_date <date> 2008-01-01, 2008-01-01, 2008-01-01, 2008-…
#> $ end_date <date> 2010-01-01, 2010-01-01, 2010-01-01, 2010-…
#> $ strata_cohort_definition_id <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ strata_cohort_name <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ closed_cohort <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
%>%
dpop group_by(cohort_definition_id, age_group, sex, days_prior_history) %>%
tally()
#> # A tibble: 12 × 5
#> # Groups: cohort_definition_id, age_group, sex [12]
#> cohort_definition_id age_group sex days_prior_history n
#> <int> <chr> <chr> <dbl> <int>
#> 1 1 0 to 40 Male 0 19
#> 2 2 0 to 40 Male 365 14
#> 3 3 0 to 40 Female 0 31
#> 4 4 0 to 40 Female 365 16
#> 5 5 0 to 40 Both 0 50
#> 6 6 0 to 40 Both 365 30
#> 7 7 41 to 100 Male 0 31
#> 8 8 41 to 100 Male 365 13
#> 9 9 41 to 100 Female 0 25
#> 10 10 41 to 100 Female 365 14
#> 11 11 41 to 100 Both 0 56
#> 12 12 41 to 100 Both 365 27
%>%
dpop filter(subject_id %in% c("1", "3", "57", "353", "393", "496")) %>%
pivot_longer(cols = c(
"cohort_start_date",
"cohort_end_date"
%>%
)) mutate(cohort_definition_id = as.character(cohort_definition_id)) %>%
ggplot(aes(x = subject_id, y = value, colour = cohort_definition_id)) +
facet_grid(sex + days_prior_history ~ ., space = "free_y") +
geom_point(position = position_dodge(width = 0.5)) +
geom_line(position = position_dodge(width = 0.5)) +
theme_bw() +
theme(legend.position = "top") +
ylab("Year") +
coord_flip()
Note, setting requirementInteractions to FALSE would mean that only the first value of other age, sex, and prior history requirements are considered for a given characteristic. In this case the order of the values will be important and generally the first vlaues will be the primary analysis settings while subsequent values are for secondary analyses.
<- generateDenominatorCohortSet(
cdm cdm = cdm,
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
ageGroup = list(
c(0, 100),
c(0, 40),
c(41, 100)
),sex = c("Both", "Male", "Female"),
daysPriorHistory = c(0, 365),
requirementInteractions = FALSE
)<- cdm$denominator %>%
dpop collect() %>%
left_join(cohortSet(cdm$denominator))
%>% glimpse()
dpop #> Rows: 375
#> Columns: 13
#> $ cohort_definition_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ subject_id <chr> "3", "9", "10", "20", "22", "24", "35", "4…
#> $ cohort_start_date <date> 2008-04-30, 2008-01-01, 2009-12-16, 2008-…
#> $ cohort_end_date <date> 2008-09-19, 2008-09-29, 2010-01-01, 2008-…
#> $ cohort_name <chr> "Denominator cohort 1", "Denominator cohor…
#> $ age_group <chr> "0 to 100", "0 to 100", "0 to 100", "0 to …
#> $ sex <chr> "Both", "Both", "Both", "Both", "Both", "B…
#> $ days_prior_history <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ start_date <date> 2008-01-01, 2008-01-01, 2008-01-01, 2008-…
#> $ end_date <date> 2010-01-01, 2010-01-01, 2010-01-01, 2010-…
#> $ strata_cohort_definition_id <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ strata_cohort_name <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ closed_cohort <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
%>%
dpop group_by(cohort_definition_id, age_group, sex, days_prior_history) %>%
tally()
#> # A tibble: 6 × 5
#> # Groups: cohort_definition_id, age_group, sex [6]
#> cohort_definition_id age_group sex days_prior_history n
#> <int> <chr> <chr> <dbl> <int>
#> 1 1 0 to 100 Both 0 106
#> 2 2 0 to 40 Both 0 50
#> 3 3 41 to 100 Both 0 56
#> 4 4 0 to 100 Male 0 50
#> 5 5 0 to 100 Female 0 56
#> 6 6 0 to 100 Both 365 57
%>%
dpop ::slice_sample(prop = 0.1) %>%
dplyrpivot_longer(cols = c(
"cohort_start_date",
"cohort_end_date"
%>%
)) mutate(cohort_definition_id = as.character(cohort_definition_id)) %>%
ggplot(aes(x = subject_id, y = value, colour = cohort_definition_id)) +
facet_grid(sex + days_prior_history ~ age_group, space = "free_y") +
geom_point(position = position_dodge(width = 0.5)) +
geom_line(position = position_dodge(width = 0.5)) +
theme_bw() +
theme(
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
legend.position = "top"
+
) ylab("Year") +
coord_flip()
generateDenominatorCohortSet()
will generate a table
with the denominator population, which includes the information on all
the individuals who fulfill the given criteria at any point during the
study period. It also includes information on the specific start and end
dates in which individuals contributed to the denominator population
(cohort_start_date and cohort_end_date). Each patient is recorded in a
different row. For those databases that allow individuals to have
multiple non-overlapping observation periods, one row for each patient
and observation period is considered.
Considering the following example, we can see:
<- generateDenominatorCohortSet(
cdm cdm = cdm,
cohortDateRange = c(as.Date("2008-01-01"), as.Date("2010-01-01")),
ageGroup = list(
c(0, 18),
c(19, 100)
),sex = c("Male", "Female"),
daysPriorHistory = c(0, 365)
)
head(cdm$denominator, 8)
#> # Source: SQL [8 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 3 2008-04-30 2008-09-19
#> 2 1 203 2008-01-01 2009-03-28
#> 3 1 303 2008-07-15 2009-05-14
#> 4 1 409 2008-01-01 2008-07-28
#> 5 1 462 2008-01-01 2008-02-20
#> 6 2 203 2008-01-01 2009-03-28
#> 7 2 409 2008-06-16 2008-07-28
#> 8 2 462 2008-01-01 2008-02-20
The output table will have several attributes. With
CDMConnector::cohortSet()
we can see the options used when
defining the set of denominator populations. More than one age, sex and
prior history requirements can be specified at the same time and each
combination of these variables will result in a different cohort, each
of which has a corresponding cohort_definition_id. In the above example,
we identified 8 different cohorts:
cohortSet(cdm$denominator)
#> # A tibble: 8 × 10
#> cohort_definition_id cohort_name age_group sex days_prior_history start_date
#> <int> <chr> <chr> <chr> <dbl> <date>
#> 1 1 Denominato… 0 to 18 Male 0 2008-01-01
#> 2 2 Denominato… 0 to 18 Male 365 2008-01-01
#> 3 3 Denominato… 0 to 18 Fema… 0 2008-01-01
#> 4 4 Denominato… 0 to 18 Fema… 365 2008-01-01
#> 5 5 Denominato… 19 to 100 Male 0 2008-01-01
#> 6 6 Denominato… 19 to 100 Male 365 2008-01-01
#> 7 7 Denominato… 19 to 100 Fema… 0 2008-01-01
#> 8 8 Denominato… 19 to 100 Fema… 365 2008-01-01
#> # ℹ 4 more variables: end_date <date>, strata_cohort_definition_id <lgl>,
#> # strata_cohort_name <lgl>, closed_cohort <lgl>
With cohortCount()
we can see the number of individuals
who entered each study cohort
cohortCount(cdm$denominator)
#> # A tibble: 8 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <dbl> <dbl>
#> 1 1 5 5
#> 2 2 3 3
#> 3 3 13 13
#> 4 4 7 7
#> 5 5 45 45
#> 6 6 24 24
#> 7 7 43 43
#> 8 8 23 23
With CDMConnector::cohortAttrition()
we can see the
number of individuals in the database who were excluded from entering a
given denominator population along with the reason (such as missing
crucial information or not satisfying the sex or age criteria required,
among others):
cohortAttrition(cdm$denominator)
#> # A tibble: 72 × 7
#> cohort_definition_id number_records number_subjects reason_id reason
#> <int> <dbl> <dbl> <dbl> <glue>
#> 1 1 500 500 1 Starting popul…
#> 2 1 500 500 2 Missing year o…
#> 3 1 500 500 3 Missing sex
#> 4 1 500 500 4 Cannot satisfy…
#> 5 1 106 106 5 No observation…
#> 6 1 106 106 6 Doesn't satisf…
#> 7 1 106 106 7 Prior history …
#> 8 1 50 50 8 Not Male
#> 9 1 5 5 10 No observation…
#> 10 2 500 500 1 Starting popul…
#> # ℹ 62 more rows
#> # ℹ 2 more variables: excluded_records <dbl>, excluded_subjects <dbl>
The generateDenominatorCohortSet()
function can also be
run for a subset of the population with a particular characteristic
recorded in our database, which could be time-invariant
(e.g. ethnicity), or time-varying (e.g. taking a certain medication).
When using generateDenominatorCohortSet()
, a stratifying
cohort must be in the format of an OMOP CDM cohort.
To provide an example its use, let´s generate 5 example patients.
<- tibble(
personTable person_id = c("1", "2", "3", "4", "5"),
gender_concept_id = c(rep("8507", 2), rep("8532", 3)),
year_of_birth = 2000,
month_of_birth = 06,
day_of_birth = 01
)<- tibble(
observationPeriodTable observation_period_id = "1",
person_id = c("1", "2", "3", "4", "5"),
observation_period_start_date = c(
as.Date("2010-12-19"),
as.Date("2005-04-01"),
as.Date("2009-04-10"),
as.Date("2010-08-20"),
as.Date("2010-01-01")
),observation_period_end_date = c(
as.Date("2011-06-19"),
as.Date("2005-11-29"),
as.Date("2016-01-02"),
as.Date("2011-12-11"),
as.Date("2015-06-01")
) )
Here we generate a simulated strata table with 5 individuals and 3 different cohort strata to illustrate the following examples.
<- tibble(
conditionX cohort_definition_id = c(rep("1", 3), rep("2", 3), rep("3", 5)),
subject_id = c("1", "2", "4", "3", "5", "2", "3", "3", "5", "5", "2"),
cohort_start_date = c(
as.Date("2010-12-19"),
as.Date("2005-04-01"),
as.Date("2010-08-20"),
as.Date("2012-01-01"),
as.Date("2010-06-01"),
as.Date("2005-08-20"),
as.Date("2012-01-01"),
as.Date("2015-06-01"),
as.Date("2014-10-01"),
as.Date("2010-06-01"),
as.Date("2005-08-20")
),cohort_end_date = c(
as.Date("2011-06-19"),
as.Date("2005-11-29"),
as.Date("2011-12-11"),
as.Date("2013-01-01"),
as.Date("2012-03-01"),
as.Date("2005-11-29"),
as.Date("2013-01-01"),
as.Date("2015-12-31"),
as.Date("2015-04-01"),
as.Date("2010-06-01"),
as.Date("2005-08-20")
)
)
# mock database
<- mockIncidencePrevalenceRef(
cdm personTable = personTable,
observationPeriodTable = observationPeriodTable,
strataTable = conditionX
)
We can get a denominator population without including any particular subset like so
<- generateDenominatorCohortSet(
cdm cdm = cdm
)$denominator
cdm#> # Source: table<dbplyr_122> [5 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 2 2005-04-01 2005-11-29
#> 2 1 3 2009-04-10 2016-01-02
#> 3 1 4 2010-08-20 2011-12-11
#> 4 1 5 2010-01-01 2015-06-01
#> 5 1 1 2010-12-19 2011-06-19
As we did not specify any study start and end date, the cohort start and end date of our 5 patients correspond to the same registered as observation period.
observationPeriodTable#> # A tibble: 5 × 4
#> observation_period_id person_id observation_period_st…¹ observation_period_e…²
#> <chr> <chr> <date> <date>
#> 1 1 1 2010-12-19 2011-06-19
#> 2 1 2 2005-04-01 2005-11-29
#> 3 1 3 2009-04-10 2016-01-02
#> 4 1 4 2010-08-20 2011-12-11
#> 5 1 5 2010-01-01 2015-06-01
#> # ℹ abbreviated names: ¹observation_period_start_date,
#> # ²observation_period_end_date
Let’s suppose we want to subset our population based on a non-time varying characteristic such as ethnicity, which corresponds to strataCohortId “1” in our simulated strata table.
<- generateDenominatorCohortSet(
cdm cdm = cdm,
strataTable = "strata",
strataCohortId = 1
)$denominator
cdm#> # Source: table<dbplyr_132> [3 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 2 2005-04-01 2005-11-29
#> 2 1 4 2010-08-20 2011-12-11
#> 3 1 1 2010-12-19 2011-06-19
We have obtained the 3 patients with the particular ethnicity we were interested in. Moreover, because ethnicity does not change during the study period, the cohort start and end date correspond to same dates of their observation period. Therefore, the obtained denominator population cohort is the same as the one observed in the first example but limited to the individuals that have our characteristic of interest.
library(dplyr)
%>%
observationPeriodTable filter(person_id %in% c("1", "2", "4"))
#> # A tibble: 3 × 4
#> observation_period_id person_id observation_period_st…¹ observation_period_e…²
#> <chr> <chr> <date> <date>
#> 1 1 1 2010-12-19 2011-06-19
#> 2 1 2 2005-04-01 2005-11-29
#> 3 1 4 2010-08-20 2011-12-11
#> # ℹ abbreviated names: ¹observation_period_start_date,
#> # ²observation_period_end_date
Now say we want to subset our population based on a time varying characteristic such a particular condition (strataCohortId “2” in our simulated strata table).
<- generateDenominatorCohortSet(
cdm cdm = cdm,
strataTable = "strata",
strataCohortId = 2
)$denominator
cdm#> # Source: table<dbplyr_142> [3 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 3 2012-01-01 2013-01-01
#> 2 1 5 2010-06-01 2012-03-01
#> 3 1 2 2005-08-20 2005-11-29
We have obtained a denominator population with 3 individuals who have experienced this event during their observation period. In this case, the cohort start and end dates correspond to the cohort start and end date of our strata table, and not to their observation period. Therefore, individuals only contribute time while they are experiencing this particular condition.
%>%
conditionX filter(cohort_definition_id == 2) %>%
filter(subject_id %in% c("2", "3", "5"))
#> # A tibble: 3 × 4
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <chr> <chr> <date> <date>
#> 1 2 3 2012-01-01 2013-01-01
#> 2 2 5 2010-06-01 2012-03-01
#> 3 2 2 2005-08-20 2005-11-29
Depending in which condition we’re interested in, people might experience the same condition multiple times. Let’s use strataCohortId “3” to illustrate this example.
<- generateDenominatorCohortSet(
cdm cdm = cdm,
strataTable = "strata",
strataCohortId = 3
)$denominator
cdm#> # Source: table<dbplyr_152> [5 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 3 2012-01-01 2013-01-01
#> 2 1 5 2014-10-01 2015-04-01
#> 3 1 2 2005-08-20 2005-08-20
#> 4 1 3 2015-06-01 2015-12-31
#> 5 1 5 2010-06-01 2010-06-01
We can see that person “3” and “5” experienced this condition in two different occasions. Therefore, they only contribute time to the denominator population during the time periods they had this condition. As before, cohort start and end date correspond to the start and end date of this condition.
%>%
conditionX filter(cohort_definition_id == 3) %>%
filter(subject_id %in% c("2", "3", "5"))
#> # A tibble: 5 × 4
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <chr> <chr> <date> <date>
#> 1 3 3 2012-01-01 2013-01-01
#> 2 3 3 2015-06-01 2015-12-31
#> 3 3 5 2014-10-01 2015-04-01
#> 4 3 5 2010-06-01 2010-06-01
#> 5 3 2 2005-08-20 2005-08-20
In both examples, the study period can be restricted to a particular period of interest. Similarly, age and sex stratification and prior history requirements can be further applied. Prior history requirements are applied relative to an individual´s observation period start date. Note that when strataRequirementsAtEntry is set to TRUE individuals are included only if they satisfy the age and prior history requirements on their strata cohort start date. If strataRequirementsAtEntry is set to FALSE, individuals can enter at the time at which they satisfy these requirements (which maay be after their strata cohort start date).
In the case below we can see that person “5” satisfies the age requirement after their strata cohort start date. Therefore, this individual is excluded (as they were not 15 on their strata cohort start date).
<- generateDenominatorCohortSet(
cdm cdm = cdm, name = "denom_reqs_at_strata_entry",
cohortDateRange = c(as.Date("2014-01-01"), as.Date("2016-01-01")),
ageGroup = list(c(15, 25)),
sex = "Female",
daysPriorHistory = 0,
strataTable = "strata",
strataCohortId = 3
)$denom_reqs_at_strata_entry
cdm#> # Source: table<dbplyr_162> [1 x 4]
#> # Database: DuckDB 0.8.1 [eburn@Windows 10 x64:R 4.2.1/:memory:]
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <int> <chr> <date> <date>
#> 1 1 3 2015-06-01 2015-12-31
In the case above we have used the same strata as before, but we have restricted our analysis to females and we have limited our study period. As we can see, using this period of time we don’t capture patient “2” (who was a man) and we only observe one time period for individuals “3” and “5” (who had multiple contributing time periods in the prior example).
cohortSet(cdm$denominator)
#> # A tibble: 1 × 10
#> cohort_definition_id cohort_name age_group sex days_prior_history start_date
#> <int> <chr> <chr> <chr> <dbl> <date>
#> 1 1 Denominato… 0 to 150 Both 0 2005-04-01
#> # ℹ 4 more variables: end_date <date>, strata_cohort_definition_id <dbl>,
#> # strata_cohort_name <chr>, closed_cohort <lgl>