Package ‘MSG’

February 19, 2015

Type Package

Title Data and functions for the book Modern Statistical Graphics

Version 0.2.2

Date 2012-08-18

Author Yihui Xie

Maintainer Yihui Xie <xie@yihui.name>

Description A companion to the Chinese book "Modern Statistical Graphics" by Yihui Xie.

License GPL

LazyLoad yes

Imports RColorBrewer

Suggests animation, KernSmooth, rgl, plotrix, ggplot2 (>= 0.9), sna

URL http://yihui.name/cn/publication

BugReports https://github.com/yihui/MSG/issues

Collate 'andrews_curve.R' 'char_gen.R' 'color.R' 'cut_plot.R'
 'heart_curve.R' 'MSG-package.R'

Repository CRAN

Date/Publication 2012-08-19 05:15:09

NeedsCompilation no

R topics documented:

 MSG-package .. 2
 andrews_curve ... 2
 assists .. 3
 BinormCircle .. 4
 canabalt ... 5
 char_gen ... 5
 ChinaLifeEdu ... 6
 cn_vs_us ... 7

Description

Datasets and functions for the Chinese book “Modern Statistical Graphics”.

Author(s)

Yihui Xie <http://yihui.name>

andrews_curve

Draw Andrew’s Curve

Description

This function evaluates the transformation of the original data matrix for t from $-\pi$ to π, and uses matplot to draw the curves.

Usage

andrews_curve(x, n = 101, type = "l", lty = 1, lwd = 1, pch = NA, xlab = "t", ylab = "f(t)", ...)

Arguments

x a data frame or matrix
n number of x-axis values at which $f(t)$ is evaluated
type, lty, lwd, pch, xlab, ylab,...

passed to matplot
Value

a matrix of coefficients for each observation at different t values

Author(s)

Yihui Xie <http://yihui.name>

References

http://fedc.wiwi.hu-berlin.de/xplore/tutorials/mvahtmlnode9.html

See Also

matplot

Examples

andrews_curve(iris[, -5], col = as.integer(iris[, 5]))

assists

Assists between players in CLE and LAL

Description

The players in the rows assisted the ones in the columns.

References

http://www.basketballgeek.com/data/

Examples

data(assists)

if (require("sna")) {
 set.seed(2011)
 gplot(assists, displaylabels = TRUE, label.cex = 0.7)
}

BinormCircle

Random numbers containing a “circle”

Description

The data was generated from two independent random variables (standard Normal distribution) and further points on a circle were added to the data. The order of the data was randomized.

Format

A data frame with 20000 observations on the following 2 variables.

V1 the first random variable with the x-axis coordinate of the circle
V2 the second random variable with the y-axis coordinate of the circle

Details

See the example section for the code to generate the data.

Source

Examples

data(BinormCircle)

original plot: cannot see anything
plot(BinormCircle)

transparent colors (alpha = 0.1)
plot(BinormCircle, col = rgb(0, 0, 0, 0.1))

set axes limits
plot(BinormCircle, xlim = c(-1, 1), ylim = c(-1, 1))

small symbols
plot(BinormCircle, pch = ".")

subset
plot(BinormCircle[sample(nrow(BinormCircle), 1000),])

2D density estimation
library(KernSmooth)
fit = bkde2D(as.matrix(BinormCircle), dpik(as.matrix(BinormCircle)))
perspective plot by persp()
persp(fit$x1, fit$x2, fit$fhat)

if (interactive()) & require("rgl") {

canabalt

The scores of the game Canabalt from Twitter

Description
The scores of the game Canabalt from Twitter

References

Examples
library(ggplot2)
data(canabalt)
print(qplot(device, score, data = canabalt))
print(qplot(reorder(death, score, median), score, data = canabalt, geom = "boxplot") +
 coord_flip())

char_gen
Generate a matrix of similar characters

Description
This function prints a matrix of characters which are very similar to each other.

Usage
char_gen(x = c("V", "W"), n = 300, nrow = 10)
Arguments

- \(x \) a character vector of length 2 (usually two similar characters)
- \(n \) the total number of characters in the matrix
- \(nrow \) the number of rows

Value

a character matrix on the screen

Author(s)

Yihui Xie [http://yihui.name]

Examples

```r
char_gen()
char_gen(c("0", "0"))
```

Description

This data contains the life expectancy and number of people with higher education in the 31 provinces and districts in China (2005).

Format

A data frame with 31 observations on the following 2 variables.

- **Life.Expectancy** Life expectancy
- **High.Edu.NO** Number of people with higher education

Source

Examples

```r
data(ChinaLifeEdu)
x = ChinaLifeEdu
plot(x, type = "n", xlim = range(x[, 1]), ylim = range(x[, 2]))
u = par("usr")
rect(u[1], u[3], u[2], u[4], col = "antiquewhite", border = "red")
library(KernSmooth)
est = bkde2D(x, apply(x, 2, dpik))
contour(est$x1, est$x2, est$fhat, nlevels = 15, col = "darkgreen", add = TRUE, vfont = c("sans serif", "plain"))
```
cn_vs_us

Description

Country power indicators of China vs America

References

http://www.guardian.co.uk/news/datablog/2011/jan/19/china-social-media

Examples

data(cn_vs_us)

cut_plot(x, y, breaks, ..., pch.cut = 20)

Description

This function can categorize the variable on the x-axis into groups and plot the mean values of y. The purpose is to show the arbitrariness of the discretization of data.

Usage

cut_plot(x, y, breaks, ..., pch.cut = 20)

Arguments

- **x**: the x variable
- **y**: the y variable
- **breaks**: the breaks to cut the x variable
- **...**: other arguments to be passed to `plot.default`
- **pch.cut**: the point symbol to denote the mean values of y

Value

NULL

Author(s)

Yihui Xie <http://yihui.name>

Examples

```r
x = rnorm(100)
y = rnorm(100)
cut_plot(x, y, seq(min(x), max(x), length = 5))
```
```r
# Longitude and latitude of earthquakes in the Sichuan Province

``` export

Description

Longitude and latitude of earthquakes in the Sichuan Province

Examples

data(eq2010)
plot(lat ~ long, data = eq2010)
``` export

```r
Export of US and China from 1999 to 2004 in US dollars

``` export

Description

Export of US and China from 1999 to 2004 in US dollars

Format

A data frame with 13 observations on the following 3 variables.

- **Export** amount of export
- **Year** year from 1999 to 2004
- **Country** country: US or China

Source

http://stat.wto.org

Examples

data(Export.USCN)
par(mar = c(4, 4.5, 1, 4.5))
plot(1:13, Export.USCN$Export, xlab = "Year / Country", ylab = "US Dollars ($10^{16}$)", axes = FALSE, type = "h", lwd = 10, col = c(rep(2, 6), NA, rep(4, 6)), lend = 1, panel.first = grid())
xlabel = paste(Export.USCN$Year, "\n", Export.USCN$Country)
xlabel[7] = ""
xlabel
abline(v = 7, lty = 2)
axis(1, at = 1:13, labels = xlabel, tick = FALSE, cex.axis = 0.75)
axis(2)
(ylabel = pretty(Export.USCN$Export * 8.27))
axis(4, at = ylabel/8.27, labels = ylabel)
mtext("Chinese RMB", side = 4, line = 2)
box()
``` export
Percentage data in Chinese government websites

Description
This data was collected from Google by searching for percentages in Chinese government websites.

Format
A data frame with 10000 observations on the following 4 variables.

- **percentage** a numeric vector: the percentages
- **count** a numeric vector: the number of webpages corresponding to a certain percentage
- **round0** a logical vector: rounded to integers?
- **round1** a logical vector: rounded to the 1st decimal place?

Details
We can specify the domain when searching in Google. For this data, we used `site:gov.cn`, e.g. to search for `87.53% site:gov.cn`.

Source
Google (date: 2009/12/17)

Examples
```r
data(gov.cn.pct)
pct.lowess = function(cond) {
  with(gov.cn.pct, {
    plot(count ~ percentage, pch = ifelse(cond, 4, 20), col = rgb(0:1, 0, 0, c(0.04, 0.5))[cond + 1], log = "y")
    lines(lowess(gov.cn.pct[cond, 1:2], f = 1/3), col = 2, lwd = 2)
    lines(lowess(gov.cn.pct[!cond, 1:2], f = 1/3), col = 1, lwd = 2)
  })
}
par(mar = c(3.5, 3.5, 1, 0.2), mfrow = c(2, 2))
with(gov.cn.pct, {
  plot(percentage, count, type = "l", panel.first = grid())
  plot(percentage, count, type = "l", xlim = c(10, 11), panel.first = grid())
  pct.lowess(round0)
  pct.lowess(round1)
})
if (interactive()) {
  devAskNewPage(ask = TRUE)
}
with(gov.cn.pct, {
  plot(count ~ percentage, type = "l")
  grid()
})
```
devAskNewPage(ask = FALSE)

for (i in 0:99) {
 plot(count ~ percentage, type = "l", xlab = i + c(0, 1), panel.first = grid())
}

devAskNewPage(ask = TRUE)

plot(count ~ percentage, pch = 20, col = rgb(0:1, 0, 0, c(0.07, 1))[round0 + 1], log = "y")
lines(lowess(gov.cn.pct[round0, 1:2], f = 1/3), col = "red", lwd = 2)
lines(lowess(gov.cn.pct[!round0, 1:2], f = 1/3), col = "black", lwd = 2)

plot(count ~ percentage, pch = 20, col = rgb(0:1, 0, 0, c(0.07, 1))[round1 + 1], log = "y")
lines(lowess(gov.cn.pct[round1, 1:2], f = 1/3), col = "red", lwd = 2)
lines(lowess(gov.cn.pct[!round1, 1:2], f = 1/3), col = "black", lwd = 2)
}
}

heart_curve

Description

Draw a heart curve

Calculate the coordinates of a heart shape and draw it with a polygon.

Usage

heart_curve(n = 101, ...)

Arguments

n

the number of points to use when calculating the coordinates of the heart shape

... other arguments to be passed to polygon, e.g. the color of the polygon (usually red)

Value

NULL

Author(s)

Yihui Xie <http://yihui.name>

Examples

heart_curve()
heart_curve(col = "red")
heart_curve(col = "pink", border = "red")
Composition of Soil from Murcia Province, Spain

Description

The proportions of sand, silt and clay in soil samples are given for 8 contiguous sites. The sites extended over the crest and flank of a low rise in a valley underlain by marl near Albudeite in the province of Murcia, Spain. The sites were small areas of ground surface of uniform shape internally and delimited by relative discontinuities externally. Soil samples were obtained for each site at 11 random points within a 10m by 10m area centred on the mid-point of the site. All samples were taken from the same depth. The data give the sand, silt and clay content of each sample, expressed as a percentage of the total sand, silt and clay content.

References

http://www.statsci.org/data/general/murcia.html

Examples

data(murcia)
boxplot(sand ~ site, data = murcia)

Attributes of some music clips

Description

Attributes of some music clips

References

Examples

data(music)
PlantCounts

Number of plants corresponding to altitude

Description

For each altitude, the number of plants is recorded.

Format

A data frame with 600 observations on the following 2 variables.

- **altitude** altitude of the area
- **counts** number of plants

Source

Examples

```r
# different span for LOWESS
data(PlantCounts)
par(las = 1, mar = c(4, 4, 0.1, 0.1), mgp = c(2.2, 0.9, 0))
with(PlantCounts, {
  plot(altitude, counts, pch = 20, col = rgb(0, 0, 0.5), panel.first = grid())
  for (i in seq(0.01, 1, length = 70)) {
    lines(lowess(altitude, counts, f = i), col = rgb(i, 0, 0), lwd = 1.5)
  }
})
```

quake6

Earth quakes from 1973 to 2010

Description

The time, location and magnitude of all the earth quakes with magnitude being greater than 6 since 1973.

References

http://cos.name/cn/topic/101510

Examples

```r
data(quake6)
library(ggplot2)
ggplot(year, month, data = quake6) + stat_sum(aes(size = ..n..)) + scale_size(range = c(1, 10))
```
The differences of P-values in t test assuming equal or unequal variances

Description
Given that the variances of two groups are unequal, we compute the difference of P-values assuming equal or unequal variances respectively by simulation.

Format
A data frame with 1000 rows and 99 columns.

Details
See the Examples section for the generation of this data.

Source
By simulation.

References

Examples
data(t.diff)
boxplot(t.diff, axes = FALSE, xlab = expression(n[1]))
axis(1)
axis(2)
box()

reproducing the data
if (interactive()) {
 set.seed(123)
t.diff = NULL
 for (n1 in 2:100) {
 t.diff = rbind(t.diff, replicate(1000, {
 x1 = rnorm(n1, mean = 0, sd = runif(1, 0.5, 1))
 x2 = rnorm(30, mean = 1, sd = runif(1, 2, 5))
 t.test(x1, x2, var.equal = TRUE)$p.value - t.test(x1, x2, var.equal = FALSE)$p.value
 }))
 }
 t.diff = as.data.frame(t(t.diff))
colnames(t.diff) = 2:100
}
Results of a Simulation to Tukey’s Fast Test

Description

For the test of means of two samples, we calculated the P-values and recorded the counts of Tukey’s rule of thumb.

Format

A data frame with 10000 observations on the following 3 variables.

- **pvalue.t** P-values of t test
- **pvalue.w** P-values of Wilcoxon test
- **count** Tukey’s counts

Details

See the reference for details.

Source

Simulation; see the Examples section below.

References

Examples

data(tukeyCount)

does Tukey's rule of thumb agree with t test and Wilcoxon test?
with(tukeyCount, {
 ucount = unique(count)
 stripchart(pvalue.t ~ count, method = "jitter", jitter = 0.2, pch = 19, cex = 0.7,
 vertical = TRUE, at = ucount - 0.2, col = rgb(1, 0, 0, 0.2), xlim = c(min(count) - 1, max(count) + 1), xaxt = "n", xlab = "Tukey Count", ylab = "P-values")
 stripchart(pvalue.w ~ count, method = "jitter", jitter = 0.2, pch = 21, cex = 0.7,
 vertical = TRUE, at = ucount + 0.2, add = TRUE, col = rgb(0, 0, 1, 0.2),
 xaxt = "n")
 axis(1, unique(count))
 lines(sort(ucount), tapply(pvalue.t, count, median), type = "o", pch = 19, cex = 1.3,
 col = "red")
 lines(sort(ucount), tapply(pvalue.w, count, median), type = "o", pch = 21, cex = 1.3,
 col = "blue", lty = 2)
 legend("topright", c("t test", "Wilcoxon test"), col = c("red", "blue"), pch = c(19, 21), lty = 1:2, bty = "n", cex = 0.8)
if (interactive()) {
 ## this is how the data was generated
 set.seed(402)
 n = 30
 tukeyCount = data.frame(t(replicate(10000, {
 x1 = rweibull(n, runif(1, 0.5, 4))
 x2 = rweibull(n, runif(1, 1, 5))
 c(t.test(x1, x2)$p.value, wilcox.test(x1, x2)$p.value, with(rle(rep(P:0, each = n)[order(c(x1, x2))]), ifelse(head(values, 1) == tail(values, 1), 0, sum(lengths[c(1, length(lengths)]))))
 })))
 colnames(tukeyCount) = c("pvalue.t", "pvalue.w", "count")
}

tvearn

tvearn

Top TV earners

Description

The pay per episode for actors as well as other information.

References

Examples

```r
data(tvearn)
plot(pay ~ rating, data = tvearn)
library(ggplot2)
qplot(pay, data = tvearn, geom = "histogram", facets = gender ~ .., binwidth = 20000)
qplot(rating, pay, data = tvearn, geom = c("jitter", "smooth"), color = type)
```

vec2col

Generate colors from a vector

Description

This function generates a color vector from an input vector, which can be of the class numeric or factor.
Usage

vec2col(vec, n, name)

Default S3 method:
vec2col(vec, n, name)

S3 method for class 'factor'
vec2col(vec, n, name)

Arguments

vec the numeric or factor vector
n the number of colors to be generated from the palette
name the name of the palette

Value

a vector of colors corresponding to the input vector

Author(s)

Yihui Xie <http://yihui.name>

Examples

convert factor to colors
with(iris, plot(Petal.Length, Petal.Width, col = vec2col(Species), pch = 19))

another palette
with(iris, plot(Petal.Length, Petal.Width, col = vec2col(Species, name = "Dark2"),
 pch = 19))

turn numeric values to colors
with(iris, plot(Petal.Length, Petal.Width, col = vec2col(Petal.Width), pch = 19))
Index

*Topic datasets
assists, 3
BinormCircle, 4
canabalt, 5
ChinaLifeEdu, 6
cn_vs_us, 7
eq2010, 8
Export.USCN, 8
gov.cn.pct, 9
murcia, 11
music, 11
PlantCounts, 12
plot.default, 7
polygone, 10
quake6, 12
t.diff, 13
tukeyCount, 14
tvearn, 15
vec2col, 15

*Topic package
MSG-package, 2

andrews_curve, 2
assists. 3

BinormCircle, 4
canabalt, 5
char_gen, 5
ChinaLifeEdu, 6
cn_vs_us, 7
cut_plot, 7
eq2010, 8
Export.USCN, 8
gov.cn.pct, 9

heart_curve, 10

matplot, 2, 3
MSG (MSG-package), 2
MSG-package, 2
murcia, 11

music, 11
PlantCounts, 12
plot.default, 7
polygone, 10
quake6, 12
t.diff, 13
tukeyCount, 14
tvearn, 15
vec2col, 15