
Package ‘POMS’
December 14, 2022

Title Phylogenetic Organization of Metagenomic Signals

Version 1.0.1

Description Code to identify functional enrichments across diverse taxa
in phylogenetic tree, particularly where these taxa differ in
abundance across samples in a non-random pattern. The motivation for
this approach is to identify microbial functions encoded by diverse
taxa that are at higher abundance in certain samples compared to
others, which could indicate that such functions are broadly adaptive
under certain conditions. See 'GitHub' repository for tutorial and
examples: <https://github.com/gavinmdouglas/POMS/wiki>. Citation: Gavin M. Dou-
glas, Molly G. Hayes, Morgan G. I. Langille, Elhanan Boren-
stein (2022) <doi:10.1093/bioinformatics/btac655>.

License GPL-3

Imports ape (>= 3.0), data.table, MASS, parallel (>= 3.3.0), phangorn
(>= 2.0.0), phylolm (>= 2.6), utils, XNomial (>= 1.0.4)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Gavin Douglas [aut, cre]

Maintainer Gavin Douglas <gavinmdouglas@gmail.com>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2022-12-14 11:40:11 UTC

R topics documented:
abun_isometric_log_ratios . 2
compute_node_balances . 3
filter_rare_table_cols . 4

1

https://github.com/gavinmdouglas/POMS/wiki
https://doi.org/10.1093/bioinformatics/btac655

2 abun_isometric_log_ratios

genome_content_phylo_regress . 5
node_taxa . 6
phylolm_summary . 7
POMS_pipeline . 8
prep_func_node_info . 11
prevalence_norm_logit . 12
specificity_scores . 13
subset_by_col_and_filt . 15

Index 16

abun_isometric_log_ratios

Compute isometric log ratio based on abundance of feature sets

Description

Computes isometric log ratio between two sets of feature abundances, for each sample separately.
Requires an abundance table, with two sets of features for which the ratio will be computed.

Usage

abun_isometric_log_ratios(
abun_table,
set1_features,
set2_features,
pseudocount = NULL

)

Arguments

abun_table Abundance table, e.g., read counts or relative abundance. Should be dataframe
with column names correspond to sample names and row names corresponding
to the feature ids. No 0’s are permitted unless the "pseudocount" option is set.

set1_features Features (rows of abundance table) that make up one side of the ratio to be
computed (numerator).

set2_features Same as "set1_features", but for the other side of the ratio (denominator).

pseudocount Constant to add to all abundance values, to ensure that there are only non-zero
values. For read count data this would typically be 1.

Value

Numeric vector of the computed isometric log ratio for each sample (where samples are taken to be
each column in the input table).

compute_node_balances 3

compute_node_balances Compute balances at tree nodes.

Description

Computes balances (i.e., isometric log ratios, for each sample separately) of feature abundances at
each non-negligible node in the tree.

Usage

compute_node_balances(
tree,
abun_table,
min_num_tips = 10,
ncores = 1,
pseudocount = NULL,
derep_nodes = FALSE,
jaccard_cutoff = 0.75,
subset_to_test = NULL

)

Arguments

tree Phylo object with tip labels matching row names of input abundance table. Note
that node labels are required.

abun_table Abundance table, e.g., read counts or relative abundance. Should be dataframe
with column names correspond to sample names and row names corresponding
to the tips of the tree. No 0’s are permitted unless the "pseudocount" option is
set.

min_num_tips Minimum number of tips that must be found on each side of a node for it to be
included (i.e., to be considered non-negligible).

ncores Number of cores to use for steps of function that can be run in parallel.

pseudocount Optional constant to add to all abundance values, to ensure that there are only
non-zero values. For read count data this would typically be 1.

derep_nodes Boolean setting to specify whether nodes should be dereplicated based on the
Jaccard similarity of the underlying tips. When TRUE, nodes with pairwise
Jaccard similarity >= jaccard_cutoff will be collapsed into the same cluster. A
node will be added to a cluster if it is adequately similar to any nodes in a
cluster. One representative per cluster will be retained, which will correspond to
the node with the fewest underlying tips. Note that this step is performed after
the step involving the min_num_tips screening.

jaccard_cutoff Numeric vector of length 1. Must be between 0 and 1 (inclusive). Corresponds
to the Jaccard cut-off used for clustering nodes based on similar sets of underly-
ing tips.

4 filter_rare_table_cols

subset_to_test Optional vector of node labels (not indices) that correspond to the subset of
nodes that should be considered. Note that balances will still only be computed
at each of these nodes if they have a sufficient number of underlying tips (as
specified by the "min_num_tips" argument). If this argument is not specified
then all nodes will be considered.

Value

List containing three objects:

"tips_underlying_nodes": the tips on the left-hand side (lhs; the numerator) and right-hand side
(rhs; the denominator) of each node. Note that which side of the node is denoted as the left-hand or
right-hand side is arbitrary.

"balances": list with each non-negligible node as a separate element. The sample balances for each
node are provided as a numeric vector within each of these elements.

"negligible_nodes": character vector of node labels considered negligible. This is defined as those
with fewer tips on either side of the node than specified by the "min_num_tips" argument.

When derep_nodes = TRUE, additional elements will also be returned:

"ignored_redundant_nodes": character vector of (non-negligible) node labels ignored due to being
in sharing high Jaccard similarity with at least one other node.

"node_pairwise_jaccard": dataframe of pairwise Jaccard similarity for all non-negligible nodes.

"node_clusters": list with the node labels clustered into each unique cluster of nodes based on
Jaccard similarities. Each list element is a separate cluster for which only one node was selected as
a representative (whichever one had the fewest underlying tips).

filter_rare_table_cols

Filters out columns of dataframe based on number of proportion of
non-zero cells

Description

Filters dataframe columns with either a low absolute count of non-zero values or a low proportion
of rows with non-zero counts. Note that this function is intended for positively-bounded data only
(e.g., the function or taxon abundance tables), and will not work properly if the table contains
negative values. Included in package simply to make running workflow easier.

Usage

filter_rare_table_cols(
in_tab,
min_nonzero_count,
min_nonzero_prop,
drop_missing_rows = TRUE,
verbose = TRUE

)

genome_content_phylo_regress 5

Arguments

in_tab input dataframe
min_nonzero_count

minimum number of cells in column that must be non-zero for column to be
retained.

min_nonzero_prop

minimum proportion of cells in column that must be non-zero for column to be
retained.

drop_missing_rows

boolean flag to indicate whether rows with all zero values (after dropping columns
based on specified cut-offs) should be removed.

verbose boolean flag to indicate that the number of columns removed should be written
to the console.

Value

dataframe with columns that did not meet the min_nonzero_count and/or min_nonzero_prop op-
tions removed (and potentially rows dropped too if drop_missing_rows=TRUE).

genome_content_phylo_regress

Phylogenetic regression of input vector against function pres-
ence/absence.

Description

Runs phylogenetic regression with phylolm on each function (or trait) in the specified function
table.

Usage

genome_content_phylo_regress(y, func, in_tree, ncores = 1, model_type = "BM")

Arguments

y variable to use for y component of model. Typically would be either a binary
vector indicating which taxa are significantly different, or the normalized speci-
city or normalized prevalence values. Must be a named numeric vector with
names matching the rows of the func dataframe. These names also must match
the tree tip labels, but they can be a subset and any missing tips will be dropped.

func dataframe of the number of copies of each function that are encoded by each in-
put taxon. This pipeline only considers the presence/absence of functions across
taxa. Taxa (with row names intersecting with the "abun" table) should be the
rows and the functions should be the columns.

in_tree phylo object. Tip labels must include the row names of the func dataframe and
the names of the y input vector.

6 node_taxa

ncores integer specifying how many cores to use for parallelized sections of pipeline.

model_type length-one character vector specifying which phylogenetic model to use (must
be a possible setting of the model argument to the phylolm function).

Value

Dataframe summarizing the phylolm coefficients and model p-values for each y ~ function com-
parison. Will include the intercept, slope, and p-value for each case. Row names will be function
ids.

node_taxa Determine taxa labels of tips on each side of a node

Description

Takes in a tree, a table of taxa labels per tip, and either a node label or index.

Usage

node_taxa(
in_tree,
taxon_labels,
node_label = NULL,
node_index = NULL,
threshold = 0.75,
combine_labels = TRUE

)

Arguments

in_tree Phylo object

taxon_labels Dataframe of taxa labels for tips in tree. All tips underlying the specified node
must be present, although typically all tips in the tree would be present. Row
names must be the tip labels. The column names correspond to each taxonomic
level, such as Kingdom, Phylum, etc. The actual column names do not matter:
it is just important that the order of the taxonomic levels goes from the highest
taxonomic level present (e.g., Kingdom), to the lowest taxonomic level present
(e.g., Species).

node_label Optional label of node for which the representative taxon label will be deter-
mined. Either this option or the node_index option must be specified, but not
both.

node_index As above for the node_label option, but to specify a node by index rather than
by label.

phylolm_summary 7

threshold Float > 0.5 and <= 1.0 specifying the proportion of tips that must share a taxon
label for it to be considered representative.

combine_labels Boolean flag for whether taxon labels should be combined, so that all higher tax-
onomic labels are included. Specifically, when TRUE, all higher labels are con-
catenated and delimited by "; ". E.g., rather than just the genus "Odoribacter"
the label would be "Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Por-
phyromonadaceae; Odoribacter", given that those were the labels of the higher
taxonomic levels of that genus.

Details

The format of the taxa label table is very important to note: it must have the tips as the
rownames and taxonomic levels (ranging from highest to lowest) as the column names.

For each side of the specified node separately, this function returns the lowest possible taxon label
shared by at least the specified proportion of tips (set by the "threshold" variable). Will return "Un-
clear" if there is no applicable taxon.

To clarify, the taxon that meets the threshold at the lowest possible taxonomic level will be used
as the representative label. For example, if all the tips on one side of the node are members of the
Pseudomonas genus, but only 60% are members of the Pseudomonas aeruginosa species specifi-
cally, then Pseudomonas will be used as the representative label (based on a threshold of 0.75 or
higher and assuming that species are the last column in the table).

Value

Character vector of size two with the representative taxon for tips on each side of the specified node.

phylolm_summary Wrapper for running phylogenetic regression with phylolm

Description

Runs basic case of single x and y variables (dummy or continuous). Note that the ordering of the
input vectors and the tree tip labels needs to be checked by the user beforehand: this script does not
require that the y and x variables are named, and so no name check is performed.

Usage

phylolm_summary(y, x, in_tree, model_type = "BM")

Arguments

y variable to use for y component of model.
x variable to use for x component of model.
in_tree phylo object. Tip label order is assumed to match the y and x variables.
model_type length-one character vector specifying which phylogenetic model to use (must

be a possible setting of the model argument to the phylolm function).

8 POMS_pipeline

Value

Numeric vector of length three, providing the estimated coefficients for the intercept and slope,
along with the p-value.

POMS_pipeline Main function to run POMS pipeline

Description

See details below.

Usage

POMS_pipeline(
abun,
func,
tree,
group1_samples = NULL,
group2_samples = NULL,
ncores = 1,
pseudocount = 1,
manual_BSNs = NULL,
manual_balances = NULL,
manual_BSN_dir = NULL,
min_num_tips = 10,
min_func_instances = 10,
min_func_prop = 0.001,
multinomial_min_FSNs = 5,
derep_nodes = FALSE,
jaccard_cutoff = 0.75,
BSN_p_cutoff = 0.05,
BSN_correction = "none",
FSN_p_cutoff = 0.05,
FSN_correction = "none",
func_descrip_infile = NULL,
multinomial_correction = "BH",
detailed_output = FALSE,
verbose = FALSE

)

Arguments

abun dataframe of taxa abundances that are at the tips of the input tree. These taxa
are usually individual genomes. The taxa need to be the rows and the samples
the columns.

POMS_pipeline 9

func dataframe of the number of copies of each function that are encoded by each in-
put taxon. This pipeline only considers the presence/absence of functions across
taxa. Taxa (with row names intersecting with the "abun" table) should be the
rows and the functions should be the columns.

tree phylo object with tip labels that match the row names of the "abun" and "func"
tables. This object is usually based on a newick-formatted tree that has been
read into R with the ape R package.

group1_samples character vector of column names of "abun" table that correspond to the first
sample group. This grouping is used for testing for significant sample balances
at each node. Required unless the "manual_BSN_dir" argument is set (i.e., if
the binary directions of BSNs are specified manually).

group2_samples same as "group1_samples", but corresponding to the second sample group.

ncores integer specifying how many cores to use for parallelized sections of pipeline.

pseudocount number added to all cells of "abun" table to avoid 0 values. Set this to be 0 if
this is not desired. Note that there will be issues with the balance tree approach
if any 0’s are present.

manual_BSNs optional vector of node names that match node labels of input tree. These nodes
will be considered the set of balance-significant nodes, and the Wilcoxon tests
will not be run. The group means of the balances at each node will still be
used to determine which group has higher values. Note this requires that the
"manual_balances" argument is also specified.

manual_balances

optional list of balance values which represent the balances at all tested nodes
that resulted in the input to the manual_BSNs vector. This list must include bal-
ances for all nodes in the manual_BSNs vector, but also all non-significant tested
nodes as well. These node labels must all be present in the input tree. The re-
quired list format is the "balances" object in the output of compute_node_balances.
Note, however, that any approach for computing balances could be used, as long
as they are in this list format.

manual_BSN_dir optional character vector specifying "group1" or "group2", depending on the di-
rection of the BSN difference. This must be a named vector, with all names
matching the set of nodes specified by the manual_BSNs argument. Although
this requires that the exact labels "group1" or "group2" are specified, these cate-
gories could represent different binary divisions rather than strict sample groups.
For instance, "group1" could be used to represent nodes where sample balances
are positively associated with a continuous variable (rather than a discrete group-
ing), whereas "group2" could represent nodes where sample balances are nega-
tively associated.

min_num_tips minimum number of tips on each side of the nodes that is required for them to
be retained in the analysis. This argument is ignored if significant nodes are
specified manually.

min_func_instances

minimum number of tips that must encode the function for it to be retained for
the analysis.

min_func_prop minimum proportion of tips that must encode the function for it to be retained
for the analysis.

10 POMS_pipeline

multinomial_min_FSNs

The minimum number of FSNs required to run a multinomial test for a given
function.

derep_nodes boolean value specifying whether nodes should be dereplicated based on similar
sets of underlying tips (EXPERIMENTAL setting). More specifically, whether
nodes should be clustered based on how similar their underlying tips are (given
a Jaccard index cut-off, specified as separately), and then only retaining the node
with the fewest underlying tips per cluster.

jaccard_cutoff Numeric vector of length 1. Must be between 0 and 1 (inclusive). Corresponds
to the Jaccard cut-off used for clustering nodes based on similar sets of underly-
ing tips (when derep_nodes = TRUE).

BSN_p_cutoff significance cut-off for identifying BSNs.

BSN_correction multiple-test correction to use on Wilcoxon test p-values when identifying BSNs.
Must be in p.adjust.methods.

FSN_p_cutoff significance cut-off for identifying FSNs.

FSN_correction multiple-test correction to use on Fisher’s exact test p-values when identifying
FSNs. Must be in p.adjust.methods.

func_descrip_infile

optional path to mapfile of function ids (column 1) to descriptions (column 2).
This should be tab-delimited with no header and one function per line. If this
option is specified then an additional description column will be added to the
output table.

multinomial_correction

multiple-test correction to use on raw multinomial test p-values. Must be in
p.adjust.methods.

detailed_output

boolean flag to indicate that several intermediate objects should be included in
the final output. This is useful when troubleshooting issues, but is not expected
to be useful for most users.
The additional results include:

• balance_comparisons (summary of Wilcoxon tests on balances)
• func_enrichments (Fisher’s exact test output for all functions at each node)
• input_param (a list containing the specified input parameters)

verbose boolean flag to indicate that log information should be written to the console.

Details

Identifies significant nodes based on sample balances, using a Wilcoxon test by default. Alterna-
tively, significant nodes can be manually specified. Either way, significant nodes based on sample
balances are referred to as Balance-Significant Nodes (BSNs).

Fisher’s exact tests are run at each node in the tree with sufficient numbers of underlying tips on
each side to test for functional enrichment. Significant nodes based on this test are referred to as
Function-Significant Nodes (FSNs). The set of FSNs is determined independently for each tested
function.

prep_func_node_info 11

The key output is the tally of the intersecting nodes based on the sets of BSNs and FSNs.

Each FSN can be categorized in one of three ways:

• It does not intersect with any BSN.
• It intersects with a BSN and the functional enrichment is within the taxa that are relatively

more abundant in group 1 samples.
• Same as the second point, but enriched within taxa that are relatively more abundant in group

2 samples.

A multinomial test is run to see if the number of FSNs of each type is significantly different from
the random expectation.

Value

list containing (at minimum) these elements:

• results: dataframe with each tested function as a row and the numbers of FSNs of each type
as columns, as well as the multinomial test output.

• balance_info: list containing the tips underlying each node, which were what the balances
are based on, the balances themselves at each tested node, and the set of nodes that were de-
termined to be negligible due to having too few underlying tips. Note that the balances and
underlying tips are provided for all non-negligible (i.e., tested) nodes, not just those identi-
fied as BSNs. Additional information on the dereplication and Jaccard similarity of nodes is
returned as well when derep_nodes = TRUE.

• BSNs: character vector with BSNs as names and values of "group1" and "group2" to indicate
for which sample group (or other binary division) the sample balances were higher.

• FSNs_summary: list containing each tested function as a separate element. The labels for
nodes in each FSN category of the multinomial test are listed per function (or are empty if
there were no such FSNs).

• tree: the prepped tree used by the pipeline, including the added node labels if a tree lacking
labels was provided. This tree will also have been subset to only those tips found in the
abundance table, and midpoint rooted (if it was not already rooted).

• multinomial_exp_prop: expected proportions of the three FSN categories used for multino-
mial test.

prep_func_node_info Get node indices of FSN and BSN categories across tree for a given
function

Description

Parse POMS_pipeline output to look at FSNs for a specific function (e.g., a specific gene family).
Will also parse BSN information (which is not dependent on a particular function). This is con-
venient to do before plotting the distribution of FSNs and BSNs across the tree with the ggtree R
package for instance. When a taxa label table is specified, labels of tested nodes in the tree (found
in the POMS_pipeline output object) will be renamed to be the representative taxa on each side.

12 prevalence_norm_logit

Usage

prep_func_node_info(
POMS_output,
func_id,
taxa_table = NULL,
taxa_threshold = 0.75,
full_taxon_label = FALSE

)

Arguments

POMS_output output object from POMS_pipeline function.

func_id label of function for which should FSNs should be parsed. Must be present in
POMS_output$FSNs_summary.

taxa_table optional dataframe containing taxa labels for each tip of tree. Must be in same
format as expected for node_taxa function.

taxa_threshold float > 0.5 and <= 1.0 specifying the proportion of tips that must share a taxon
label for it to be considered representative. Only relevant if taxa_table specified.

full_taxon_label

boolean flag for whether taxon labels should be combined, so that all higher
taxonomic labels are included. Specifically, when TRUE, all higher labels are
concatenated and delimited by "; ". E.g., rather than just the genus "Odorib-
acter" the label would be "Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales;
Porphyromonadaceae; Odoribacter". Only relevant if taxa_table specified.

Value

List containing final tree as well as indices of nodes corresponding to different FSN and BSN
categories. If taxa_table was specified, then node labels in tree will correspond to representative
taxa on each side of the nodes that were tested (i.e., those that were non-negligible).

prevalence_norm_logit Compute additive smoothed prevalence of features (e.g, taxa), re-
stricted to samples of a particular metadata category.

Description

This code replicates the prevalence score introduced in phylogenize. The code here is modified from
the phylogenize code base (https://bitbucket.org/pbradz/phylogenize/src/master/package/phylogenize/R/;
commit 6f1bdba9c5a9ff04e90a8ad77bcee8ec9281730d).

specificity_scores 13

Usage

prevalence_norm_logit(
abun_table,
meta_table,
focal_var_level,
var_colname,
sample_colname,
silence_citation = FALSE

)

Arguments

abun_table abundance table to use for computing prevalence. Features must be rows and
samples columns. All values greater than 0 will be interpreted as present.

meta_table dataframe object containing metadata for all samples. Must include at least one
column corresponding to the sample ids and one column containing the metadata
of interest that will be focused on when computing prevalence.

focal_var_level

length-one character vector specifying the variable value to restrict inferences of
prevalence to. In other words, prevalence will be computed based on the sample
set that contain this value of the variable of interest in the metadata table.

var_colname length-one character vector specifying the name of column in the metadata table
that contains the metadata of interest (e.g., where focal_var_level can be found).

sample_colname length-one character vector specifying the name of column in the metadata table
that contains the sample ids.

silence_citation

length-one Boolean vector specifying whether to silence message notifying user
about phylogenize package and paper.

Details

This algorithm is descibed in detail in Bradley et al. 2018. Phylogeny-corrected identification of
microbial gene families relevant to human gut colonization. PLOS Computational Biology.

Value

Numeric vector with the normalized prevalence score for each input feature (i.e., for each row of
abun_table).

specificity_scores Compute shrunken specificity score of a feature, which represents how
the presence of a feature is associated with a given sample grouping.

14 specificity_scores

Description

This code replicates the environmental specificity score introduced in phylogenize. The code here is
modified from the phylogenize code base (https://bitbucket.org/pbradz/phylogenize/src/master/package/phylogenize/R/;
commit 6f1bdba9c5a9ff04e90a8ad77bcee8ec9281730d).

Usage

specificity_scores(
abun_table,
meta_table,
focal_var_level,
var_colname,
sample_colname,
silence_citation = FALSE

)

Arguments

abun_table abundance table to use for computing specificity Features must be rows and
samples columns. All values greater than 0 will be interpreted as present.

meta_table dataframe object containing metadata for all samples. Must include at least one
column corresponding to the sample ids and one column containing the metadata
of interest that will be focused on.

focal_var_level

length-one character vector specifying the variable value to restrict inferences of
prevalence to. In other words, prevalence will be computed based on the sample
set that contain this value of the variable of interest in the metadata table.

var_colname length-one character vector specifying the name of column in the metadata table
that contains the metadata of interest (e.g., where focal_var_level can be found).

sample_colname length-one character vector specifying the name of column in the metadata table
that contains the sample ids.

silence_citation

length-one Boolean vector specifying whether to silence message notifying user
about phylogenize package and paper.

Details

This algorithm is descibed in detail in Bradley et al. 2018. Phylogeny-corrected identification of
microbial gene families relevant to human gut colonization. PLOS Computational Biology.

Note thee can be some random fluctuations between re-runs of this function. The differences are
usually minor, but users are strongly suggested to set a random seed before use to ensure their
workflow is reproducible.

Value

Numeric vector with the specificity score for each input feature (i.e., for each row of abun_table).

subset_by_col_and_filt 15

subset_by_col_and_filt

Subset dataframe by column names and then post-filter

Description

Subset table by set of column names. After doing this, it will remove any rows and columns that
are all 0’s.

Usage

subset_by_col_and_filt(in_tab, col2keep, verbose = TRUE)

Arguments

in_tab input dataframe

col2keep column names to retain in output (as long as they have at least one non-zero
value).

verbose flag to indicate that the final number of rows and columns (as well as the number
removed) should be reported.

Value

dataframe with subset of specified columns (if they have at least one non-zero value), also with rows
that only contain 0’s removed.

Index

abun_isometric_log_ratios, 2

compute_node_balances, 3

filter_rare_table_cols, 4

genome_content_phylo_regress, 5

node_taxa, 6

phylolm_summary, 7
POMS_pipeline, 8
prep_func_node_info, 11
prevalence_norm_logit, 12

specificity_scores, 13
subset_by_col_and_filt, 15

16

	abun_isometric_log_ratios
	compute_node_balances
	filter_rare_table_cols
	genome_content_phylo_regress
	node_taxa
	phylolm_summary
	POMS_pipeline
	prep_func_node_info
	prevalence_norm_logit
	specificity_scores
	subset_by_col_and_filt
	Index

