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1. What does REndo do

REndo is the first R package to implement the most recent internal instrumental variable methods to address
endogeneity. The package includes implementations of the latent instrumental variable approach (Ebbes et
al., 2005), the joint estimation using copula (Park and Gupta, 2012), the higher moments method (Lewbel,
1997) and the heteroskedastic error approach (Lewbel, 2012). To model hierarchical data (not cross-classified)
such as students nested within classrooms, nested within schools, REndo includes the multilevel GMM
estimation proposed by Kim and Frees (2007). All approaches assume a continuous dependent variable.

Internal instrumental variable approaches, also called instrument free methods, have been proposed
as alternative to external instrumental variable approaches (like IV regression) to address endogeneity concerns,
when valid, strong instruments are difficult to find.

The only alternative toREndo we could find inR is the ivlewbel package that implements the heteroskedastic
errors method proposed by Lewbel (2012).

2. Short Description of REndo’s Functions

2.1 Instrument Free Methods for Non-hierarchical Data

The four instrument free methods presented in this section share the same underlying model presented in
equations (1) and (2) below. The specific characteristics of each method are discussed in the subsequent
sections.

Consider the model:

Yt = β0 + β1Pt + β2Xt + εt (1) (1)

where t = 1, .., T indexes either time or cross-sectional units, Yt is a k x 1 response variable, Xt is a k x n
exogenous regressor, Pt is a k x 1 continuous endogenous regressor, εt is a structural error term with mean
zero and E(ε2) = σ2

ε , α and β are model parameters. The endogeneity problem arises from the correlation of
Pt and εt. As such:

Pt = γZt + νt (2) (2)

where Zt is a l x 1 vector of internal instrumental variables, and νt is a random error with mean zero,
E(ν2) = σ2

ν and E(εν) = σεν . Zt is assumed to be stochastic with distribution G and νt is assumed to have
density h(·).

The latent instrumental variables and the higher moments models assume Zt to be uncorrelated
with the structural error, which is similar to the exclusion restriction assumption for observed instrumental
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variables methods. Moreover, Zt is also assumed unobserved. Therefore, Zt and νt cannot be identified
without distributional assumptions.

The distributions of Zt and νt should be specified such that two conditions are met: (1) endogeneity of Pt is
corrected, and (2) the distribution of Pt is empirically close to the integral that expresses the amount of
overlap of Z as it is shifted over ν (= the convolution between Zt and νt). When the density h(·) is chosen to
be normal, then G cannot be normal because the parameters would not be identified (Ebbes et al., 2005).
Consequently, in the LIV model the distribution of Zt is discrete while in the higher moments and joint
estimation with copulas methods, the distribution of the internal instruments is taken to be skewed.

Latent Instrumental Variable Approach Ebbes et al. (2005) propose the latent instrumental variables
approach whose model is described in equations (1) and (2) above. A particular characteristic of this approach
is that the internal instrumental variables Zt are assumed unobserved, discrete and exogenous, with an
unknown number of groups m, while γ is a vector of group means.

Identification of the parameters relies on the distributional assumptions of the latent instruments, Zt, as well
as that of the endogenous regressor, Pt. Specifically:

• Pt should have a non-Gaussian distribution.
• Zt should be discrete and have at least two groups with different means.

A continuous distribution for the instruments leads to an unidentified model, while a normal distribution of
the endogenous regressor gives rise to inefficient estimates.

Gaussian Copula Correction Approach Park and Gupta (2012) propose a method that allows for the
joint estimation of the continuous endogenous regressor and the error term using Gaussian copulas (A copula
is a function that maps several conditional distribution functions (CDF) into their joint CDF).

The underlying idea is that using information contained in the observed data, one selects marginal distributions
for the endogenous regressor and the structural error term, respectively. Then, the copula model enables the
construction of a flexible multivariate joint distribution allowing a wide range of correlations between the two
marginals.

The method allows both continuous and discrete endogenous regressors. In the case of one continuous
endogenous regressor, the model is estimated using maximum likelihood. Otherwise, an alternative
approach, still based on Gaussian copulas, but using an augmented OLS estimation is being used. The
assumption of a skewed endogenous regressor is maintained here as well for the recovery of the correct
parameter estimates.

The structural error εt is assumed to have a normal marginal distribution. The marginal distribution of the
endogenous regressor Pt is obtained using the Epanechnikov kernel density estimator, as below:

ĥ(p) = 1
T · b

T∑
t=1

K

(
p− Pt
b

)
(3)

where Pt is the endogenous regressor, K(x) = 0.75 · (1 − x2) · I(‖x‖ <= 1) and the bandwidth b is equal
to b = 0.9 · T−1/5 ·min(s, IQR/1.34), as proposed by Silvermann (1969). IQR is the interquartile range
while s is the data sample standard deviation and T is the number of time periods observed in the data.
In both cases, augmented OLS and maximum likelihood, the inference procedure occurs in two stages
(first the empirical distribution of the endogenous regressor is computed and then used in constructing the
likelihood function), the standard errors are not correct. Therefore, in both cases, the standard errors and
the confidence intervals are obtained based on the sampling distributions resulted from bootstrapping. Since
the distribution of the bootstraped parameters is highly skewed, we report the percentile confidence intervals.
The variance-covariance matrix is also computed based on the bootstraped parameters, and not based on the
Hessian.
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In both cases, maximum likelihood estimation and augmented OLS, the reported standard errors are the
bootstrapped standard errors, due to the inference being done in two steps. The confidence intervals are also
the bootstrapped confidence intervals, due to the non-normality of the bootstrapped parameters.

Higher Moments Approach The higher moments approach proposed by Lewbel (1997) helps identify
structural parameters in regression models with endogeneity caused by measurement error. Identification is
achieved by exploiting third moments of the data, with no restrictions imposed on the distribution of the
error terms.

The following instruments are constructed and can be used with two-stage least squares estimation to obtain
consistent estimates:

q1t = (Gt − Ḡ) (3a)
q2t = (Gt − Ḡ)(Pt − P̄ ) (3b)
q3t = (Gt − Ḡ)(Yt − Ȳ ) (3c)
q4t = (Yt − Ȳ )(Pt − P̄ ) (3d)
q5t = (Pt − P̄ )2 (3e)
q6t = (Yt − Ȳ )2 (3f)

(4)

Here, Gt = G(Xt) for any given function G that has finite third own and cross moments and X are all the
exogenous in the model. Ḡ is the sample mean of Gt. The same rule applies also for Pt and Yt.

The instruments in equations (3e) and (3f) can be used only when the measurement and the structural errors
are symmetrically distributed. Otherwise, the use of the instruments does not require any distributional
assumptions for the errors. Given that the regressors G(X) = X are included as instruments, G(X) should
not be linear in X in equation (3a) above.

Since the constructed instruments come along with very strong assumptions, one of their best uses is to
provide over-identifying information. The over-identification can be used to test validity of a potential outside
instrument, to increase efficiency, and to check for robustness of parameter estimates based on alternative
identifying assumptions (Lewbel 1997).

Heteroskedastic Errors Approach The heteroskedastic errors method identifies structural parameters
in regression models with endogenous regressors by means of variables that are uncorrelated with the product
of heteroskedastic errors. The instruments are constructed as simple functions of the model’s data. The
method can be applied when no external instruments are available or to supplement external instruments to
improve the efficiency of the IV estimator (Lewbel, 2012).

Consider the model in equations (1) and (2). This approach assumes that:

• E(Xε) = 0
• E(Xν) = 0
• cov(Z, εν) = 0.
• the errors, ε and ν, may be correlated with each other.

Structural parameters are identified by an ordinary two stage least squares regression of Y on X and P ,
using X and [Z − E(Z)]ν as instruments. A vital assumption for identification is that cov(Z, ν2) 6= 0.

The strength of the instrument is proportional to the covariance between (Z − Z̄)ν and ν, which corresponds
to the degree of heteroskedasticity of ν with respect to Z (Lewbel, 2012). This assumption can be empirically
tested. If it is zero or close to zero, the instrument is weak, producing imprecise estimates, with large standard
errors. Under homoskedasticity, the parameters of the model are unidentified. But, identification is achieved
in the presence of heteroskedasticity related to at least some elements of X.
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2.2 Instrument Free Methods for Hierarchical Data (not cross-classified)

Like in single-level regression, also in multilevel models endogeneity is a concern. The additional problem is
that in multilevel models there are multiple independent assumptions involving various random components
at different levels. Any moderate correlation between some predictors and a random component or error
term can result in a significant bias of the coefficients and of the variance components.

Exploiting the hierarchical structure of multilevel data, Kim and Frees (2007) propose a generalized method of
moments technique for addressing endogeneity in multilevel models without the need of external instrumental
variables. This approach uses both, the between and within variations of the exogenous variables, but only
assumes the within variation of the variables to be endogenous.

The model comes with a set of assumptions such as:

• the errors at each level are normally distributed and independent of each other.
• the slope variables are exogenous.

• the level-1 structural error is uncorrelated with any of the regressors.

If the last assumption is not met, additional, external instruments are necessary.

Consider a hierarchical model with three levels like below:

ycst = Z1
cstβ

1
cs +X1

cstβ1 + ε1cst

β1
cs = Z2

csβ
2
c +X2

csβ2 + ε2cs

β2
c = X3

c β3 + ε3c .

Given the set of disturbance terms at different levels, there exist a couple of possible correlation patterns
that could lead to biased results:

• errors at the higher two levels (ε2cs and ε3c) are correlated with some of the regressors,
• only third level errors (ε3c) are correlated with some of the regressors,
• an intermediate case, where there is concern with the higher level errors, but there is not enough

information to estimate level 3 parameters.

The ingenious approach proposed by Kim and Frees (2007) lies in the fact that when all variables are assumed
exogenous, the proposed estimator equals the random effects estimator. When all covariates are assumed
endogenous, it equals the fixed effects estimator.

In facilitating the choice of the estimator to be used for the given data, Kim and Frees (2007) also propose
an omitted variable test (which is reported by the summary function after the estimation using multilevelIV()
function in REndo). This test is based on the Hausman-test (Hausman, 1978) for panel data. The omitted
variable test allows the comparison of a robust estimator and an estimator that is efficient under the null
hypothesis of no omitted variables, and also the comparison of two robust estimators at different levels.

3. Using REndo

REndo encompasses five functions that allow the estimation of linear models with one or more endogenous
regressors using internal instrumental variables. Depending on the assumptions of the model and the structure
of the data, single or multilevel, the researcher can use one of the following functions:

1. latentIV() - implements the latent instrumental variable estimation as in Ebbes (2005). The endogenous
variable is assumed to have two components - a latent, discrete and exogenous component with an
unknown number of groups and the error term that is assumed normally distributed and correlated with
the structural error. The method supports only one endogenous, continuous regressor and no additional
explanatory variables. The latent instrumental variable function has the following syntax:

latentIV(y ~ P, data, start.params=c())
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The first argument is the formula of the model to be estimated, y ~ P, where y is the response and
P is the endogenous regressor. The second argument is the name of the dataset used and the last one,
start.params=c(), which is optional, is a vector with the initial parameter values. When not indicated, the
initial parameter values are taken to be the coefficients returned by the OLS estimator of y on P.

2. copulaCorrection() - models the correlation between the endogenous regressor and the structural
error with the use of Gaussian copula (Park and Gupta, 2012). The endogenous regressor can be
continuous or discrete. The method also allows estimating a model with more than one endogenous
regressor, either continuous, discrete or a mixture of the two. However, the endogenous regressors
cannot have a binomial distribution, due to parameter identification problems.

In the case of only one, continuous endogenous regressor, the method uses maximum likelihood estimation.
In the case of a discrete endogenous regressor, or when several endogenous regressors are suspected, the
estimation is carried out using an augmented OLS estimation which is nonetheless based on Gaussian copulas.

The copula correction function has the following syntax:

copulaCorrection( y ~ X1 + X2 + P1 + P2 | continuous(P1) + discrete(P2),
data, start.params=c(), num.boots=10, optimx.args=list())

The first argument is a two-part formula of the model to be estimated, with the second part of the RHS
defining the endogenous regressor, here continuous(P1) + discrete(P2). The second argument is the
name of the data, the third argument of the function, start.params, is optional and represents the initial
parameter values supplied by the user (when missing, the OLS estimates are considered); the fourth argument,
num.boots, also optional, is the number of bootstraps to be performed (the default is 1000). The fifth
argument,optimx.args, is used in order to choose the optimization algorithm and the maximum number
of iterations for the selected algorithm. The default is the Nelder-Mead algorithm with 100.000 iterations.
Transformation of explanatory variables, such as I(X), ln(X) are supported. The standard errors reported are
obtained through bootstrapping, sice in both cases, the inference is done in two stages. Due to the skewness
of the bootstrapped parameters, the confidence intervals reported are the percentile confidence intervals. The
variance-covariance matrix is also based on the boostrapped values.

3. higherMomentsIV() - implements the higher moments approach described in Lewbel (1997) where
instruments are constructed by exploiting higher moments of the data, under strong model assumptions.
The function allows just one endogenous regressor.

The higherMomentsIV() function has a four-part formula, with the following specification:

higherMomentsIV(y ~ X1 + X2 + P | P | IIV (iiv = gp , g= x2, X1, X2) +
IIV (iiv = yp) | Z1, data)

where: y is the response; the first RHS of the formula, X1 + X2 + P, is the model to be estimated; the
second part, P, specifies the endogenous regressors; the third part, IIV(), specifies the format of the internal
instruments; the fourth part, Z1, is optional, allowing the user to add any external instruments available.

Regarding the third part of the formula, IIV(), it has a set of three arguments:

• iiv - specifies the form of the instrument,
• g - specifies the transformation to be done on the exogenous regressors,
• the set of exogenous variables from which the internal instruments should be built (any subset of the

exogenous variables).

A set of six instruments can be constructed, which should be specified in the iiv argument of IIV():

• g - for (Gt − Ḡ),
• gp - for (Gt − Ḡ)(Pt − P̄ ),
• gy - for (Gt − Ḡ)(Yt − Ȳ ),
• yp - for (Yt − Ȳ )(Pt − P̄ ),
• p2 - for (Pt − P̄ )2,
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• y2 - for (Yt − Ȳ )2,

where G = G(Xt) can be either x2, x3, ln(x) or 1/x and should be specified in the g argument of the third
RHD of the formula, as x2, x3, lnx or 1/x. In case of internal instruments built only from the endogenous
regressor, e.g. p2, or from the response and the endogenous regressor, like for example in yp, there is no
need to specify g or the set of exogenous regressors in the IIV() part of the formula. The function returns
a set of tests for checking the validity of the instruments and the endogeneity assumption. Here as well,
transformation of explanatory variables, such as I(X), ln(X), are supported.

4. hetErrorsIV() - uses the heteroskedasticity of the errors in a linear projection of the endogenous
regressor on the other covariates to solve the endogeneity problem induced by measurement error, as
proposed by Lewbel (2012). The function allows just one endogenous regressor.

The function hetErrorsIV() has a four-part formula specification:

hetErrorsIV(y ~ X1 + X2 + X3 + P | P | IIV(X1,X2) | Z1, data)

where: y is the response variable, X1 + X2 + X3 + P represents the model to be estimated; the second part,
P, specifies the endogenous regressors, the third part, IIV(X1, X2), specifies the exogenous heteroskedastic
variables from which the instruments are derived, while the final part Z1 is optional, allowing the user
to include additional external instrumental variables. Like in the higher moments approach, allowing the
inclusion of additional external variables is a convenient feature of the function, since it increases the efficiency
of the estimates. Transformation of the explanatory variables, such as I(X), ln(X) are possible both in the
model specification as well as in the IIV() specification.

5. multilevelIV() - implements the instrument free multilevel GMM method proposed by Kim and Frees
(2007) where identification is possible due to the different levels of the data. Endogenous regressors at
different levels can be present. The function comes along a built in omitted variable test, which helps
in deciding which model is robust to omitted variables at different levels.

The multilevelIV() function allows the estimation of a multilevel model with up to three levels, and it has
a syntax in the spirit of the lmer() function:

multilevelIV(y ~ X11 + X12 + X21 + X22 + X23 + X31 + X33 + X34 +
(1|CID) + (1|SID) | endo(X12), data, lmer.control = lmerControl(list()))

The call has a two-part formula and an argument for data specification. In the formula, the first part is the
model specification, with fixed and random parameter specification, and the second part which specifies the
regressors assumed endogenous, here X12. The function returns the parameter estimates obtained with fixed
effects, random effects and the GMM estimator proposed by Kim and Frees (2007), such that a comparison
across models can be done. The user has the possibility to choose the optimization algorithm by specifying it
in the lmer.control argument. The default is the Nelder Mead algorithm.

4. Examples using Real Data

Using the publicly available dataset CASchools which comes with the AER package, the results of imple-
menting the instrument-free methods are presented.

The data contain information on test performance, school characteristics and student demographic backgrounds
for schools in different districts in California. The data are aggregated at the district level, across different
California counties. In trying to answer the question of how does student/teacher ratio affects the
average reading score, we use as covariates the following variables:

• student/teacher ratio (students/teachers),
• lunch (percent qualifying for reduced-price lunch),
• english(percent of English learners),
• calworks(percent qualifying for income assistance),
• income(district average income in USD 1.000),
• grades (a dummy variable if the grade is equal to KK-08)
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• county (dummy for county).

The student/teacher ratio might be endogenous here since it could be correlated with unobserved factors
such as teacher salaries or teacher working conditions, which are both unobserved, but can affect the reading
score of the students. Having access to an additional variable, namely expenditure (the expenditure per
student aggregated at district level), we can use it as external instrumental variable. This is possible since it
is correlated with the student/teacher ratio (a correlation of −0.61), but does not directly explain the reading
score tests of the students. Therefore, we can apply both external(two-stage least squares) and internal
instrumental variables techniques to estimate the model and compare their performance.

In orde to have a reference point, we apply OLS on the above data:
library(AER)
library(REndo)
set.seed(421)
data("CASchools")
school <- CASchools
school$stratio <- with(CASchools, students/teachers)

m1.ols <- lm(read ~ stratio + english + lunch + grades + income + calworks + county,
data=school)

summary(m1.ols)$coefficients[1:7,]
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 683.45305948 9.56214469 71.4748711 3.011667e-218
#> stratio -0.30035544 0.25797023 -1.1643027 2.450536e-01
#> english -0.20550107 0.03765408 -5.4576041 8.871666e-08
#> lunch -0.38684059 0.03700982 -10.4523759 1.427370e-22
#> gradesKK-08 -1.91291321 1.35865394 -1.4079474 1.599886e-01
#> income 0.71615378 0.09832843 7.2832829 1.986712e-12
#> calworks -0.05273312 0.06154758 -0.8567863 3.921191e-01

The OLS coefficient estimate for the student/teacher ratio is -0.30. Now, using expenditure as external IV,
we can estimate a two-stage least squares model, using ivreg():
m2.2sls <- ivreg(read ~ stratio + english + lunch + grades + income + calworks +

county| expenditure + english + lunch + grades + income + calworks +
county , data=school)

summary(m2.2sls)$coefficients[1:7,]
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 700.47891593 13.58064436 51.5792106 8.950497e-171
#> stratio -1.13674002 0.53533638 -2.1234126 3.438427e-02
#> english -0.21396934 0.03847833 -5.5607753 5.162571e-08
#> lunch -0.39384225 0.03773637 -10.4366757 1.621794e-22
#> gradesKK-08 -1.89227865 1.37791820 -1.3732881 1.704966e-01
#> income 0.62487986 0.11199008 5.5797785 4.668490e-08
#> calworks -0.04950501 0.06244410 -0.7927892 4.284101e-01

The external IV method returns an estimate for the assumed endogenous regressor equal to -1.13, very
different from the OLS estimate.

Next, we estimate the same model using the instrument-free methods from REndo. The latent instru-
mental variables approach will probably return a coefficient very different from the other methods, given
that the only regressor allowed is the endogenous one. Let’s see:
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m3.liv <- latentIV(read ~ stratio, data=school)
#> No start parameters were given. The linear model read ~ stratio is fitted to derive them.
#> The start parameters c((Intercept)=706.449, stratio=-2.621, pi1=19.64, pi2=21.532, theta5=0.5, theta6=1, theta7=0.5, theta8=1) are used for optimization.
summary(m3.liv)$coefficients[1:7,]
#> Estimate Std. Error z-score Pr(>|z|)
#> (Intercept) 6.996014e+02 2.686186e+02 2.604441e+00 9.529597e-03
#> stratio -2.272673e+00 1.367757e+01 -1.661605e-01 8.681108e-01
#> pi1 -4.896363e+01 5.526907e-08 -8.859139e+08 0.000000e+00
#> pi2 1.963920e+01 9.225351e-02 2.128830e+02 0.000000e+00
#> theta5 6.939432e-152 3.354672e-160 2.068587e+08 0.000000e+00
#> theta6 3.787512e+02 4.249457e+01 8.912932e+00 1.541524e-17
#> theta7 -1.227543e+00 4.885276e+01 -2.512741e-02 9.799653e-01

Indeed, the value returned is equal to -2.273. The latentIV() function returns, besides the coefficient
estimates, also the initial parameter values used in the maximum likelihood optimization and the AIC and
BIC. The latter two can also be accessed calling AIC(m3.liv) and BIC(m3.liv). The function also returns
the fitted values and the residuals, as well as the confidence interval for the coefficients (the bootstrapped
confidence intervals will not be reported here, since we used only 2 bootstraps, and 1000 are needed for
reporting standard errors).

Next, we call the copulaCorrection() function:
set.seed(110)
m4.cc <- copulaCorrection(read ~ stratio + english + lunch + calworks +

grades + income + county | continuous(stratio), data= school,
optimx.args = list(method=c("Nelder-Mead"), itnmax= 60000),
num.boots=2, verbose = FALSE)

#> Warning: It is recommended to run 1000 or more bootstraps.

summary(m4.cc)$coefficients[1:7,]
#> Point Estimate Boots SE Lower Boots CI (95%)
#> (Intercept) 682.56562449 2.892541893 NA
#> stratio -0.40322352 0.188960137 NA
#> english -0.20380742 0.010970833 NA
#> lunch -0.36426215 0.031529433 NA
#> calworks -0.07186591 0.003223237 NA
#> gradesKK-08 -0.72045639 0.195490165 NA
#> income 0.78911122 0.040396762 NA
#> Upper Boots CI (95%)
#> (Intercept) NA
#> stratio NA
#> english NA
#> lunch NA
#> calworks NA
#> gradesKK-08 NA
#> income NA

The copula correction with one endogenous continuous regressor, estimates the model using maximum
likelihood. The optimization algorithm used is the Nelder-Mead, which it is known to converge slowly, so it
might happen that sometimes your code will not converge. Therefore, the copulaCorrection() allows the user
to specify the desired optimization algorithm (see the optimx() function for a list of vailable options) and
also the maximum number of iterations for the optimization algorithm.

In the current case, the algorithm converged, and we see that the coefficient of the student/teacher ratio
returned is equal to -0.38.
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The heteroskedastic errors approach returns an estimate of the student/teacher ratio equal to 0.71, far
away from the coefficients returned by the external instrumental variables or even OLS. As Lewbel (2012)
underlined, it is often better to use this approach in order to create additional instruments, which together
with external ones, could lead to improved efficiency.
set.seed(111)
m5.hetEr <- hetErrorsIV(read ~ stratio + english + lunch + calworks + income +

grades+ county | stratio | IIV(income, english), data=school)
#> Warning: A studentized Breusch-Pagan test (stratio ~ english) indicates at a 95%
#> confidence level that the assumption of heteroscedasticity for the variable is
#> not satisfied (p-value: 0.2428). The instrument built from it therefore is weak.

summary(m5.hetEr)$coefficients[1:7,]
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 662.78791557 27.90173069 23.7543657 2.380436e-76
#> stratio 0.71480686 1.31077325 0.5453322 5.858545e-01
#> english -0.19522271 0.04057527 -4.8113717 2.188618e-06
#> lunch -0.37834232 0.03927793 -9.6324402 9.760809e-20
#> calworks -0.05665126 0.06302095 -0.8989273 3.692776e-01
#> income 0.82693755 0.17236557 4.7975797 2.335271e-06
#> gradesKK-08 -1.93795843 1.38723186 -1.3969968 1.632541e-01

Last, but not least, higher moments approach returns an estimate in the range of the estimate produced
by the two-stage least squares and control function methods, namely -1.30:
set.seed(112)
m6.highMoment <- higherMomentsIV(read ~ stratio + english + lunch + calworks + income +

grades + county| stratio | IIV(g = x3,iiv = gp, income), data=school)

summary(m6.highMoment)$coefficients[1:7,]
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 703.95605932 56.18284961 12.5297322 2.974075e-30
#> stratio -1.30755252 2.73072188 -0.4788304 6.323429e-01
#> english -0.21569879 0.04726222 -4.5638738 6.848861e-06
#> lunch -0.39527218 0.04409111 -8.9648953 1.576520e-17
#> calworks -0.04884574 0.06367608 -0.7670971 4.435143e-01
#> income 0.60623924 0.31312518 1.9360923 5.361980e-02
#> gradesKK-08 -1.88806451 1.38805414 -1.3602240 1.745894e-01

The CASchools dataset has information at the district level, where the districts are clustered into counties.
One could be tempted to apply the multilevel GMM method to these data, as implemented in the multi-
levelIV() function. However, the endogeneity problem solved by the multilevel GMM approach considers
only correlations between level-1 variables and level-2 errors, while the endogeneity presented in the example
above deals with endogeneity between a level-1 variable and the level-1 error. Therefore, we expect that the
multilevelIIV() function will indicate the use of fixed effects method. In other words, the results should
be similar with the ones returned by OLS since we included county dummy variables. Indeed, the omitted
variable test between the fixed effects and the GMM model rejects the null hypothesis, therefore indicating
an endogeneity problem at level one and the use of fixed effects.
set.seed(113)
school$gr08 <- school$grades=="KK-06"
m7.multilevel <- multilevelIV(read ~ stratio + english + lunch + income + gr08 +

calworks + (1|county) | endo(stratio), data=school)
summary(m7.multilevel)$coefficients[1:7,]

#> Estimate Std. Error z-score Pr(>|z|)
#> (Intercept) 675.8228656 5.58008680 121.1133248 0.000000e+00
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#> stratio -0.4956054 0.23922638 -2.0717005 3.829339e-02
#> english -0.2599777 0.03413530 -7.6160948 2.614656e-14
#> lunch -0.3692954 0.03560210 -10.3728537 3.295342e-25
#> income 0.6723141 0.08862012 7.5864728 3.287314e-14
#> gr08TRUE 2.1590333 1.28167222 1.6845440 9.207658e-02
#> calworks -0.0570633 0.05711701 -0.9990596 3.177658e-01

However, we can use the simulated data that comes with the package in order to give an example of the
workings of the multilevelIV() function.

The dataset has five level-1 regressors, X11, X12, X13, X14 and X15, where X15 is correlated with the level
two error, thus endogenous. There are four level-2 regressors, X21, X22, X23 and X24, and three level-3
regressors, X31, X32, X33, all exogenous. We estimate a three-level model with X15 assumed endogenous.

Having a three-level hierarchy, multilevelIV() returns five estimators, from the most robust to omitted
variables (FE_L2), to the most efficient (REF), i.e. lowest mean squared error. The random effects estimator
(REF) is efficient assuming no omitted variables, whereas the fixed effects estimator (FE) is unbiased and
asymptotically normal even in the presence of omitted variables. Because of the efficiency, one would choose
the random effects estimator if confident that no important variables were omitted. On the contrary, the
robust estimator would be preferable if there was a concern that important variables were likely to be omitted.
The estimation result is below:
data(dataMultilevelIV)
set.seed(114)
formula1 <- y ~ X11 + X12 + X13 + X14 + X15 + X21 + X22 + X23 + X24 +
X31 + X32 + X33 + (1 | CID) + (1 | SID) | endo(X15)
m8.multilevel <- multilevelIV(formula = formula1, data = dataMultilevelIV)
coef(m8.multilevel)
#> REF FE_L2 FE_L3 GMM_L2 GMM_L3
#> (Intercept) 64.3168856 0.0000000 0.0000000 64.3485944 64.3168868
#> X11 3.0213405 3.0459605 3.0214255 3.0146686 3.0213403
#> X12 8.9522160 8.9839088 8.9524723 8.9747533 8.9522169
#> X13 -2.0194178 -2.0145054 -2.0193321 -2.0021426 -2.0194171
#> X14 1.9651420 1.9791437 1.9648317 1.9658681 1.9651421
#> X15 -0.5647915 -0.9777361 -0.5647621 -0.9750309 -0.5648070
#> X21 -2.3316225 0.0000000 -2.2845297 -2.3052516 -2.3316215
#> X22 -3.9564944 0.0000000 -3.9553644 -4.0130975 -3.9564966
#> X23 -2.9779887 0.0000000 -2.9756848 -2.9488487 -2.9779876
#> X24 4.9078293 0.0000000 4.9084694 4.7933756 4.9078250
#> X31 2.1142348 0.0000000 0.0000000 2.1164477 2.1142349
#> X32 0.3934770 0.0000000 0.0000000 0.3799626 0.3934764
#> X33 0.1082086 0.0000000 0.0000000 0.1108386 0.1082087

As we have simulated the data, we know that the true parameter value of the endogenous regressor (X15) is
−1. Looking at the coefficients of X15 returned by the five models, we see that they form two clusters: one
cluster is composed of the level-two fixed effects estimator and the level-two GMM estimator (both return
−0.975), while the other cluster is composed of the other three estimators, FE_L3, GMM_L3, REF, all three
having a value of −0.564. The bias of the last three estimators is to be expected since we have simulated the
data such that X15 is correlated with the level-two error, to which only FE_L2 and GMM_L2 are robust.

To provide guidance for selecting the appropriate estimator, multilevelIV() function performs an omitted
variable test. The results are returned by the summary() function. For example, in a three-level setting,
different estimator comparisons are possible:

• Fixed effects versus random effects estimators: To test for omitted level-two and level-three
omitted effects, simultaneously, one compares FE_L2 to REF. The test does not indicate the level at
which omitted variables might exist.
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• Fixed effects versus GMM estimators: Once the existence of omitted effects is established but
not certain at which level (see 1), we test for level-two omitted effects by comparing FE_L2 versus
GMM_L3. A rejection of the null hypothesis will imply omitted variables at level-two. The same is
accomplished by testing FE_L2 versus GMM_L2, since the latter is consistent only if there are no
omitted effects at level two.

• Fixed effects versus fixed effects estimators: We can test for omitted level-two effects, while
allowing for omitted level-three effects. This can be done by comparing FE_L2 versus FE_L3since
FE_L2 is robust against both level-two and level-three omitted effects while FE_L3 is only robust to
level-three omitted variables.

In general, testing for higher level endogeneity in multilevel settings one would start by looking at the results
of the omitted variable test comparing REF and FE_L2. If the null hypothesis if rejected, this means the
model suffers from omitted variables, either at level two or level three. Next, test whether there are level-two
omitted effects, since testing for omitted level three effects relies on the assumption there are no level-two
omitted effects. To this end, one can rely on one of the following model comparisons: FE_L2 versus FE_L3
or FE_L2 versus GMM_L2. If no omitted variables at level-two are found, proceed with testing for omitted
level-three effects by comparing FE_L3 versus GMM_L3 or GMM_L2 versus GMM_L3.

In order to have a quick overview of the coefficients returned by each of the possible estimation approaches
(fixed effects, GMM, random effects), one should use the coef() function, with the name of the estimated
model as parameter (here m8.multilevel). For a detailed summary of each estimated model, the summary()
function should be used, which takes two arguments: the name of the model object (here m8.multilevel)
and the estimation method (here REF). The second parameter can take the following values, depending
on the model estimated (two or three levels): REF, GMM_L2, GMM_L3, FE_L2, FE_L3. It returns the
estimated coefficients under the model specified in the second argument, together with their standard errors
and z-scores. Further, it returns the chi-squared statistic, degrees of freedom and p-value of the omitted
variable test between the focal model (here REF) and all the other possible options (here FE_L3, GMM_L2
and GMM_L3).
summary(m8.multilevel, "REF")
#>
#> Call:
#> multilevelIV(formula = formula1, data = dataMultilevelIV)
#>
#> Number of levels: 3
#> Number of observations: 2824
#> Number of groups: L2(CID): 1368 L3(SID): 40
#>
#> Coefficients for model REF:
#> Estimate Std. Error z-score Pr(>|z|)
#> (Intercept) 64.31689 7.87332 8.169 3.11e-16 ***
#> X11 3.02134 0.02576 117.306 < 2e-16 ***
#> X12 8.95222 0.02572 348.131 < 2e-16 ***
#> X13 -2.01942 0.02409 -83.835 < 2e-16 ***
#> X14 1.96514 0.02521 77.937 < 2e-16 ***
#> X15 -0.56479 0.01950 -28.962 < 2e-16 ***
#> X21 -2.33162 0.16228 -14.368 < 2e-16 ***
#> X22 -3.95649 0.13119 -30.160 < 2e-16 ***
#> X23 -2.97799 0.06611 -45.044 < 2e-16 ***
#> X24 4.90783 0.19796 24.792 < 2e-16 ***
#> X31 2.11423 0.10433 20.264 < 2e-16 ***
#> X32 0.39348 0.30426 1.293 0.1959
#> X33 0.10821 0.05236 2.067 0.0388 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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#>
#> Omitted variable tests for model REF:
#> df Chisq p-value
#> GMM_L2_vs_REF 7 18.74 0.009040 **
#> GMM_L3_vs_REF 13 -12872.98 1.000000
#> FE_L2_vs_REF 13 39.99 0.000139 ***
#> FE_L3_vs_REF 13 39.99 0.000138 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the example above, we compare the random effects (REF) with all the other estimators. Testing REF,
the most efficient estimator, against the level-two fixed effects estimator, FE_L2, which is the most robust
estimator, we are actually testing simultaneously for level-2 and level-3 omitted effects. Since the null
hypothesis is rejected with a p-value of 0.000139, the test indicates severe bias in the random effects estimator.
In order to test for level-two omitted effects regardless of the presence of level-three omitted effects, we have to
compare the two fixed effects estimators, FE_L2 versus FE_L3:
summary(m8.multilevel,"FE_L2")
#>
#> Call:
#> multilevelIV(formula = formula1, data = dataMultilevelIV)
#>
#> Number of levels: 3
#> Number of observations: 2824
#> Number of groups: L2(CID): 1368 L3(SID): 40
#>
#> Coefficients for model FE_L2:
#> Estimate Std. Error z-score Pr(>|z|)
#> (Intercept) 0.000e+00 4.275e-19 0.00 1
#> X11 3.046e+00 2.978e-02 102.30 <2e-16 ***
#> X12 8.984e+00 3.360e-02 267.41 <2e-16 ***
#> X13 -2.015e+00 3.107e-02 -64.83 <2e-16 ***
#> X14 1.979e+00 3.203e-02 61.80 <2e-16 ***
#> X15 -9.777e-01 3.364e-02 -29.06 <2e-16 ***
#> X21 0.000e+00 1.824e-18 0.00 1
#> X22 0.000e+00 1.303e-18 0.00 1
#> X23 0.000e+00 4.389e-18 0.00 1
#> X24 0.000e+00 1.724e-18 0.00 1
#> X31 0.000e+00 1.468e-17 0.00 1
#> X32 0.000e+00 8.265e-18 0.00 1
#> X33 0.000e+00 2.793e-17 0.00 1
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Omitted variable tests for model FE_L2:
#> df Chisq p-value
#> FE_L2_vs_REF 13 39.99 0.000139 ***
#> FE_L2_vs_FE_L3 9 36.02 3.92e-05 ***
#> FE_L2_vs_GMM_L2 12 39.99 7.21e-05 ***
#> FE_L2_vs_GMM_L3 13 39.99 0.000139 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The null hypothesis of no omitted level-two effects is rejected (p-value is equal to 3.92e − 05). Therefore,
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we conclude that there are omitted effects at level-two. This finding is no surprise as we simulated the
dataset with the level-two error correlated with X15, which leads to biased FE_L3 coefficients. The omitted
variable test between level-two fixed effects and level-two GMM should shows that the null hypothesis of no
omitted level-two effects is rejected (p-value is 0). In case of wrongly assuming that an endogenous variable
is exogenous, the random effects as well as the GMM estimators will be biased, since the former will be
constructed using the wrong set of internal instrumental variables. Consequently, comparing the results of
the omitted variable tests when the variable is considered endogenous versus exogenous can indicate whether
the variable is indeed endogenous or not. To conclude this example, the test results provide support that the
FE_L2 should be used.
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