Package ‘RGENERATEPREC’

February 19, 2015

Maintainer Emanuele Cordano <emanuele.cordano@gmail.com>
License GPL (>= 2)
Title Tools To Generate Daily-Precipitation Time Series
Type Package
Author Emanuele Cordano
Description The method ‘generate’ is extended for spatial multi-site
stochastic generation of daily precipitation. It generates precipitation
occurrence in several sites using logit regression (Generalized Linear
Models) and D.S. Wilks’ approach (Journal of Hydrology, 1998).
Version 1.0
Repository CRAN
Date 2015-01-05
Depends R (>= 3.0), copula, RGENERATE, blockmatrix, Matrix, stringr
Imports RMAWGEN
URL https://github.com/ecor/RGENERATEPREC
NeedsCompilation no
Date/Publication 2015-01-07 19:39:29

R topics documented:

 RGENERATEPREC-package .. 2
 CCGamma .. 2
 CCGammaToBlockmatrix .. 5
 dw.spell .. 6
 generate.PrecipitationOccurrenceModel 8
 nwetdays .. 11
 omega .. 12
 omega_inv ... 13
 omega_root ... 14
 PrecipitationAmountModel 15
 PrecipitationOccurrenceModel 17
 PrecipitationOccurrenceMultiSiteModel 19
 predict.PrecipitationOccurrenceModel 21
Description

RGENERATEPREC: 'generate' method for daily precipitation

Details

This package contains functions and S3 methods for spatial multi-site stochastic generation of daily precipitation. Bugs/comments/questions/collaboration of any kind are warmly welcomed.

<table>
<thead>
<tr>
<th>Package</th>
<th>RMARAINGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2014-11-19</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
<tr>
<td>Depends</td>
<td>see DESCRIPTION file</td>
</tr>
</tbody>
</table>

Note

RGENERATEPREC is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

RGENERATEPREC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.

Author(s)

Emanuele Cordano <emanuelecordano@gmail.org>, Emanuele Eccel <emanuele.eccel@iasma.it>

Description

This function extends continuity_ratio and adds the corresponding gaussian correlation matrix for no-precipitation occurrence.

This function extends continuity_ratio and adds the corresponding gaussian correlation matrix for no-precipitation occurrence.
Usage

`CCGamma(data, lag = 0, p0_v1 = NULL, p = NA, valmin = 0.5, nearPD = (lag >= 0), interval = c(-1, 1), tolerance = .Machine$double.eps, only.matrix = FALSE, return.value = NULL, null.gcorrelation = 1e-05, sample = NULL, origin = "1961-1-1", ...)`

Arguments

- **data**: data frame or `zoo` R object containing daily precipitation time series for several gauges (one gauge time series per column). See `continuity_ratio`.
- **lag**: numeric lag (expressed as number of days) used for computation for “cross” continuity ratio and joint probability of precipitation (no)occurrence. See `continuity_ratio`.
- **p**: positive integer parameter. Default is `NA`, otherwise, lag is calculated as the vector `0:p`.
- **valmin**: threshold precipitation value [mm] for wet/dry day indicator. If precipitation is lower than `valmin`, day is considered dry. Default is 0.5 mm. See `continuity_ratio`.
- **p0_v1**: vector for marginal probabilities, see `omega` and `omega_inv`.
- **nearPD**: logical value. See `omega_inv`.
- **interval, tolerance**: see `omega_inv`.
- **only.matrix**: logical value. If TRUE the function returns only the gaussian correlation matrix. Default is FALSE.
- **return.value**: string. If it is not either NULL (Default) and NA, function returns only the argument indicated by this argument.
- **null.gcorrelation**: numerical value `nooccurence_gcorrelation` under which is considered to be 0.
- **sample**: character string indicated if function must be calculated differently for subset of the year, e.g. monthly. Admitted values are NULL (Default), "all" or "monthly".
- **origin**: character string (yyyy-dd-mm) indicated the date of the first row of “data”. It is used if data and sample are not NULL.
- **...**: additional arguments of `omega_inv` or `CCGamma`

Value

An object which is a list containing the following fields:

- **continuity_ratio**: lag-day lagged continuity ratio, as returned by `continuity_ratio`;
- **occurence**: joint probability of lag-day lagged precipitation occurrence, as returned by `continuity_ratio`;
- **nooccurence**: joint probability of lag-day lagged no precipitation occurrence, as returned by `continuity_ratio`;
- **lag**: number of days lagged between the two compared events (see argument lag);
p0_v1: vector of marginal probability of no precipitation occurrence. If lag is 0, it corresponds to the diagonal of nooccurence matrix (see argument p0_v1);

nooccurence_gcorrelation corresponding gaussian correlation for no precipitation occurrence obtained by applying omega_inv to nooccurence.

If the argument only.matrix is TRUE, only nooccurence_gcorrelation is returned as a matrix.

In case the argument lag is a vector with length more than one, the function returns a list of the above-cited return object for each value of the vector lag.

Note
This function is useful to generate the serial cross-correlation matrices for no precipitation occurrence for Yule-Walker Equations. In case lag is a vector, nearPD must be a vector of the same size, default is (lag==0).

See the R code for major details

Author(s)
Emanuele Cordano

References

See Also
continuity_ratio,omega_inv,omega,CCGammaToBlockmatrix

Examples
data(trentino)

year_min <- 1961
year_max <- 1990
origin <- paste(year_min,1,1,sep="-")

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
station <- names(PRECIPITATION)[!(names(PRECIPITATION) %in% c("day","month","year"))]
prec_mes <- PRECIPITATION[period,station]

removing nonworking stations (e.g. time series with NA)
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it]))
}
CCGammaToBlockmatrix

This return a blockmatrix object containing the gaussian cross-correlation matrices.

Description

This return a blockmatrix object containing the gaussian cross-correlation matrices.

Usage

CCGammaToBlockmatrix(data, lag = 0, p = 3, ...)

Arguments

data data frame or 'zoo' R object containing daily precipitation time series for several gauges (one gauge time series per column). See CCGamma.
lag numeric (expressed as number of days) used for the element [1,1] of the returned blockmatrix.
p numeric order p of the auto-regression
...

Details

This a wrapper for CCGamma with the option only.matrix=TRUE and the function value is transformed into a blockmatrix object.

See Also

CCGamma, continuity_ratio, omega_inv, omega
Examples

data(trentino)

year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year >= year_min & PRECIPITATION$year <= year_max
station <- names(PRECIPITATION)[!(names(PRECIPITATION) %in% c("day","month","year"))]
prec_mes <- PRECIPITATION[period, station]

removing nonworking stations (e.g. time series with NA)
accepted <- array(TRUE, length(names(prec_mes))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 accepted[it] <- (length(which(!is.na(prec_mes[, it]))) == length(prec_mes[, it]))
}

prec_mes <- prec_mes[, accepted]
the dataset is reduced!!!
prec_mes <- prec_mes[, 1:2]

p <- 1 # try p <- 2 !!!
CCGamma <- CCGammaToBlockmatrix(data=prec_mes, lag=0, p=p, tolerance=0.001)

Not Run in the examples, uncomment to run the following line
CCGamma_1 <- CCGammaToBlockmatrix(data=prec_mes, lag=1, p=p, tolerance=0.001)

Alternatively, recommended
Not Run in the examples, uncomment to run the following line
CCGamma <- CCGammaToBlockmatrix(data=prec_mes, lag=0, p=p+1, tolerance=0.001)
CCGamma0 <- CCGamma[1:p, 1:p]
CCGamma1 <- CCGamma[(1:p), (1:p)+1]
CCGamma0_inv <- solve(CCGamma0)

Not Run in the examples, uncomment to run the following line
a1 <- blockmult(CCGamma0, CCGamma0_inv)
a2 <- blockmult(CCGamma1, CCGamma0_inv)

CCGamma_1t <- t(CCGamma1)
CCGamma_0t <- t(CCGamma0)
A <- t(solve(CCGamma_0t, CCGamma_1t))

dw.spell It calculates dry/wet spell duration.
Description

It calculates dry/wet spell duration.

Usage

\[
dw.spell(data, valmin = 0.5, origin = "1961-1-1", extract = NULL,
month = 1:12, melting.df = FALSE)
\]

Arguments

- **data**: data frame R object containing daily precipitation time series for several gauges (one gauge time series per column).
- **valmin**: threshold precipitation value [mm] for wet/dry day indicator.
- **origin**: character string "yyyy-mm-dd" indicated the date of the first row of "data".
- **extract**: string character referred to the state to be extracted, eg. "dry" or "wet".
- **month**: integer vectors containing the considered months. Default is 1:12 (all the year).
- **melting.df**: logical value. If it TRUE the output is melted into a data frame. Default is FALSE.

Value

Function returns a list of data frames containing the spell length expressed in days.

Examples

```r
data(trentino)
year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
station <- names(PRECIPITATION)[!(names(PRECIPITATION) %in% c("day","month","year")]
prec_mes <- PRECIPITATION[period,station]

## removing nonworking stations (e.g. time series with NA)
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
  accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it]))
}
prec_mes <- prec_mes[,accepted]
## the dateset is reduced!!!
prec_mes <- prec_mes[1:3]

origin <- paste(year_min,1,1,sep="-")
dw.spell <- dw.spell(prec_mes,origin=origin)
dw.spell.dry <- dw.spell(prec_mes,origin=origin,extract="dry")

hist(dw.spell.dry$spell_length)
```
generate.PrecipitationOccurenceModel

Stochastic Generation of a PrecipitationOccurenceModel or PrecipitationOccurenceMultiSiteModel model object

Description

It is an implementation of generate method

Usage

```r
## S3 method for class 'PrecipitationOccurenceModel'
genenerate(x, newdata = NULL,
    previous = NULL, n = 30, random = runif(n, min = 0, max = 1),
    exogen = NULL, monthly.factor = NULL, ...)

## S3 method for class 'CGammaObjectListPerEachMonth'
genenerate(x, ...)

## S3 method for class 'PrecipitationOccurenceMultiSiteModel'
genenerate(x, exogen, n = 10,
    origin = "1961-1-1", end = "1990-1-1", previous = NULL,
    monthly.factor = NULL, ...)

## S3 method for class 'PrecipitationAmountModel'
genenerate(x, ...)
```

Arguments

- **x**: model returned by **PrecipitationOccurenceModel** or **PrecipitationOccurenceMultiSiteModel**
- **newdata**: predictor or exogenous variables. See **predict.PrecipitationOccurenceModel**
- **exogen**: predictor or exogenous variables
- **monthly.factor**: vector of factors indicating the month of the days
- **random**: vector of random or calculated numbers ranging between 0 and 1
- **origin,end**: character strings (yyyy-dd-mm) indicating the start and/or end date of the daily weather generation.
- **n**: number of generations. See **generate**. Here it is ignored and the number of generations is given by **origin,end** or **monthly.factor**.
- **previous**: logical vector containing previously occurred states
- **...**: further arguments
References

See Also

generate, predict.glm, PrecipitationOccurrenceModel, PrecipitationOccurrenceMultiSiteModel

Examples

library(RGENERATEPREC)

A function example can be found in the following script file:

scriptfile <- system.file("example.generate.R", package="RGENERATEPREC")

The current file path is given by 'scriptfile' variable:

print(scriptfile)

To run the example file, launch the file with 'source' command (uncomment the following line)

source(scriptfile)

ALTERNATIVELY you can run the following lines:

data(trentino)

year_min <- 1961
year_max <- 1990

origin <- paste(year_min,1,1,sep="-")
end <- paste(year_max,12,31,sep="-")

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max

prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))

for (it in names(prec_mes)) {
 acc <- TRUE
 acc <- (length(which(is.na(Tx_mes[,it])))==length(Tx_mes[,it]))
 acc <- (length(which(is.na(Tn_mes[,it])))==length(Tn_mes[,it])) & acc
 accepted[it] <- (length(which(is.na(prec_mes[,it])))==length(prec_mes[,it])) & acc
}
generate.PrecipitationOccurrenceModel

valmin <- 1.0
prec_mes <- prec_mes[,accepted]

Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
prec_occurence_mes <- prec_mes>=valmin

station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year"))]
it <- station[2]
vect <- Tx_mes[,it]-Tn_mes[,it]
months <- factor(prec_mes$month)

Not Run!!!
Please uncomment the following lines to run them

#model <-
PrecipitationOccurrenceModel(x=prec_mes[,it],exogen=vect,
monthly.factor=months,valmin=valmin)

#obs <- prec_mes[,it]>=valmin
#gen <- generate(model,exogen=vect,monthly.factor=months,n=length(months))

MultiSite Generation

station <- station[1:2]
exogen <- Tx_mes[,station]-Tn_mes[,station]

months <- factor(prec_mes$month)

Not Run!!!
Please uncomment the following lines to run them

#model_multisite <-
PrecipitationOccurrenceMultiSiteModel(x=prec_mes[,station],
exogen=exogen,origin=origin,multisite_type="wilks")

#
#
LOGIT-type Model
#model_multisite_logit <-
PrecipitationOccurrenceMultiSiteModel(x=prec_mes,exogen=exogen,
origin=origin,multisite_type="logit",station=station)

#obs_multisite <- prec_mes[,station]>=valmin
nwetdays

gen_multisite <- generate(model_multisite, exogen = exogen, origin = origin, end = end)
gen_multisite_logit <- generate(model_multisite_logit, exogen = exogen, origin = origin, end = end)

nwetdays It calculates the number of wet days for each month and each year

Description
It calculates the number of wet days for each month and each year

Usage
nwetdays(data, valmin = 0.5, origin = "1961-1-1", station = names(data))

Arguments
data data frame R object containing daily precipitation time series for several gauges (one gauge time series per column).
valmin threshold precipitation value [mm] for wet/dry day indicator.
origin character string "yyyy-mm-dd" indicated the date of the first row of "data".
station character string indicating the stations. Default is names(data)

Value
Function returns a list of data frames containing the spell length expressed in days

Examples
data(trentino)

year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
station <- names(PRECIPITATION)[!(names(PRECIPITATION) %in% c("day","month","year"))]
prec_mes <- PRECIPITATION[period,station]

removing nonworking stations (e.g. time series with NA)
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it]))
}
prec_mes <- prec_mes[,accepted]
the dataset is reduced!!!
This function finds the bivariate joint probability or the binary correlation from the corresponding Gaussian correlation \(x \).

Description

This function finds the bivariate joint probability or the binary correlation from the corresponding Gaussian correlation \(x \).

Usage

\[
\text{omega}(x = 0.5, p_{\text{v1}} = 0.5, p_{\text{v2}} = \text{NA}, \text{correlation} = \text{FALSE})
\]

Arguments

- \(x \) value of expected correlation between the corresponding Gaussian-distributed variables
- \(p_{\text{v1}}, p_{\text{v2}} \) probability of no precipitation occurrences for the v1 and v2 time series respectively. See Notes.
- \(\text{correlation} \) logical numeric value. Default is FALSE. If TRUE the function returns the binary correlation like eq. 6 of Mhanna, et al., 2011.

Value

probability of no precipitation occurrence in both v1 and v2 simultaneously. It is a matrix if \(x \) is a matrix.

Note

This function makes use of normal copula. A graphical introduction to this function (with its inverse) makes is present in the following URL references: http://onlinelibrary.wiley.com/doi/10.1002/joc.2305/abstract and http://www.sciencedirect.com/science/article/pii/S0022169498001863 (See fig. 1 and par. 3.2) If the argument \(p_{\text{v2}} \), the two marginal probability values must be given as a vector through the argument \(p_{\text{v1}} \): \(p_{\text{v1}} = \text{c}(p_{\text{v1}}, p_{\text{v2}}) \). In case \(x \) is a correlation/covariance matrix the marginal probabilities are given as a vector through the argument \(p_{\text{v1}} \).

Author(s)

Emanuele Cordano
omega_inv

References

See Also
normalCopula, pcopula

Examples
rho <- 0.4
p00 <- omega(x=rho,p0_v1=0.5,p0_v2=0.5)
cor00 <- omega(x=rho,p0_v1=0.5,p0_v2=0.5,correlation=TRUE)

omega_inv

This function is the inverse of omega function

Description
This function is the inverse of omega function

Usage
omega_inv(p0 = NULL, p0_v1 = 0.5, p0_v2 = p0_v1, p00 = p0_v1 * p0_v2, correlation = NA, only.value = TRUE, interval = c(-1, 1), tolerance = 0.001, nearPD = TRUE, force.independence = TRUE, ...)

Arguments
p0
matrix of joint probabilities. Default is NULL, otherwise functions returns a matrix with values
p0_v1,p0_v2
probability of no precipitatin occurrences for the v1 and v2 time series respectively.
p00
probability of no precipitation occurrence in both v1 and v2 simultaneously returned by omega
only.value
logical value. If TRUE (Default) the only Gaussian correlation (x input variable of omega) is returned, otherwise the complete output of uniroot is returned.
correlation
numerical value. Default is NA. Binary correlation retured by omega when the argument correlation=TRUE (see omega_root)
interval
see interval option of uniroot. Default is c(-1,1).
tolerance tolerance (numeric) parameter used for comparisons with the extreme value of marginal probabilities. Default is 0.001.

nearPD logical. If TRUE (Default) a positive-definite correlation matrix is returned by applying nearPD in case p0 is a matrix and not NULL.

force.independence logical value. Default is TRUE. If it is TRUE, no negative correlation is considered and negative values of correlation are forced to be 0 (independence).

... further arguments for unroot

Value

value of expected correlation between the corresponding Gaussian-distributed variables (see x input argument of omega.

Note

This function finds the zero of the omega_root function by calling unroot. If the argument p0 is not NULL and is a matrix of joint probabilities, the function returns a correlation matrix by using the elements of p0 as joint probabilities for each couple and p0_v1 as a vector of marginal probability of each occurrence/no-occurrence (In this case if the length of p0_v1 does not correspond to the number of columns of p0, the marginal probabilities are taken from the diagonal of p0). See the R code for major details.

Author(s)

Emanuele Cordano

See Also

normalCopula.pcopula.omega(and reference URLs therein)

Examples

x <- omega_inv(p0_v1=0.5,p0_v2=0.5,p00=1.1*0.5*0.5)
omega(x,p0_v1=0.5,p0_v2=0.5)

omega_root This is the target function whose zero is searched to create the inverse function of omega.

Description

This is the target function whose zero is searched to create the inverse function of omega.

Usage

omega_root(x = 0.5, p0_v1 = 0.5, p0_v2 = 0.5, p00 = p0_v1 * p0_v2, correlation = NA)
Arguments

- **x**: value of expected correlation between the corresponding Gaussian-distributed variables.
- **p0_v1, p0_v2**: probability of no precipitation occurrence for the v1 and v2 time series respectively.
- **p0**: probability of no precipitation occurrence in both v1 and v2 simultaneously returned by `omega`.
- **correlation**: numerical value. Default is NA. Binary correlation returned by `omega` when the argument `correlation` is TRUE.

Value

The value `p0` or `correlation` is the value of `omega(x=x, p0_v1=p0, p0_v2=p0)` or `correlation(x=x, p0_v1=p0, p0_v2=p0)` (if correlation is not NA).

Note

This function makes use of normal copula.

Author(s)

Emanuele Cordano

See Also

`normalCopula`, `pcopula`, `omega`, `omega_inv`

Examples

```r
rho <- 0.4
p0 <- omega(x=rho, p0_v1=0.5, p0_v2=0.5)
omega_root(x=rho, p0_v1=0.5, p0_v2=0.5, p0=p0)
```

Usage

```r
PrecipitationAmountModel(x, valmin = 1, station = names(x), sample = "monthly", origin = "1961-1-1", ...)
```
Arguments

- **x**: observed precipitation amount time series (data frame)
- **station**: string vector containing station identification codes
- **valmin**: maximum admitted value of precipitation depth
- **origin**: date of the day referred by the first row of x.
- **sample**: character string. If it is "monthly" (Default), the correlation matrix is calculated per each month.
- ... further arguments for `normalizeGaussian_severalstations`

Value

The function returns an S3 object containing the correlation matrix of precipitation amount values (excluding the zeros). In case sample="monthly" the function returns a `MonthlyList` S3 object.

See Also

- `predict.PrecipitationAmountModel`
- `normalizeGaussian_severalstations`

Examples

```r
library(RGENERATEPREC)
set.seed(1245)
data(trentino)
year_min <- 1961
year_max <- 1990
origin <- paste(year_min,1,1,sep="-")
end <- paste(year_max,12,31,sep="-")
period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max
prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
accepted[accepted] <- names(prec_mes)
for (it in names(prec_mes)) {
  acc <- TRUE
  acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it])) & acc
  accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it])) & acc
}
valmin <- 1.0
prec_mes <- prec_mes[,accepted]
```
precipitationoccurencemodel

Precipitation Occurence Model

Description

This function creates a stochastic Occurence Model for the variable \(x \) (\texttt{PrecipitationOccurrenceModel} S3 object) through a calibration from observed data.

Usage

\begin{verbatim}
PrecipitationOccurrenceModel(x, exogen = NULL, p = 1,
 monthly.factor = NULL, valmin = 0.5, id.name = NULL, ...)
\end{verbatim}

Arguments

\begin{itemize}
\item \texttt{x} variable utilized for the auto-regression of its occurrence, e.g. daily precipitation
\item \texttt{p} auto-regression order
\item \texttt{exogen} exogenous predictors
\item \texttt{monthly.factor} vector of factors indicating the month of the days
\item \texttt{valmin} minimum admitted value for daily precipitation amount
\item \texttt{id.name} identification name of the station
\item ... further arguments
\end{itemize}
Value

The function returns a `PrecipitationOccurenceModel`-class S3 object containing the following elements:

- predictor data frame containing the endogenous and exogenous predictors of the logistic regression model;
- glm the generalized linear model used for the logistic regression;
- p auto-regression order
- valmin minimum admitted value for daily precipitation amount

See Also

- `glm`

Examples

```r
library(RGENERATEPREC)

data(trentino)

year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max

prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
  acc <- TRUE
  acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it]))
  acc <- (length(which(!is.na(Tn_mes[,it])))==length(Tn_mes[,it])) & acc
  accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it])) & acc
}

valmin <- 1
prec_mes <- prec_mes[,accepted]

Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
prec_occurrence_mes <- prec_mes[,valmin]

station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year")]
it <- station[2]
vect <- Tx_mes[,it]-Tn_mes[,it]
```
PrecipitationOccurenceMultiSiteModel

Description

This function creates a stochastic Occurence Multi-Site Model for the variable \(x \) (PrecipitationOccurenceMultiSiteModel S3 object) through a calibration from observed data.

Usage

PrecipitationOccurenceMultiSiteModel(x, exogen = NULL, station = names(x), origin = origin, valmin = 0.5, multisite_type = "wilks", tolerance_wilks = 0.001, p = 2, ...)

Arguments

\(x \) data frame (each column is a site) of variable utilized for the auto-regression of its occurrence, e.g. daily precipitation

exogen exogenous predictors

station character string vectors containing the codes of the station used for model calibration

valmin minimum admitted value for daily precipitation amount

multisite_type string indicating the utilized approach for spatial multi-site dependence description. Default is "wilks".

tolerance_wilks see tolerance used by omega_inv through CCGamma

origin character string (yyyy-dd-mm) indicating the date of the first row of "x".

p auto-regression order

... further arguments

```r
months <- factor(prec_mes$month)
model <- PrecipitationOccurrenceMultiSiteModel(x=prec_mes[,it],exogen=vect,monthly.factor=months)

probs <- predict(model$glm,type="response")

plot(months[-1],probs)

newdata <- model$predictor[2000:2007,]
probs0 <- predict(model,newdata=newdata)
```
Value

The function returns a PrecipitationOccurrenceModel-class S3 object containing the following elements:

- PrecipitationOccurrenceModel S3 class objects for each analyzed site. The name is the site (or station) code
- ccgama CCGammaObjectListPerEachMonth object, i.e. matrices of Gaussian Inter-Site Correlation returned by CCGamma;
- type string indicating the utilized approach for spatial multi-site dependence description, only "wilks" type is implemented;
- station character string vectors containing the codes of the station used in PrecipitationMultiSiteOccurrenceModel.

See Also

PrecipitationOccurrenceModel, CCGamma

Examples

library(RGENERATEPREC)

data(trentino)

year_min <- 1961
year_max <- 1990
origin <- paste(year_min, 1L, 1L, sep = "-")

period <- PRECIPITATION$year >= year_min & PRECIPITATION$year <= year_max
period_temp <- TEMPERATURE_MAX$year >= year_min & TEMPERATURE_MAX$year <= year_max

prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE, length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 acc <- TRUE
 acc <- (length(which(!is.na(Tx_mes[, it]))) == length(Tx_mes[, it])) & acc
 acc <- (length(which(!is.na(Tn_mes[, it]))) == length(Tn_mes[, it])) & acc
 accepted[it] <- (length(which(!is.na(prec_mes[, it]))) == length(prec_mes[, it])) & acc
}

valmin <- 1.0
prec_mes <- prec_mes[, accepted]

Tx_mes <- Tx_mes[, accepted]
Tn_mes <- Tn_mes[, accepted]
prec_occurrence_mes <- prec_mes[, valmin]
predict.PrecipitationOccurenceModel

```
station <- names(prec_mes)[!names(prec_mes) %in% c("day","month","year")]
station <- station[1:2] # to save example elapsed time!!
exogen <- Tx_mes-Tn_mes
months <- factor(prec_mes$month)
#' Not Run!!
# The following lines are commented to save example elapsed time!!
#model_multisite <- PrecipitationOccurenceMultiSiteModel(x=prec_mes,exogen=exogen,
#origin=origin,multisite_type="wilks")

### Not Run!!
# The following lines are commented to save example elapsed time!!
#model_multisite_logit <- PrecipitationOccurenceMultiSiteModel(x=prec_mes,exogen=exogen,
#origin=origin,multisite_type="logit")
###
```

predict.PrecipitationOccurenceModel

Prediction of a PrecipitationOccurenceModel model object

Description

It is a wrapper of `predict.glm` method for the a PrecipitationOccurenceModel model object S3 class.

Usage

```
## S3 method for class 'PrecipitationOccurenceModel'
predict(object, newdata = NULL,
     type = "response", previous = NULL, endogenous = NULL, ...)

## S3 method for class 'PrecipitationOccurenceMultiSiteModel'
predict(object, ...)

## S3 method for class 'PrecipitationAmountModel'
predict(object, newdata = NULL,
     origin_newdata = NA, precipitation.value.random.generation = FALSE, ...)
```

Arguments

- **object**: model returned by `PrecipitationOccurenceModel`
- **newdata**: predictor or exogenous variables
- **type**: see `predict.glm`. Default is "response". See `predict.glm`.
- **previous**: logical vector containing previously occurred states.
- **endogenous**: String vector containing the name of the endogenous variables. It is used if the endogenous variables are more than one, otherwise is set NULL (Default).
- **...**: further arguments
predict.PrecipitationOccurrenceModel

origin_newdata character string containing the date corresponding the first row of newdata
precipitation.value.random.generation
 logical value. If it is FALSE (Default) the method predict.PrecipitationAmountModel
 returns conditioned random values, otherwise these values are converted to pre-
 cipitation values through their observed non-parametric distributions.

See Also

predict.glm,PrecipitationOccurrenceModel
predict.glm,predict.glm,PrecipitationOccurrenceModel,PrecipitationAmountModel

Examples

library(RGENERATEPREC)
data(trentino)

year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max

prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
 acc <- TRUE
 acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it]))
 acc <- (length(which(!is.na(Tn_mes[,it])))==length(Tn_mes[,it])) & acc
 accepted[it] <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it])) & acc
}

valmin <- 1.0
prec_mes <- prec_mes[,accepted]

Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
origin <- paste(year_min,1,1,sep="-")

prec_occurrence_mes <- prec_mes$valmin

station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year"))]
it <- station[2]
vect <- Tx_mes[it]-Tn_mes[it]
months <- factor(prec_mes$month)
model <- PrecipitationOccurenceModel(x=prec_mes[,it], exogen=vect, monthly.factor=months)
probs <- predict(model)

nday <- 3.0
vect_new <- array(1.0, nday)
months_new <- array(1, nday)
row_test <- 2000:2007
newdata <- model$predictor[row_test,]
probs2 <- predict(model, newdata=newdata)
probs[row_test]=probs2
###

prec_occurence_mes <- prec_mes>=valmin
station <- names(prec_mes)[!(names(prec_mes) %in% c("day", "month", "year"))]
station <- station[1:4] ## reduced the dataset!!!
Tx_mes <- Tx_mes[,station]
Tn_mes <- Tn_mes[,station]
prec_mes <- prec_mes[,station]
exogen <- Tx_mes-Tn_mes
months <- factor(prec_mes$month)

Not Run
Please uncomment the following lines to run them

#model_multisite <- PrecipitationOccurenceMultiSiteModel(x=prec_mes,
#exogen=exogen, origin=origin, multisite_type="wilks")
#
#
#model_multisite_logit <- PrecipitationOccurenceMultiSiteModel(x=prec_mes,
#exogen=exogen, origin=origin, multisite_type="logit")
#
#
#probs_multimodel <- predict(model_multisite_logit)
Index

*Topic package

RGENERATEPREC-package, 2
RGENERATEPREC-package, 2

blockmatrix, 5

CCGamma, 2, 3, 5, 19, 20
CCGammaToBlockmatrix, 4, 5
continuity_ratio, 2–5

dw.spell, 6

generate, 8, 9

generate

(generate.PrecipitationOccurenceModel), 8
generate.PrecipitationOccurenceModel, 8
glm, 18

nearPD, 14

normalCopula, 13–15

normalizeGaussian_severalstations, 16

nwdays, 11

omega, 3–5, 12, 13–15
omega_inv, 3–5, 13, 15, 19
omega_root, 13, 14, 14

pcopula, 13–15

PrecipitationAmountModel, 15, 22

PrecipitationOccurenceModel, 8, 9, 17, 20–22

PrecipitationOccurrenceMultiSiteModel, 8, 9, 19

predict

(predict.PrecipitationOccurenceModel), 21
predict.glm, 9, 21, 22
predict.PrecipitationAmountModel, 16
predict.PrecipitationOccurenceModel, 8, 21