Package ‘SCGLR’

February 19, 2015

Type Package
Title Supervised Component Generalized Linear Regression
Version 2.0.2
Date 2014-02-21
Description The Fisher Scoring Algorithm is extended so as to combine Partial Least Squares regression with Generalized Linear Model estimation in the multivariate context.
License CeCILL-2 | GPL-2
Depends R (>= 3.0.0)
Imports Matrix,Formula,expm,graphics,ggplot2,grid,pROC
Suggests parallel,gridExtra,knitr
LazyData yes
VignetteBuilder knitr
Author Guillaume Cornu [cre, aut],
Frederic Mortier [aut],
Catherine Trottier [aut],
Xavier Bry [aut]
Maintainer Guillaume Cornu <gcornu@cirad.fr>
NeedsCompilation no
Repository CRAN
Date/Publication 2015-02-16 17:45:46

R topics documented:

scglr-package ... 2
barplot.SCGLR .. 2
critConvergence .. 3
customize .. 3
genus ... 5
infoCriterion ... 6
Methods .. 7
multivariateFormula ... 7
Description

SCGLR implements a new Partial Least Squares regression approach in the multivariate generalized linear framework. The method allows the joint modeling of random variables from different exponential family distributions, searching for common PLS-type components. `scglr` and `scglrCrossVal` are the two main functions. The former constructs the components and performs the parameter estimation, while the latter selects the appropriate number of components by cross-validation. Dedicated plots, print, and summary functions are available. The package contains also an ecological dataset dealing with the abundance of multiple tree genera given a large number of geo-referenced environmental variables.

Author(s)

Mortier F., Trottier C., Cornu G., Bry X.

References

barplot.SCGLR

Barplot of percent of overall X variance captured by component

Description

Barplot of percent of overall X variance captured by component

Usage

```r
## S3 method for class 'SCGLR'
barplot(height, ...)
```
critConvergence

Arguments

height object of class 'SCGLR', usually a result of running scglr.

... optional arguments.

Value

an object of class ggplot.

See Also

For barplot application see examples in plot.SCGLR.

critConvergence Auxiliary function for controlling SCGLR fitting

Description

Auxiliary function for scglr fitting used to construct a convergence control argument.

Usage

critConvergence(tol = 1e-06, maxit = 50)

Arguments

tol positive convergence threshold.

maxit integer, maximum number of iterations.

Value

a list containing elements named as the arguments.

customize Plot customization

Description

Parameters used to choose what to plot and how. These parameters are given to plot.SCGLR and pairs.SCGLR.

Details

Parameter name can be abbreviated (e.g. pred.col will be understood as predictors.color). Options can be set globally using options("plot.SCGLR"). It will then provide default values that can be further overriden by giving explicit parameter value.
Examples

```
## Not run:
# setting parameters
plot(genus.scglr)
plot(genus.scglr, predictors=TRUE)
```
plot(genus.scglr, predictors=TRUE, pred.arrows=FALSE)

setting global style
options(plot.SCGLR=list(predictors=TRUE, pred.arrows=FALSE))
plot(genus.scglr)

setting custom style
myStyle <- list(predictors=TRUE, pred.arrows=FALSE)
plot(genus.scglr, style=myStyle)

End(Not run)

Sample dataset of abundance of genera in tropical moist forest

Description

Genus gives the abundance of 27 common tree genera in the tropical moist forest of the Congo-Basin and 40 geo-referenced environmental variables on one thousand 8 by 8 km plots (observations). Each plot’s data was obtained by aggregating the data measured on a variable number of previously sampled 0.5 ha sub-plots. Geo-referenced environmental variables were used to describe the physical factors as well as vegetation characteristics. 14 physical factors were used pertaining the description of topography, geology and rainfall of each plot. Vegetation is characterized through 16-days enhanced vegetation index (EVI) data.

Format

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gen1 to gen27</td>
<td>abundance of the 27 common genera.</td>
</tr>
<tr>
<td>altitude</td>
<td>above-sea level in meters.</td>
</tr>
<tr>
<td>pluvio_yr</td>
<td>mean annual rainfall.</td>
</tr>
<tr>
<td>forest</td>
<td>classified into seven classes.</td>
</tr>
<tr>
<td>pluvio_1 to pluvio_12</td>
<td>monthly rainfalls.</td>
</tr>
<tr>
<td>geology</td>
<td>5-level geological substrate.</td>
</tr>
<tr>
<td>evi_1 to evi_23</td>
<td>16-days enhanced vegetation indexes.</td>
</tr>
<tr>
<td>lon and lat</td>
<td>position of the plot centers.</td>
</tr>
<tr>
<td>surface</td>
<td>sampled area.</td>
</tr>
</tbody>
</table>

Note

The use of this dataset for publication must make reference to the CoForChange project.

Author(s)

CoForChange project
References

infoCriterion Function that calculates cross-validation selection criteria

Description

Function that calculates cross-validation selection criteria

Usage

infoCriterion(ynew, pred, family, type, size = NULL, npar = 0)

Arguments

ynew data matrix corresponding to the observations used as test sample.
pred predicted value of the linear predictor obtained from Xnew and the estimated parameters.
family a vector of the same length as the number of responses containing characters identifying the distribution families of the dependent variables. "bernoulli", "binomial", "poisson" or "gaussian" are allowed.
type information criterion used. Likelihood, aic, bic, aicc or Mean Square Prediction Error (mspe) are defined. Area Under ROC Curve (auc) also defined for Bernoulli cases only.
size describes the number of trials for the binomial dependent variables. A (number of statistical units * number of binomial dependent variables) matrix is expected.
npar number of parameters used for penalisation.

Value

a matrix containing the criterion value for each dependent variable (row) and each number of components (column).
Methods

<table>
<thead>
<tr>
<th>Methods</th>
<th>Regularization criterion types</th>
</tr>
</thead>
</table>

Description

- **LPLS** for PLS-type SCGLR
- **SR** Method iterative normed gradient (ING) for Structural Relevance

Usage

```r
methodLPLS()

methodSR(phi = "vpi", l = 1, s = 1/2, maxiter = 1000, epsilon = 1e-06, bailout = 10)
```

Arguments

- `phi` character string describing structural relevance used in the regularization process. Allowed values are "vpi" for Variable Powered Inertia and "cv" for Component Variance. Default to "vpi".
- `l` is a numeric argument (>1) tuning the importance of variable bundle locality.
- `s` is a numeric argument (in [0,1]) tuning the strength of structural relevance with respect to goodness of fit.
- `maxiter` integer for maximum number of iterations of SR function
- `epsilon` positive convergence threshold
- `bailout` integer argument

multivariateFormula

Formula construction

Description

Helper function for building multivariate scglr formula.

NOTE: Interactions involving factors are not allowed for now. For interactions between two quantitative variables, use `I(x*y)` as usual.

Usage

```r
multivariateFormula(namesY, namesX, namesAX = NULL)
```
multivariateGlm.fit

Arguments

- **namesY**: a vector of character containing the names of the dependent variables.
- **namesX**: a vector of character containing the names of the covariates (X) involved in the components.
- **namesAX**: a vector of character containing the names of the additional covariates.

Value

an object of class `Formula`.

multivariateGlm

Multivariate generalized linear regression

Description

`multivariateGlm` is used to fit multivariate generalized linear models specified by a symbolic formula together with the distributions of the responses. This function performs a simple GLM fit for each dependent variable with the associated distribution.

Usage

```r
multivariateGlm.fit(Y, comp, family, offset, size)
```

```r
multivariateGlm(formula, data, family, size = NULL, offset = NULL, subset = NULL)
```

Arguments

- **Y**: matrix of dependent variables.
- **comp**: matrix of covariates.
- **family**: a vector of character giving the family distribution of each response.
- **offset**: used for the Poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.
- **size**: a matrix giving the number of trials for each Binomial dependent variable ncol(size) must be equal to the number of Binomial variables.
- **formula**: an object of class `Formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: the data frame to be modeled.
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.

Value

the list, each item of which is the glm object associated with each response.
Examples

```r
## Not run:
library(SCGLR)

# load sample data
data(genus)

# get variable names from dataset
n <- names(genus)
ny <- n[grep("^gen",n)]  # Y <- names that begins with "gen"
xn <- n[-grep("^gen",n)]  # X <- remaining names

# remove "geology" and "surface" from nx as surface
# is offset and we want to use geology as additional covariate
nx <- xn[nx%in%c("geology","surface")]

# build multivariate formula
# we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny,c(nx,"I(lat*lon)"),c("geology"))

# split genus dataset
sub <- sample(1:nrow(genus),100,replace=FALSE)
sub_fit <- (1:nrow(genus))[-sub]

# define family
fam <- rep("poisson",length(ny))

# fit the model
genus.scglr <- scglr(formula=form, data=genus, family=fam, K=4,
                   offset=genus$surface, subset=sub_fit)

# xnew, the design matrix associated to sub-sample used for prediction
# note rhs parameter is introduced to take into account that the
covariate part of the formula is composed of two differents sets
xnew <- model.matrix(form, data=genus[sub,], rhs=1:2)[-1]

# prediction based on the scglr approach
pred.scglr <- multivariatePredictGlm(xnew,family=fam,
                         beta=genus.scglr$beta, offset=genus$surface[sub])
cor.scglr <- diag(cor(pred.scglr,genus[sub,ny]))
plot(cor.scglr, col="red",ylim=c(-1,1))

# prediction based on classical poisson glm
genus(glm <- multivariateGlm(formula=form, data=genus, family=fam,
                       offset=genus$c$surface, subset=sub_fit)
coefs <- sapply(genus glm,coef)

# rhs parameter is introduced to take into account that the
covariate part of the formula is composed of two differents sets
pred glm <- multivariatePredictGlm(xnew,family=fam,beta=coefs,
                       offset=genus$surface[sub])
cor glm <- diag(cor(pred glm,genus[sub,ny]))
```
multivariatePredictGlm

Function that predicts the responses from the covariates for a new sample

Description

Function that predicts the responses from the covariates for a new sample

Usage

multivariatePredictGlm(xnew, family, beta, offset = NULL)

Arguments

xnew a data frame containing the values of the covariates for the new sample.
family a vector of character specifying the distributions of the responses.
beta the matrix of coefficients estimated from the calibration sample.
offset used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.

Value

a matrix of predicted values.

Examples

Not run:
library(SCGLR)

load sample data
data(genus)

get variable names from dataset
n <- names(genus)
ny <- n[grep("^gen",n)] # Y <- names that begins with "gen"
xn <- n[-grep("^gen",n)] # X <- remaining names

remove "geology" and "surface" from xn as surface is
offset and we want to use geology as additional covariate
xn <- xn[!xn%in%c("geology","surface")]

build multivariate formula
we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny,c(nx,"I(lat*lon)"))

split genus dataset
sub <- sample(1:nrow(genus),100,replace=FALSE)
sub_fit <- (1:nrow(genus))[-sub]

define family
fam <- rep("poisson",length(ny))

fit the model
genus.scglr <- scglr(formula=form, data=genus, family=fam, K=4,
 offset=genus$surface, subset=sub_fit)

xnew, the design matrix associated to sub-sample used for prediction
rhs parameters is introduced to take into account that the covariate
part of the formula is composed of two differents sets
xnew <- model.matrix(form, data=genus[sub,], rhs=1:2)[-1]

prediction based on the scglr approach
pred.scglr <- multivariatePredictGlm(xnew,family=fam,
 beta=genus.scglr$beta,offset=genus$surface[sub])
cor.scglr <- diag(cor(pred.scglr,genus[sub,ny]))
plot(cor.scglr, col="red",ylim=c(-1,1))

prediction based on classical poisson glm

rhs parameters is introduced to take into account that the covariate
part of the formula is composed of two differents sets
pred.glm <- multivariatePredictGlm(xnew,family=fam,beta=coefs,
 offset=genus$surface[sub])
cor.glm <- diag(cor(pred.glm,genus[sub,ny]))

points(cor.glm, col="blue")

End(Not run)

pairs.SCGLR
Pairwise scglr plot on components

Description
Pairwise scglr plot on components

Usage
```
## S3 method for class 'SCGLR'
pairs(x, ..., nrow = NULL, ncol = NULL, components = NULL)
```
plot.SCGLR

Description

SCGLR generic plot

Usage

```r
## S3 method for class 'SCGLR'
plot(x, ..., style = getOption("plot.SCGLR"), plane = c(1, 2))
```

Arguments

- `x` an object from SCGLR class.
- `style` named list of values used to customize the plot (see `customize`)
- `plane` a size-2 vector (or comma separated string) indicating which components are plotted (eg: c(1,2) or "1,2").
- `...` optional arguments (see `customize`).

Value

an object of class `ggplot`.

Examples

```r
## Not run:
library(SCGLR)

# load sample data
data(genus)

# get variable names from dataset
n <- names(genus)
```
print.SCGLR

print.SCGLR

ny <- n[grep("^gen",n)] # Y <- names that begins with "gen"

nx <- n[-grep("^gen",n)] # X <- remaining names

remove "geology" and "surface" from nx
as surface is offset and we want to use geology as additional covariate
nx <- nx[!nx%in%c("geology","surface")]

build multivariate formula
we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny,c(nx,"I(lat*lon)"),c("geology"))

define family
fam <- rep("poisson",length(ny))

genus.scglr <- scglr(formula=form,data = genus,family=fam, K=4,
offset=genus$surface)

summary(genus.scglr)

barplot(genus.scglr)

plot(genus.scglr)

plot(genus.scglr, predictors=TRUE, factor=TRUE)

pairs(genus.scglr)

End(Not run)

print.SCGLR Print SCGLR object

Description

Prints inertia per component and deviance for each Y.

Usage

S3 method for class 'SCGLR'
print(x, ...)

Arguments

x object of class 'SCGLR', usually a result of running scglr.

... Not used.
Function that fits the scglr model

Description

Calculates the components to predict all the dependent variables.

Usage

scglr(formula, data, family, K = 1, size = NULL, offset = NULL,
subset = NULL, na.action = na.omit, crit = list(),
method = methodSR())

Arguments

- **formula**: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: a data frame to be modeled.
- **family**: a vector of character of the same length as the number of dependent variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed.
- **K**: number of components, default is one.
- **size**: describes the number of trials for the binomial dependent variables. A (number of statistical units * number of binomial dependent variables) matrix is expected.
- **offset**: used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.
- **na.action**: a function which indicates what should happen when the data contain NAs. The default is set to `na.omit`.
- **crit**: a list of two elements : maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively.
- **method**: Regularization criterion type. Object of class "method.SCGLR" built by `methodLPLS` for PLS-type approach or `methodSR` for Structural Relevance.

Value

An object of the SCGLR class.

The function `summary` (i.e., `summary.SCGLR`) can be used to obtain or print a summary of the results. The generic accessor functions `coef` can be used to extract various useful features of the value returned by `scglr`.

An object of class "SCGLR" is a list containing following components:
matrix of size \((\text{number of regressors} \times \text{number of components})\), contains the component-loadings, i.e. the coefficients of the regressors in the linear combination giving each component.

\(u\)

comp

matrix of size \((\text{number of statistical units} \times \text{number of components})\) having the components as column vectors.

\(\text{comp}\)

compr

matrix of size \((\text{number of statistical units} \times \text{number of components})\) having the standardized components as column vectors.

\(\text{compr}\)

gamma

list of length \(\text{number of dependant variables}\). Each element is a matrix of coefficients, standard errors, z-values and p-values.

\(\text{gamma}\)

beta

matrix of size \((\text{number of regressors} + 1 \text{ (intercept)} \times \text{number of dependent variables})\), contains the coefficients of the regression on the original regressors \(X\).

\(\text{beta}\)

lin.pred

data.frame of size \((\text{number of statistical units} \times \text{number of dependent variables})\), the fitted linear predictor.

\(\text{lin.pred}\)

xFactors

data.frame containing the nominal regressors.

\(\text{xFactors}\)

xNumeric

data.frame containing the quantitative regressors.

\(\text{xNumeric}\)

inertia

matrix of size \((\text{number of components} \times \text{2})\), contains the percentage and cumulative percentage of the overall regressors' variance, captured by each component.

\(\text{inertia}\)

deviance

vector of length \(\text{number of dependent variables}\), gives the deviance of each \(y_k\) 's GLM on the components.

\(\text{deviance}\)

References

Examples

```r
### Not run:
library(SCGLR)

# load sample data
data(genus)

# get variable names from dataset
n <- names(genus)
ny <- n[grep("gen",n)]  # Y <- names that begins with "gen"
nx <- n[-grep("gen",n)]  # X <- remaining names

# remove "geology" and "surface" from nx
# as surface is offset and we want to use geology as additional covariate
nx <- nx[-nx%in%("geology","surface")]

# build multivariate formula
# we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny,c(nx,"I(lat*lon)"),c("geology"))

# define family
```
scglrCrossVal

Function that fits and selects the number of component by cross-validation.

Description

Function that fits and selects the number of component by cross-validation.

Usage

scglrCrossVal(formula, data, family, K = 1, nfolds = 5, type = "mspe",
size = NULL, offset = NULL, subset = NULL, na.action = na.omit,
crit = list(), method = methodSR(), mc.cores = 1)

Arguments

formula an object of class "Formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted.
data the data frame to be modeled.
family a vector of character of length q specifying the distributions of the responses.
Bernoulli, binomial, poisson and gaussian are allowed.
K number of components, default is one.
nfolds number of folds, default is 5. Although nfolds can be as large as the sample size
(leave-one-out CV), it is not recommended for large datasets.
type loss function to use for cross-validation. Currently six options are available de-
pending on whether the responses are of the same distribution family. If the
responses are all bernoulli distributed, then the prediction performance may be
measured through the area under the ROC curve: type = "auc" In any other case
one can choose among the following five options ("likelihood","aic","aicc","bic","mspe").
size specifies the number of trials of the binomial variables included in the model. A
(n*qb) matrix is expected for qb binomial variables.
offset used for the poisson dependent variables. A vector or a matrix of size: number
of observations * number of Poisson dependent variables is expected.
subset an optional vector specifying a subset of observations to be used in the fitting
process.
na.action
a function which indicates what should happen when the data contain NAs. The default is set to the na.omit.

crit
a list of two elements: maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively.

method
Regularization criterion type. Object of class "method.SCGLR" built by methodLPLS for PLS-type approach or methodSR for Structural Relevance.

mc.cores
max number of cores to use when using parallelization (Not available in windows yet and strongly discouraged if in interactive mode).

Value
a matrix containing the criterion values for each response (rows) and each number of components (columns).

References

Examples
```r
## Not run:
library(scglr)

data(genus)

# get variable names from dataset
data(genus)
n <- names(genus)
ny <- n[grep("gen",n)]  # Y <- names that begins with "gen"

nx <- n[-grep("gen",n)]  # X <- remaining names

# remove "geology" and "surface" from nx
# as surface is offset and we want to use geology as additional covariate
nx <- nx[-which(nx%in%c("geology","surface"))]

# build multivariate formula
# we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny,c(nx,"I(lat*lon)"),c("geology"))

# define family
fam <- rep("poisson",length(ny))

# cross validation
genus.cv <- scglrCrossVal(formula=form, data=genus, family=fam, K=12, offset=genus$surface)

# find best K
mean.crit <- t(apply(genus.cv,1,function(x) x/mean(x)))
```
mean.crit <- apply(mean.crit, 2, mean)
K.cv <- which.min(mean.crit)-1

#plot(mean.crit, type="l")

End(Not run)

summary.SCGLR
Summarizing SCGLR fits

Description

Summary method for class "SCGLR".

Usage

S3 method for class 'SCGLR'
summary(object, ...)

S3 method for class 'summary.SCGLR'
print(x, digits = 3, cutoff = 1, ...)

Arguments

object an object of class "SCGLR", usually a result of a call to scglr.
x an object of class "summary.SCGLR", usually a result of a call to summary.SCGLR.
digits the number of significant digits to use when printing.
cutoff print coefficients with pvalue lower than or equal to cutoff (default to 1).
... Not used.

Value

an object of class "summary.SCGLR".
inertia inertia per component.
deviance deviance for each Y_k.
rho squared correlations with numerical covariates.
rho.pred squared correlations with linear predictors.
coefficients contains the coefficients of the regression on the components.
pvalue contains the pvalues of the coefficients of the regression on the components.
Index

barplot.SCGLR, 2

coef, 14
critConvergence, 3
customize, 3, 12

genus, 5
ggplot, 12

infoCriterion, 6

methodLPLS, 14, 17
methodLPLS (Methods), 7
Methods, 7
methodSR, 14, 17
methodSR (Methods), 7
multivariateFormula, 7
multivariateGlm (multivariateGlm.fit), 8
multivariateGlm.fit, 8
multivariatePredictGlm, 10

pairs.SCGLR, 3, 11
plot.SCGLR, 3, 12, 12
print.SCGLR, 13
print.summary.SCGLR (summary.SCGLR), 18

scglr, 2, 3, 12, 13, 14, 18
scglr-package, 2
scglrCrossVal, 2, 16
summary, 14
summary.SCGLR, 14, 18