Package ‘SML’
February 19, 2015

Type Package
Title Statistical Machine Learning
Version 0.1
Date 2013-08-25
Author Tuo Zhao
Maintainer Tuo Zhao <tourzhao@gmail.com>
Depends glmnet, Matrix, lattice,
Description The SML package is a collection of statistical machine learning methods.
License GPL-2
Repository CRAN
Date/Publication 2013-08-26 22:16:57
NeedsCompilation no

R topics documented:

SML-package ... 1
lasso.stars ... 2
plot.stars ... 4
print.stars ... 5

Index

SML-package Statistical Machine Learning

Description

a collection of statistical machine learning methods.

Details
Author(s)

Tuo Zhao Maintainers: tourzhao <tourzhao@gmail.com>

References

See Also

lasso.stars

lasso.stars

Stability Approach to Regularization Selection for Lasso

Description

Implements the Stability Approach to Regularization Selection (StARS) for Lasso

Usage

```r
lasso.stars(x, y, rep.num = 20, lambda = NULL, nlambda = 100,
            lambda.min.ratio = 0.001, stars.thresh = 0.1, sample.ratio = NULL,
            alpha = 1, verbose = TRUE)
```

Arguments

- **x**
 - The n by d data matrix representing n observations in d dimensions
- **y**
 - The n-dimensional response vector
- **rep.num**
 - The number of subsampling for StARS. The default value is 20.
lambda
A sequence of decreasing positive numbers to control regularization. Typical usage is to leave the input lambda = NULL and have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. Users can also specify a sequence to override this. Use with care - it is better to supply a decreasing sequence values than a single (small) value.

nlambda
The number of regularization parameters. The default value is 100.

lambda.min.ratio
The smallest value for lambda, as a fraction of the upperbound (MAX) of the regularization parameter which makes all estimates equal to 0. The program can automatically generate lambda as a sequence of length = nlambda starting from MAX to lambda.min.ratio*MAX in log scale. The default value is 0.001.

stars.thresh
The threshold of the variability in StARS. The default value is 0.1. The alternative value is 0.05. Only applicable when criterion = "stars".

sample.ratio
The subsampling ratio. The default value is 10*sqrt(n)/n when n>11T and 0.8 when n<=11T, where n is the sample size.

alpha
The tuning parameter for the elastic-net regression. The default value is 1 (lasso).

verbose
If verbose = FALSE, tracing information printing is disabled. The default value is TRUE.

Details
StARS selects the optimal regularization parameter based on the variability of the solution path. It chooses the least sparse graph among all solutions with the same variability. An alternative threshold 0.05 is chosen under the assumption that the model is correctly specified. In applications, the model is usually an approximation of the true model, 0.1 is a safer choice. The implementation is based on the popular package "glmnet".

Value
An object with S3 class "stars" is returned:

path
The solution path of regression coefficients (in an d by nlambda matrix)

lambda
The regularization parameters used in Lasso

opt.index
The index of the optimal regularization parameter.

opt.beta
The optimal regression coefficients.

opt.lambda
The optimal regularization parameter.

Variability
The variability along the solution path.

Note
This function can only work under the setting when d>1

Author(s)
Tuo Zhao
Maintainers: Tuo Zhao <tourzhao@gmail.edu>
References

See Also

SML-package

Examples

```r
#generate data
x = matrix(rnorm(U0*X0),U0,LX0)
beta = c(rep(0,67))
y = rnorm(U0) + x*%*%beta

#stars for lasso
z1 = lasso.stars(x,y)
summary(z1)
plot(z1)

#stars for lasso
zR = lasso.stars(x,y, stars.thresh = 0.05)
summary(zR)
plot(zR)

#stars for lasso
zS = lasso.stars(x,y, rep.num = 50)
summary(zS)
plot(zS)
```

plot.stars: Plot function for S3 class "stars"

Description

Visualize the solution path and plot the optimal solution by model selection

Usage

```r
## S3 method for class 'stars'
plot(x, ...)
```

Arguments

- `x` An object with S3 class "stars"
- `...` System reserved (No specific usage)
print.stars

Author(s)

Tuo Zhao
Maintainers: Tuo Zhao <tourzhao@gmail.com>

See Also

lasso.stars

print.stars

Print function for S3 class "stars"

Description

Print the information about the solution path length and the degree of freedom’s along the solution path.

Usage

S3 method for class 'stars'
print(x, ...)

Arguments

x An object with S3 class "stars"

... System reserved (No specific usage)

Author(s)

Tuo Zhao
Maintainers: Tuo Zhao <tourzhao@gmail.com>

See Also

lasso.stars
Index

lasso.stars, 2, 2, 5
plot.stars, 4
print.stars, 5
SML (SML-package), 1
SML-package, 1