Package ‘bayesGDS’

February 19, 2015

Type Package
Title Functions to implement Generalized Direct Sampling
Version 0.6.0
Date 2013-11-01
Author Michael Braun
Maintainer Michael Braun <braunm@smu.edu>
URL www.cox.smu.edu/web/michaelbraun
Description This package contains functions to help users implement the Generalized Direct Sampling algorithm for Bayesian hierarchical models (Braun and Damien, 2013). GDS is useful for sampling from posterior distributions for which there is a large number of conditionally independent heterogeneous units.
License MPL (== 2.0)
Depends R (>= 3.0.2), Matrix (>= 1.1.0), compiler
Suggests sparseHessianFD(>= 0.1.1), sparseMVN(>= 0.1.0), mvtnorm, trustOptim (>= 0.8.3), plyr (>= 1.8)
NeedsCompilation no
Repository CRAN
Date/Publication 2013-12-14 08:04:05

R topics documented:

bayesGDS-package .. 2
demo_funcs ... 2
get.cutoffs ... 3
get.LML ... 4
inv.logit ... 4
inv.vech ... 5
logit ... 5
log_inv.logit .. 6
sample.GDS .. 6
vech ... 8

Index 9
Functions to support implementation of the Braun and Damien (2013) Generalized Direct Sampling algorithm.

Description

These functions will be useful in running the Braun and Damien (2013) Generalized Direct Sampling algorithm. The latest version of this paper is available in the package documentation.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>bayesGDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.6-0</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-12-13</td>
</tr>
<tr>
<td>License:</td>
<td>see LICENSE file</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Michael Braun
Maintainer: Michael Braun <braunm@smu.edu>

demo_funcs

Functions for the binary choice example in the vignette.

Description

Functions for the binary choice example in the vignette.

Usage

demo.get.f(pars, Y, X, inv.Omega, inv.Sigma,T)
demo.get.grad(pars, Y, X, inv.Omega, inv.Sigma,T)
demo.get.hess.struct(N,k)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pars</td>
<td>parameter vector</td>
</tr>
<tr>
<td>Y</td>
<td>Observed counts</td>
</tr>
<tr>
<td>X</td>
<td>Covariate matrix</td>
</tr>
</tbody>
</table>
get.cutoffs

inv.Omega Hyperparameter
inv.Sigma Hyperparameter
N Number of agents (households)
k Number of covariates
T Number of purchase opportunities per household

Value
See vignette for details.

get.cutoffs

Draw thresholds for the accept-reject stage of the GDS sampling algorithm.

Description
Returns a vector of log(u), where u is the threshold to determine if a proposal draw should be accepted as a draw from the target posterior distribution.

Usage
get.cutoffs(log.phi, n.draws)

Arguments
log.phi Vector of log.phi from the proposal draws. All must be non-positive.
n.draws an integer. number of draws to be taken from the target posterior.

Details
For use in conjunction with the Braun and Damien (2012) Generalized Direct Sampling algorithm. This is usually not called directly, since it is called from the sample.GDS function.

Value
a numeric vector for v = -log.u (the thresholds for the accept-reject stage).
get.LML

Estimate log marginal likelihood of model

Description

Estimate log marginal likelihood of model from GDS output

Usage

```r
get.LML(counts, log.phi, post.mode, fn.dens.post, fn.dens.prop, prop.params, ...)
```

Arguments

- `counts`: vector of counts of the number of proposals that were generated before accepting a draw. Length of vector is equal to the number of draws from the posterior. If the first proposal for a particular posterior draw is accepted, that count is a 1.
- `log.phi`: Numeric vector of draws of log.phi from the proposal draws.
- `post.mode`: The posterior mode.
- `fn.dens.post`: Function that returns the log posterior density. Function should take the parameter vector as the first argument. Additional arguments are passed as ...
- `fn.dens.prop`: Function that returns the log density of the proposal distribution. The first argument of the function should take either a vector or a matrix. If the argument is a matrix, each row is considered a sample. Additional parameters are passed as a list, prop.params.
- `prop.params`: Object (list or vector) to be passed to both fn.dens.prop and fn.draw.prop. Contains parameters for the proposal distribution. See details.
- `...`: Additional parameters to be passed to fn.dens.post

Value

The estimate log marginal likelihood of the model.

inv.logit

inverse logit function

Description

Returns the inverse logit of x.

Usage

```r
inv.logit(x)
```
inv.vech

Arguments

x
a scalar, vector or matrix.

Value

\[\text{result} = \frac{\exp(x)}{1+\exp(x)} \]

Description

Returns a lower triangular matrix, with elements determined by \(x \).

Usage

\[\text{inv.vech}(x) \]

Arguments

x
a vector of conforming length

Details

\(x \) must be a vector of length \(k(k+1)/2 \), where \(k \) is the number of rows (and columns) of the result.

Value

A \(k \times k \) lower triangular matrix.

logit

logit function

Description

Returns the logit of \(p \).

Usage

\[\text{logit}(p) \]

Arguments

p
a scalar, vector or matrix.

Value

\[\text{result} = \log\left(\frac{p}{1-p}\right) \]
Description

Returns the log inverse logit of x.

Usage

\[
\text{log_invNlogit}(x)
\]

Arguments

\(x\)

a scalar, vector or matrix.

Details

Intended to be a numerically stable alternative to just doing \(\log(\text{inv.logit}(x))\). Should be less sensitive to overflow and underflow with very large or very small \(x\).

Value

result = \(\log[\exp(x) / (1+\exp(x))]\)

Description

Collect draws from the target posterior distribution.

Usage

\[
\text{sample.GDS}(nNdraws, \text{log.phi}, \text{post.mode}, \text{fn.dens.post}, \text{fn.dens.prop}, \text{fn.draw.prop}, \text{prop.params}, \ldots, \text{max.tries}=1000000, \text{report.freq}=1, \text{announce}=\text{FALSE}, \text{thread.id}=1, \text{seed}=\text{.Random.seed})
\]
Arguments

- `n.draws`: number of draws to take from the target posterior density.
- `log.phi`: Vector of log.phi, as computed from the proposal draws.
- `post.mode`: Mode of the target posterior density (numeric vector).
- `fn.dens.post`: Function that returns the log posterior density. Function should take the parameter vector as the first argument. Additional arguments are passed as ...
- `fn.dens.prop`: Function that returns the log density of the proposal distribution. The first argument of the function should take either a vector or a matrix. If the argument is a matrix, each row is considered a sample. Additional parameters are passed as a list, prop.params.
- `fn.draw.prop`: Function that returns random samples from the proposal density. This function should return a matrix, with each row being a sample. Additional parameters are passed as a list, prop.params.
- `prop.params`: Object (list or vector) to be passed to both fn.dens.prop and fn.draw.prop. Contains parameters for the proposal distribution. See details.
- `...`: Additional parameters to be passed to fn.dens.post.
- `max.tries`: Maximum number of proposal draws to try, without a success. This prevents the routine from being stuck in an endless loop.
- `report.freq`: The frequency that the function will report the current iteration. For example, if report.freq=5, the function will display a message after every fifth iteration.
- `announce`: If TRUE, will print a message when a proposal is accepted as a sample from the target posterior distribution.
- `thread.id`: An identifier used in the announce function. This is useful if running sample.GDS on multiple processors, to collect multiple batches of samples. Defaults to 1.
- `seed`: Sets a random seed within the call to sample.GDS. Useful for assigning different seeds to calls to sample.GDS that are running on different threads or processors. Defaults to .Random.seed.

Value

A list with the following elements:

- `draws`: A matrix with each draw in a row, and each parameter in a column
- `counts`: The number of attempts that it took to get an accepted draw. The accepted draw counts, so the count will always be at least 1.
- `gt.1`: A vector that indicates if the phi for that draw was greater than 1. Available as a diagnostic. Normally, these should all be FALSE. Any values of TRUE suggest that a change in proposal density might be warranted.
- `log.post.dens`: A numeric vector. Log posterior density for each draw.
- `log.prop.dens`: A numeric vector. Log of the proposal density for each draw.
- `log.thresholds`: Vector of threshold draws (log u) from the accept-reject algorithm. Sorted in ascending order.
- `log.phi`: A numeric vector. Value of log.phi for the accepted draws.
vech operator on a square matrix

Description

Returns elements of lower triangle of a square matrix in a vector, ordered column-wise.

Usage

vech(M)

Arguments

M a matrix

Value

A vector containing the lower triangle of M, ordered column-wise.
Index

bayesGDS (bayesGDS-package), 2
bayesGDS-package, 2

demo.get.f (demo_funcs), 2
demo.get.grad (demo_funcs), 2
demo.get.hess.struct (demo_funcs), 2
demo_funcs, 2

get.cutoffs, 3
get.LML, 4

inv.logit, 4
inv.vech, 5

log_inv.logit, 6
logit, 5

sample.GDS, 6

vech, 8