Package ‘candisc’

February 19, 2015

Type Package
Title Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis
Version 0.6-5
Date 2013-3-20
Depends R (>= 2.10), car, heplots (>= 0.8.6), graphics, stats
Suggests rgl, corrplot
LazyLoad yes
LazyData yes
Author Michael Friendly and John Fox
Maintainer Michael Friendly <friendly@yorku.ca>
Description This package includes functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. Traditional canonical discriminant analysis is restricted to a one-way MANOVA design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The candisc package generalizes this to multi-way MANOVA designs for all factors in a multivariate linear model, computing canonical scores and vectors for each term. The graphic functions provide low-rank (1D, 2D, 3D) visualizations of terms in an mlm via the plot.candisc and heplot.candisc methods. Related plots are now provided for canonical correlation analysis when all predictors are quantitative.
License GPL (>= 2)
Repository CRAN
Repository/R-Forge/Project candisc
Repository/R-Forge/Revision 68
Repository/R-Forge/DateTimeStamp 2013-06-11 21:18:37
Date/Publication 2013-06-12 08:15:06
NeedsCompilation no
Description

This package includes functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. The goal is to provide ways of visualizing such models in a low-dimensional space corresponding to dimensions (linear combinations of the response variables) of maximal relationship to the predictor variables.

Traditional canonical discriminant analysis is restricted to a one-way MANOVA design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The `candisc` package generalizes this to multi-way MANOVA designs for all terms in a multivariate linear model (i.e., an `mlm` object), computing canonical scores and vectors for each term (giving a `candiscList` object).

The graphic functions are designed to provide low-rank (1D, 2D, 3D) visualizations of terms in an `mlm` via the `plot.candisc` method, and the HE plot `heplot.candisc` and `heplot3d.candisc` methods. For `mlms` with more than a few response variables, these methods often provide a much simpler interpretation of the nature of effects in canonical space than heplots for pairs of responses or an HE plot matrix of all responses in variable space.

Analogously, a multivariate linear model with quantitative predictors can also be represented in a reduced-rank space by means of a canonical correlation transformation of the Y and X variables to uncorrelated canonical variates, Ycan and Xcan. Computation for this analysis is provided by `cancor` and related methods. Visualization of these results in canonical space are provided by the `plot.cancor`, `heplot.cancor` and `heplot3d.cancor` methods.

A few of these methods are illustrated in the vignette for the heplots package, `vignette("HE-examples", package="heplots")`.
The organization of functions in this package and the \texttt{heplots} package may change in a later version.

Author(s)

Michael Friendly and John Fox

Maintainer: Michael Friendly <friendly@yorku.ca>

References

See Also

\texttt{heplot} for details about HE plots.

\texttt{candisc, cancor} for details about canonical discriminant analysis and canonical correlation analysis.

Description

The function \texttt{cancor} generalizes and regularizes computation for canonical correlation analysis in a way conducive to visualization using methods in the \texttt{heplots} package.

Usage

\begin{verbatim}
cancor(x, ...)
 ## S3 method for class 'formula'
cancor(formula, data, subset, weights, na.rm=TRUE, method = "gensvd", ...)
 ## Default S3 method:
cancor(x, y, weights, ...
\end{verbatim}
X.names = colnames(x), Y.names = colnames(y),
row.names = rownames(x),
xcenter = TRUE, ycenter = TRUE, xscale = FALSE, yscale = FALSE,
ndim = min(p, q),
set.names = c("X", "Y"),
prefix = c("Xcan", "Ycan"),
na.rm = TRUE, use = if (na.rm) "complete" else "pairwise",
method = "gensvd",

S3 method for class 'cancor'
print(x, digits = max(getOption("digits") - 2, 3), ...)

S3 method for class 'cancor'
summary(object, digits = max(getOption("digits") - 2, 3), ...)

S3 method for class 'cancor'
coef(object, type = c("x", "y", "both", "list"), standardize=FALSE, ...)
scores(x, ...)

S3 method for class 'cancor'
scores(x, type = c("x", "y", "both", "list", "data.frame"), ...)

Arguments

formula A two-sided formula of the form cbind(y1, y2, y3, ...) ~ x1 + x2 + x3 + ...
data The data.frame within which the formula is evaluated
subset an optional vector specifying a subset of observations to be used in the calculations.
weights Observation weights. If supplied, this must be a vector of length equal to the number of observations in X and Y, typically within [0,1]. In that case, the variance-covariance matrices are computed using \texttt{cov.wt}, and the number of observations is taken as the number of non-zero weights.
na.rm logical, determining whether observations with missing cases are excluded in the computation of the variance matrix of (X,Y). See Notes for details on missing data.
method the method to be used for calculation; currently only \texttt{method = "gensvd"} is supported;
x Varies depending on method. For the \texttt{cancor.default} method, this should be a matrix or data.frame whose columns contain the X variables
y For the \texttt{cancor.default} method, a matrix or data.frame whose columns contain the Y variables
X.names, Y.names Character vectors of names for the X and Y variables.
Canonical correlation analysis (CCA), as traditionally presented is used to identify and measure the associations between two sets of quantitative variables, X and Y. It is often used in the same situations for which a multivariate multiple regression analysis (MMRA) would be used. However, CCA is “symmetric” in that the sets X and Y have equivalent status, and the goal is to find orthogonal linear combinations of each having maximal (canonical) correlations. On the other hand, MMRA is “asymmetric”, in that the Y set is considered as responses, each one to be explained by separate linear combinations of the Xs.

This implementation of `cancor` provides the basic computations for CCA, together with some extractor functions and methods for working with the results in a convenient fashion.

However, for visualization using HE plots, it is most natural to consider plots representing the relations among the canonical variables for the Y variables in terms of a multivariate linear model predicting the Y canonical scores, using either the X variables or the X canonical scores as predictors. Such plots, using `heplot.cancor` provide a low-rank (1D, 2D, 3D) visualization of the relations between the two sets, and so are useful in cases when there are more than 2 or 3 variables in each of X and Y.

The connection between CCA and HE plots for MMRA models can be developed as follows. CCA can also be viewed as a principal component transformation of the predicted values of one set of variables from a regression on the other set of variables, in the metric of the error covariance matrix.

For example, regress the Y variables on the X variables, giving predicted values $\hat{Y} = X(X'X)^{-1}X'Y$ and residuals $R = Y - \hat{Y}$. The error covariance matrix is $E = RR/(n-1)$. Choose a transformation Q that orthogonalizes the error covariance matrix to an identity, that is, $(QR)'(QR)$ =...
\[Q'R'RQ = (n - 1)I, \] and apply the same transformation to the predicted values to yield, say, \(Z = \hat{Y}Q \). Then, a principal component analysis on the covariance matrix of \(Z \) gives eigenvalues of \(E^{-1}H \), and so is equivalent to the MMRA analysis of \(\ln(Y \sim X) \) statistically, but visualized here in canonical space.

Value

An object of class `cancorr`, a list with the following components:

- **cancor**: Canonical correlations, i.e., the correlations between each canonical variate for the \(Y \) variables with the corresponding canonical variate for the \(X \) variables.
- **names**: Names for various items, a list of 4 components: \(X, Y, \text{row.names}, \text{set.names} \)
- **ndim**: Number of canonical dimensions extracted, \(\leq \min(p, q) \)
- **dim**: Problem dimensions, a list of 3 components: \(p \) (number of \(X \) variables), \(q \) (number of \(Y \) variables), \(n \) (sample size)
- **coef**: Canonical coefficients, a list of 2 components: \(X, Y \)
- **scores**: Canonical variate scores, a list of 2 components:
 - \(X \): Canonical variate scores for the \(X \) variables
 - \(Y \): Canonical variate scores for the \(Y \) variables
- **X**: The matrix \(X \)
- **Y**: The matrix \(Y \)
- **weights**: Observation weights, if supplied, else `NULL`
- **structure**: Structure correlations ("loadings"), a list of 4 components:
 - **X.xscores**: Structure correlations of the \(X \) variables with the \(X\text{can} \) canonical scores
 - **Y.xscores**: Structure correlations of the \(Y \) variables with the \(X\text{can} \) canonical scores
 - **X.yscores**: Structure correlations of the \(X \) variables with the \(Y\text{can} \) canonical scores
 - **Y.yscores**: Structure correlations of the \(Y \) variables with the \(Y\text{can} \) canonical scores

The formula method also returns components `call` and `terms`

Note

Not all features of CCA are presently implemented: standardized vs. raw scores, more flexible handling of missing data, other plot methods, ...

Author(s)

Michael Friendly
cancor

References

See Also

Other implementations of CCA: cancort (very basic), cca in the yacca (fairly complete, but very messy return structure), cc in CCA (fairly complete, very messy return structure, no longer maintained).

redundancy, for redundancy analysis; plot.cancor, for enhanced scatterplots of the canonical variates.

heplot.cancor for CCA HE plots and heplots for generic heplot methods.
candisc for related methods focused on multivariate linear models with one or more factors among the X variables.

Examples

data(Rohwer, package="heplots")
x <- as.matrix(Rohwer[,6:10]) # the PA tests
y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables

visualize the correlation matrix using corplot()
if (require(corrplot)) {
 M <- cor(cbind(x,y))
corrplot(M, method="ellipse", order="hclust", addrect=2, addCoeff.col="black")
}

(cc <- cancort(x, y, set.names=c("PA", "Ability")))

Canonical correlation analysis of:
5 PA variables: n, s, ns, na, ss
with 3 Ability variables: SAT, PPVT, Raven
##
CanR CanRSQ Eigen percent cum scree
1 0.6703 0.44934 0.81599 77.30 77.30
2 0.3837 0.14719 0.17260 16.35 93.65
3 0.2506 0.06282 0.06704 6.35 100.00
##
Test of H0: The canonical correlations in the
current row and all that follow are zero
##
CanR WilkS F df1 df2 p.value
1 0.67033 0.44011 3.8961 15 168.8 0.000006
2 0.38366 0.79923 1.8379 8 124.0 0.076076
3 0.25065 0.93718 1.4078 3 63.0 0.248814

formula method
cc <- cancort(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer,
set.names=c("PA", "Ability"))

using observation weights
set.seed(12345)
wts <- sample(0:1, size=nrow(Rohwer), replace=TRUE, prob=c(.05, .95))
(ccw <- cancor(X, Y, set.names=c("PA", "Ability"), weights=wts))

show correlations of the canonical scores
zapsmall(cor(scores(cc, type="x"), scores(cc, type="y")))

standardized coefficients
coef(cc, type="both", standardize=TRUE)

plot(cc, smooth=TRUE)

data(schooldata)

fit the MMreg model
school.mod <- lm(cbind(reading, mathematics, selfesteem) ~
education + occupation + visit + counseling + teacher, data=schooldata)
Anova(school.mod)
pairs(school.mod)

canonical correlation analysis
school.cc <- cancor(cbind(reading, mathematics, selfesteem) ~
education + occupation + visit + counseling + teacher, data=schooldata)
school.cc
heplot(school.cc, xpd=TRUE, scale=0.3)

candisc Canonical discriminant analysis

Description

candisc performs a generalized canonical discriminant analysis for one term in a multivariate linear model (i.e., an mlm object), computing canonical scores and vectors. It represents a transformation of the original variables into a canonical space of maximal differences for the term, controlling for other model terms.

In typical usage, the term should be a factor or interaction corresponding to a multivariate test with 2 or more degrees of freedom for the null hypothesis.

Usage

candisc(mod, ...)

S3 method for class 'mlm'
candisc(model, term, type = "2", manova, ndim = rank, ...)

S3 method for class 'candisc'
coef(object, type = c("std", "raw", "structure"), ...)

S3 method for class 'candisc'
plot(x, which = 1:2, conf = 0.95, col, pch, scale, asp = 1,
 var.col = "blue", var.lwd = par("lwd"), prefix = "Can", suffix=TRUE,
 titles.1d = c("Canonical scores", "Structure"), ...)

S3 method for class 'candisc'
print(x, digits=max(getOption("digits") - 2, 3), ...)

S3 method for class 'candisc'
summary(object, means = TRUE, scores = FALSE, coef = c("std"),
 ndim, digits = max(getOption("digits") - 2, 4), ...)

Arguments

- **mod**: An mlm object, such as computed by lm() with a multivariate response
- **term**: the name of one term from mod
- **type**: type of test for the model term, one of: "II", "III", "2", or "3"
- **manova**: the Anova.mlml object corresponding to mod. Normally, this is computed internally by Anova(mod)
- **ndim**: Number of dimensions to store in (or retrieve from, for the summary method) the means, structure, scores and coeffs.* components. The default is the rank of the H matrix for the hypothesis term.
- **object, x**: A candisc object
- **which**: A vector of one or two integers, selecting the canonical dimension(s) to plot. If the canonical structure for a term has ndim=1, or length(which)==1, a 1D representation of canonical scores and structure coefficients is produced by the plot method. Otherwise, a 2D plot is produced.
- **conf**: Confidence coefficient for the confidence circles plotted in the plot method
- **col**: A vector of colors to be used for the levels of the term in the plot method. In this version, you should assign colors and point symbols explicitly, rather than relying on the somewhat arbitrary defaults.
- **pch**: A vector of point symbols to be used for the levels of the term in the plot method
- **scale**: Scale factor for the variable vectors in canonical space. If not specified, a scale factor is calculated to make the variable vectors approximately fill the plot space.
- **asp**: Aspect ratio for the plot method. The asp=1 (the default) assures that the units on the horizontal and vertical axes are the same, so that lengths and angles of the variable vectors are interpretable.
- **var.col**: Color used to plot variable vectors
- **var.lwd**: Line width used to plot variable vectors
prefix Prefix used to label the canonical dimensions plotted
suffix Suffix for labels of canonical dimensions. If suffix=TRUE the percent of hypothesis (H) variance accounted for by each canonical dimension is added to the axis label.
titles.1d A character vector of length 2, containing titles for the panels used to plot the canonical scores and structure vectors, for the case in which there is only one canonical dimension.
means Logical value used to determine if canonical means are printed
scores Logical value used to determine if canonical scores are printed
coeff Type of coefficients printed by the summary method. Any one or more of "std", "raw", or "structure"
digits significant digits to print.
... arguments to be passed down. In particular, type="n" can be used with the plot method to suppress the display of canonical scores.

Details

Canonical discriminant analysis is typically carried out in conjunction with a one-way MANOVA design. It represents a linear transformation of the response variables into a canonical space in which (a) each successive canonical variate produces maximal separation among the groups (e.g., maximum univariate F statistics), and (b) all canonical variates are mutually uncorrelated. For a one-way MANOVA with g groups and p responses, there are \(df_h = \min(g-1, p) \) such canonical dimensions, and tests, initially stated by Bartlett (1938) allow one to determine the number of significant canonical dimensions. Computational details for the one-way case are described in Cooley & Lohnes (1971), and in the SAS/STAT User’s Guide, "The CANDISC procedure: Computational Details," http://support.sas.com/onlinedoc/913/getDoc/en/statug.htm/candisc_sect12.htm.

A generalized canonical discriminant analysis extends this idea to a general multivariate linear model. Analysis of each term in the \(mlm \) produces a rank \(df_h \) H matrix sum of squares and crossproducts matrix that is tested against the rank \(df_e \) E matrix by the standard multivariate tests (Wilks’ Lambda, Hotelling-Lawley trace, Pillai trace, Roy’s maximum root test). For any given term in the \(mlm \), the generalized canonical discriminant analysis amounts to a standard discriminant analysis based on the H matrix for that term in relation to the full-model E matrix.

Value

An object of class candisc with the following components:

dfh hypothesis degrees of freedom for \(mlm \n
dfe error degrees of freedom for the \(mlm \nrank number of non-zero eigenvalues of \(HE^{-1} \n
eigenvalues eigenvalues of \(HE^{-1} \n
canrsq squared canonical correlations
pct A vector containing the percentages of the canrsq of their total.
ndim Number of canonical dimensions stored in the means, structure and coeffs.* components
means A data.frame containing the class means for the levels of the factor(s) in the term
factors A data.frame containing the levels of the factor(s) in the term
term name of the term
terms A character vector containing the names of the terms in the mlm object
coeffs.raw A matrix containing the raw canonical coefficients
coeffs.std A matrix containing the standardized canonical coefficients
structure A matrix containing the canonical structure coefficients on ndim dimensions, i.e., the correlations between the original variates and the canonical scores. These are sometimes referred to as Total Structure Coefficients.
scores A data.frame containing the predictors in the mlm model and the canonical scores on ndim dimensions. These are calculated as Y %*% coeffs.raw, where Y contains the standardized response variables.

Author(s)
Michael Friendly and John Fox

References

See Also
candiscList, heplot, heplot3d

Examples
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=grass)
Anova(grass.mod, test="Wilks")
grass.can1 <-candisc(grass.mod, term="Species")
plot(grass.can1, type="n")

library(heplots)
heplot(grass.can1, scale=6, fill=TRUE)

iris data
iris.mod <- lm(cbind(Petal.Length, Sepal.Length, Petal.Width, Sepal.Width) ~ Species, data=iris)
iris.can <- candisc(iris.mod, data=iris)
#-- assign colors and symbols corresponding to species
col <- rep(c("red", "black", "blue"), each=50)
pch <- rep(1:3, each=50)
plot(iris.can, col=col, pch=pch)
heplot(iris.can)
candiscList

Canonical discriminant analyses

Description

candiscList performs a generalized canonical discriminant analysis for all terms in a multivariate linear model (i.e., an mlm object), computing canonical scores and vectors.

Usage

candiscList(mod, ...)

S3 method for class 'mlm'
candiscList(mod, type = "2", manova, ndim, ...)

S3 method for class 'candiscList'
plot(x, term, ask = interactive(), graphics = TRUE, ...)

S3 method for class 'candiscList'
print(x, ...)

S3 method for class 'candiscList'
summary(object, ...)

Arguments

- **mod**: An mlm object, such as computed by lm() with a multivariate response
- **type**: type of test for the model term, one of: "II", "III", "2", or "3"
- **manova**: the Anova.mlml object corresponding to mod. Normally, this is computed internally by Anova(mod)
- **ndim**: Number of dimensions to store in the means, structure, scores and coeffs.* components. The default is the rank of the H matrix for the hypothesis term.
- **object, x**: A candiscList object
- **term**: The name of one term to be plotted for the plot method. If not specified, one candisc plot is produced for each term in the mlm object.
- **ask**: If TRUE (the default, when running interactively), a menu of terms is presented; if ask is FALSE, canonical plots for all terms are produced.
- **graphics**: if TRUE (the default, when running interactively), then the menu of terms to plot is presented in a dialog box rather than as a text menu.
- **...**: arguments to be passed down.

1-dim plot
iris.can1 <- candisc(iris.mod, data=iris, ndim=1)
plot(iris.can1)
Value

An object of class `candiscList` which is a list of `candisc` objects for the terms in the mlm.

Author(s)

Michael Friendly and John Fox

See Also

candisc, heplot, heplot3d

Examples

```r
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)

grass.canL <- candiscList(grass.mod)
names(grass.canL)
names(grass.canL$Species)

## Not run:
print(grass.canL)

## End(Not run)
plot(grass.canL, type="n", ask=FALSE)
heplot(grass.canL$Species, scale=6)
heplot(grass.canL$Block, scale=2)
```

Description

Find sequential indices for observations in a data frame corresponding to the unique combinations of the levels of a given model term from a model object or a data frame.

Usage

dataIndex(x, term)

Arguments

- `x` Either a data frame or a model object
- `term` The name of one term in the model, consisting only of factors

Value

A vector of indices.
Author(s)

Michael Friendly

Examples

```r
factors <- expand.grid(A=factor(1:3), B=factor(1:2), C=factor(1:2))
n <- nrow(factors)
responses <- data.frame(Y1=10+round(10*rnorm(n)), Y2=10+round(10*rnorm(n)))

test <- data.frame(factors, responses)
mod <- lm(cbind(Y1, Y2) ~ A*B, data=test)
dataIndex(mod, "A")
dataIndex(mod, "A:B")
```

Grass

Yields from Nitrogen nutrition of grass species

Description

The data frame `grass` gives the yield ($10 \times \log_{10}$ dry-weight (g)) of eight grass Species in five replicates (Block) grown in sand culture at five levels of nitrogen.

Usage

`data(Grass)`

Format

A data frame with 40 observations on the following 7 variables.

- `Species`: a factor with levels `B. media D. glomerata F. ovina F. rubra H. pubesens K. cristata L. perenne P. bertolonii`
- `Block`: a factor with levels `1 2 3 4 5`
- `N1`: species yield at 1 ppm Nitrogen
- `N9`: species yield at 9 ppm Nitrogen
- `N27`: species yield at 27 ppm Nitrogen
- `N81`: species yield at 81 ppm Nitrogen
- `N243`: species yield at 243 ppm Nitrogen
Details

Nitrogen (NaNO₃) levels were chosen to vary from what was expected to be from critically low to almost toxic. The amount of Nitrogen can be considered on a log₃ scale, with levels 0, 2, 3, 4, 5. Gittins (1985, Ch. 11) treats these as equally spaced for the purpose of testing polynomial trends in Nitrogen level.

The data are also not truly multivariate, but rather a split-plot experimental design. For the purpose of exposition, he regards Species as the experimental unit, so that correlations among the responses refer to a composite representative of a species rather than to an individual exemplar.

Source

Examples

```r
str(Grass)
grass.mod <- lm(cbind(N1,N9,N27,N81,N243) ~ Block + Species, data=Grass)
Anova(grass.mod)
grass.canL <- candiscList(grass.mod)
names(grass.canL)
names(grass.canL$Species)
```

heplot.cancor

Canonical Correlation HE plots

Description

These functions plot ellipses (or ellipsoids in 3D) in canonical space representing the hypothesis and error sums-of-squares-and-products matrices for terms in a multivariate linear model representing the result of a canonical correlation analysis. They provide a low-rank 2D (or 3D) view of the effects in the space of maximum canonical correlations, together with variable vectors representing the correlations of Y variables with the canonical dimensions.

For consistency with `heplot.candisc`, the plots show effects in the space of the canonical Y variables selected by which.

Usage

```r
## S3 method for class 'cancor'
heplot(mod, which = 1:2, scale, asp=NA,
   var.vectors = "Y", var.col = c("blue", "darkgreen"), var.lwd = par("lwd"),
   var.cex = par("cex"), var.xpd = TRUE,
   prefix = "Ycan", suffix = TRUE, terms = TRUE, ...)
```
heplot3d(mod, which = 1:3, scale, asp="iso",
 var.vectors = "Y", var.col = c("blue", "darkgreen"), var.lwd = par("lwd"),
 var.cex = par("cex"), var.xpd = NA,
 prefix = "Ycan", suffix = FALSE, terms = TRUE, ...)

Arguments

mod A cancor object

which A numeric vector containing the indices of the Y canonical dimensions to plot.

scale Scale factor for the variable vectors in canonical space. If not specified, the
 function calculates one to make the variable vectors approximately fill the plot
 window.

asp aspect ratio setting. Use asp=1 in 2D plots and asp="iso" in 3D plots to ensure
 equal units on the axes. Use asp=NA in 2D plots and asp=NULL in 3D plots to
 allow separate scaling for the axes. See Details below.

var.vectors Which variable vectors to plot? A character vector containing one or more of
 "X" and "Y".

var.col Color(s) for variable vectors and labels, a vector of length 1 or 2. The first color
 is used for Y vectors and the second for X vectors, if these are plotted.

var.lwd Line width for variable vectors

var.cex Text size for variable vector labels

var.xpd logical. Allow variable labels outside the plot box? Does not apply to 3D plots.

prefix Prefix for labels of the Y canonical dimensions.

suffix Suffix for labels of canonical dimensions. If suffix=TRUE the percent of hy-
 pothesis (H) variance accounted for by each canonical dimension is added to the
 axis label.

terms Terms for the X variables to be plotted in canonical space. The default, terms=TRUE
 or terms="X" plots H ellipses for all of the X variables. terms="Xcan" plots H ellipses for all of the X canonical variables, xcan1, xcan2,....

... Other arguments passed to link[heplots][heplot]. In particular, you can
 pass linear hypotheses among the term variables via hypotheses.

Details

The interpretation of variable vectors in these plots is different from that of the terms plotted as
H "ellipses," which appear as degenerate lines in the plot (because they correspond to 1 df tests of
rank(H)=1).

In canonical space, the interpretation of the H ellipses for the terms is the same as in ordinary
HE plots: a term is significant iff its H ellipse projects outside the (orthogonalized) E ellipsoid
somewhere in the space of the Y canonical dimensions. The orientation of each H ellipse with
respect to the Y canonical dimensions indicates which dimensions that X variate contributes to.

On the other hand, the variable vectors shown in these plots are intended only to show the corre-
lations of Y variables with the canonical dimensions. Only their relative lengths and angles with
respect to the Y canonical dimensions have meaning. Relative lengths correspond to proportions.
of variance accounted for in the Y canonical dimensions plotted; angles between the variable vectors and the canonical axes correspond to the structure correlations. The absolute lengths of these vectors are typically manipulated by the scale argument to provide better visual resolution and labeling for the variables.

Setting the aspect ratio of these plots is important for the proper interpretation of angles between the variable vectors and the coordinate axes. However, this then makes it impossible to change the aspect ratio of the plot by re-sizing manually.

Value

Returns invisibly an object of class "heplot", with coordinates for the various hypothesis ellipses and the error ellipse, and the limits of the horizontal and vertical axes.

Author(s)

Michael Friendly

References

See Also

cancor for details on canonical correlation as implemented here; plot.cancor for scatterplots of canonical variable scores.

heplot.candisc, heplot, linearHypothesis

Examples

data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,1:10])
Y <- as.matrix(Rohwer[,3:5])
cc <- cancor(X, Y, set.names=c("PA", "Ability"))

basic plot
heplot(cc)

note relationship of joint hypothesis to individual ones
heplot(cc, scale=1.25, hypotheses=list("na+ns"=c("na", "ns")))

more options
heplot(cc, hypotheses=list("All X"=colnames(X)),
 fill=c(TRUE,FALSE), fill.alpha=0.2,
 var.cex=1.5, var.col="red", var.lwd=3,
 prefix="Y canonical dimension"
)

3D version
heplot3d(cc, var.lwd=3, var.col="red")
heplot.candisc Canonical Discriminant HE plots

Description

These functions plot ellipses (or ellipsoids in 3D) in canonical discriminant space representing
the hypothesis and error sums-of-squares-and-products matrices for terms in a multivariate linear
model. They provide a low-rank 2D (or 3D) view of the effects for that term in the space of
maximum discrimination.

Usage

S3 method for class 'candisc'
heplot(mod, which = 1:2, scale, asp = 1, var.col = "blue",
 var.lwd = par("lwd"), var.cex = par("cex"),
 prefix = "Can", suffix = TRUE, terms = mod$term, ...)

S3 method for class 'candisc'
heplot3d(mod, which = 1:3, scale, asp = "iso", var.col = "blue",
 var.lwd = par("lwd"), var.cex = par3d("cex"),
 prefix = "Can", suffix = FALSE, terms = mod$term,
 ...)

Arguments

mod A candisc object for one term in a mlm
which A numeric vector containing the indices of the canonical dimensions to plot.
scale Scale factor for the variable vectors in canonical space. If not specified, the
 function calculates one to make the variable vectors approximately fill the plot
 window.
asp Aspect ratio for the horizontal and vertical dimensions. The defaults, asp=1 for
 heplot.candisc and asp="iso" for heplot3d.candisc ensure equal units on
 all axes, so that angles and lengths of variable vectors are interpretable. As well,
 the standardized canonical scores are uncorrelated, so the Error ellipse (ellip-
 soid) should plot as a circle (sphere) in canonical space. For heplot3d.candisc,
 use asp=NULL to suppress this transformation to iso-scaled axes.
var.col Color for variable vectors and labels
var.lwd Line width for variable vectors
var.cex Text size for variable vector labels
prefix Prefix for labels of canonical dimensions.
suffix Suffix for labels of canonical dimensions. If suffix=TRUE the percent of hy-
 pothesis (H) variance accounted for by each canonical dimension is added to the
 axis label.
terms Terms from the original \texttt{mlm} whose H ellipses are to be plotted in canonical space. The default is the one term for which the canonical scores were computed. If \texttt{terms=TRUE}, all terms are plotted.

... Arguments to be passed down to \texttt{heplot} or \texttt{heplot3d}

Details
The generalized canonical discriminant analysis for one term in a \texttt{mlm} is based on the eigenvalues, λ_i, and eigenvectors, V, of the H and E matrices for that term. This produces uncorrelated canonical scores which give the maximum univariate F statistics. The canonical HE plot is then just the HE plot of the canonical scores for the given term.

For \texttt{heplot3d.candisc}, the default asp="iso" now gives a geometrically correct plot, but the third dimension, CAN3, is often small. Passing an expanded range in \texttt{zlim} to \texttt{heplot3d} usually helps.

Value
\texttt{heplot.candisc} returns invisibly an object of class "heplot", with coordinates for the various hypothesis ellipses and the error ellipse, and the limits of the horizontal and vertical axes.

Similarly, \texttt{heploted.candisc} returns an object of class "heplot3d".

Author(s)
Michael Friendly and John Fox

References

See Also
\texttt{candisc}, \texttt{candisclist}, \texttt{heplot}, \texttt{heplot3d}, \texttt{aspect3d}

Examples
```r
grass.mod <- \texttt{lm(}\texttt{cbind(N1,N9,N27,N81,N243) \sim Block + Species, data=Grass)}

grass.can1 <- \texttt{candisc(}grass.mod, \texttt{term="Species"}\texttt{)}
grass.canL <- \texttt{candisclist(}grass.mod\texttt{)}

\texttt{heplot(}grass.can1, \texttt{scale=6)}
\texttt{heplot(}grass.can1, \texttt{scale=6, terms=TRUE)}
\texttt{heplot(}grass.canL, \texttt{terms=TRUE, ask=FALSE)}

\texttt{heplot3d(}grass.can1, \texttt{wire=FALSE)}
# compare with non-iso scaling
```
aspect3d(x=1,y=1,z=1)
or,
heplot3d(grass.can1, asp=NULL)

Pottery data, from car package
pottery.mod <- lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site, data=Pottery)
pottery.can <- candisc(pottery.mod)

heplot(pottery.can, var.lwd=3)
heplot3d(pottery.can, var.lwd=3, scale=10, zlim=c(-3,3), wire=FALSE)

Not run:
play3d(spin3d(axis = c(1, 0, 0), rpm = 5), duration=12)
End(Not run)

FootHead data, from heplots package
library(heplots)
data(FootHead)

use Helmert contrasts for group
contrasts(FootHead$group) <- contr.helmert

foot.mod <- lm(cbind(width, circum,front.back,eye.top,ear.top,jaw)-group, data=FootHead)
foot.can <- candisc(foot.mod)
heplot(foot.can, main="Candisc HE plot",
 hypotheses=list("group.1"="group1","group.2"="group2"),
 col=c("red", "blue", "green3", "green3"), var.col="red")

heplot.candiscList Canonical Discriminant HE plots

Description

These functions plot ellipses (or ellipsoids in 3D) in canonical discriminant space representing the hypothesis and error sums-of-squares-and-products matrices for terms in a multivariate linear model. They provide a low-rank 2D (or 3D) view of the effects for that term in the space of maximum discrimination.

Usage

S3 method for class 'candiscList'
heplot(mod, term, ask = interactive(), graphics = TRUE, ...)

S3 method for class 'candiscList'
heplot3d(mod, term, ask = interactive(), graphics = TRUE, ...)
Arguments

mod
A `candiscList` object for terms in a `mlm`.

term
The name of one term to be plotted for the `heplot` and `heplot3d` methods. If not specified, one plot is produced for each term in the `mlm` object.

ask
If `TRUE` (the default), a menu of terms is presented; if `ask` is `FALSE`, canonical HE plots for all terms are produced.

graphics
if `TRUE` (the default, when running interactively), then the menu of terms to plot is presented in a dialog box rather than as a text menu.

... Arguments to be passed down

Value

No useful value; used for the side-effect of producing canonical HE plots.

Author(s)

Michael Friendly and John Fox

References

See Also

candisc, candiscList, heplot, heplot3d

HSB

High School and Beyond Data

Description

The High School and Beyond Project was a longitudinal study of students in the U.S. carried out in 1980 by the National Center for Education Statistics. Data were collected from 58,270 high school students (28,240 seniors and 30,030 sophomores) and 1,015 secondary schools. The HSB data frame is sample of 600 observations, of unknown characteristics, originally taken from Tatsuoka (1988).

Usage

data(HSB)
Format

A data frame with 600 observations on the following 15 variables. There is no missing data.

- **id**: Observation id: a numeric vector
- **gender**: a factor with levels male female
- **race**: Race or ethnicity: a factor with levels hispanic asian african-amer white
- **ses**: Socioeconomic status: a factor with levels low middle high
- **sch**: School type: a factor with levels public private
- **prog**: High school program: a factor with levels general academic vocation
- **locus**: Locus of control: a numeric vector
- **concept**: Self-concept: a numeric vector
- **mot**: Motivation: a numeric vector
- **career**: Career plan: a factor with levels clerical craftsman farmer homemaker laborer manager military operative prof1 prof2 proprietor protective sales school service technical not working
- **read**: Standardized reading score: a numeric vector
- **write**: Standardized writing score: a numeric vector
- **math**: Standardized math score: a numeric vector
- **sci**: Standardized science score: a numeric vector
- **ss**: Standardized social science (civics) score: a numeric vector

Source

Retrieved from: http://www.gseis.ucla.edu/courses/data/hbs6.dta

References

High School and Beyond data files: http://www.sscnet.ucla.edu/issr/da/index/techinfo/178961.HTM

Examples

```r
str(HSB)
# main effects model
hsb.mod <- lm( cbind(read, write, math, sci, ss) ~ gender + race + ses + sch + prog, data=HSB)
Anova(hsb.mod)

# Add some interactions
hsb.mod1 <- update(hsb.mod, . ~ . + gender:race + ses:prog)
heplot(hsb.mod1, col=palette()[c(2,1,3:6)], variables=c("read","math"))
hsb.can1 <- candisc(hsb.mod1, term="race")```
heplot(hsb.can1, col=c("red", "black"))

# show canonical results for all terms
## Not run:
hsb.can <- candiscList(hsb.mod)
hsb.can

## End(Not run)

---

### plot.cancor

**Canonical Correlation Plots**

**Description**

This function produces plots to help visualize X, Y data in canonical space.

The present implementation plots the canonical scores for the Y variables against those for the X variables on given dimensions. We treat this as a view of the data in canonical space, and so offer additional annotations to a standard scatterplot.

**Usage**

```r
S3 method for class 'cancor'
plot(x, which = 1, xlim, ylim, xlab, ylab,
 points = TRUE, add = FALSE, col = palette()[1],
 ellipse = TRUE, ellipse.args = list(),
 smooth = FALSE, smoother.args = list(), col.smooth = palette()[3],
 abline = TRUE, col.lines = palette()[2], lwd = 2,
 labels = rownames(xy),
 id.method = "mahal", id.n = 0, id.cex = 1, id.col = palette()[1],
 ...)
```

**Arguments**

- **x**: A "cancor" object
- **which**: Which dimension to plot? An integer in 1:x$ndim.
- **xlim**, **ylim**: Limits for x and y axes
- **xlab**, **ylab**: Labels for x and y axes. If not specified, these are constructed from the set.names component of x.
- **points**: logical. Display the points?
- **add**: logical. Add to an existing plot?
- **col**: Color for points.
- **ellipse**: logical. Draw a data ellipse for the canonical scores?
- **ellipse.args**: Arguments passed to `dataEllipse`. Internally, the function sets the default value for levels to 0.68.
smooth

logical. Draw a (loess) smoothed curve?

smoother.args

Arguments passed to `loessLine`, which should be consulted for details and defaults.

col.smooth

Color for the smoothed curve.

abline

logical. Draw the linear regression line for Ycan[,which] on Xcan[,which]?

col.lines

Color for the linear regression line

lwd

Line widths

labels

Point labels for point identification via the id.method argument.

id.method

Method used to identify individual points. See `showLabels` for details. The default, id.method = "mahal" identifies the id.n points furthest from the centroid.

id.n

Number of points to identify

id.cex, id.col

Character size and color for labeled points

... Other arguments passed down to plot(...) and points(...)

Details

Canonical correlation analysis assumes that the all correlations between the X and Y variables can be expressed in terms of correlations the canonical variate pairs, (Xcan1, Ycan1), (Xcan2, Ycan2), ..., and that the relations between these pairs are indeed linear.

Data ellipses, and smoothed (loess) curves, together with the linear regression line for each canonical dimension help to assess whether there are peculiarities in the data that might threaten the validity of CCA. Point identification methods can be useful to determine influential cases.

Value

None. Used for its side effect of producing a plot.

Author(s)

Michael Friendly

References


See Also

cancor,
dataEllipse, loessLine, showLabels
redundancy

Examples

```r
data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10]) # the PA tests
Y <- as.matrix(Rohwer[,3:5]) # the aptitude/ability variables

cc <- cancOR(X, Y, set.names=c("PA", "Ability"))

plot(cc)
exercise some options
plot(cc, smooth=TRUE, id.n=3, ellipse.args=list(fill=TRUE))
plot(cc, which=2, smooth=TRUE)
plot(cc, which=3, smooth=TRUE)

plot vectors showing structure correlations of Xcan and Ycan with their own variables
plot(cc)
struc <- cc$structure
Xstruc <- struc$X.xscores[,1]
Ystruc <- struc$Y.yscores[,1]
scale <- 2

place vectors in the margins of the plot
usr <- matrix(par("usr"), nrow=2, dimnames=list(c("min", "max"), c("x", "y")))
ypos <- usr[2,2] - (1:5)/10
arrows(0, ypos, scale*Xstruc, ypos, angle=10, len=0.1, col="blue")
text(scale*Xstruc, ypos, names(Xstruc), pos=2, col="blue")

xpos <- usr[2,1] - (1 + 1:3)/10
arrows(xpos, 0, xpos, scale*Ystruc, angle=10, len=0.1, col="darkgreen")
text(xpos, scale*Ystruc, names(Ystruc), pos=1, col="darkgreen")
```

---

**Canonical Redundancy Analysis**

**Description**

Calculates indices of redundancy (Stewart & Love, 1968) from a canonical correlation analysis. These give the proportion of variances of the variables in each set (X and Y) which are accounted for by the variables in the other set through the canonical variates.

**Usage**

```r
redundancy(object, ...)
```

## S3 method for class 'cancor.redundancy'

```r
print(x, digits = max(getOption("digits") - 3, 3), ...)
```
Arguments

- object: A "cancor" object
- x: A "cancor_redundancy" for the print method.
- digits: Number of digits to print
- ...: Other arguments

Details

None yet.

Value

An object of class "cancor_redundancy", a list with the following 5 components:

- Xcan_redun: Canonical redundancies for the X variables, i.e., the total fraction of X variance accounted for by the Y variables through each canonical variate.
- Ycan_redun: Canonical redundancies for the Y variables
- X_redun: Total canonical redundancy for the X variables, i.e., the sum of Xcan_redun.
- Y_redun: Total canonical redundancy for the Y variables
- set_names: names for the X and Y sets of variables

Author(s)

Michael Friendly

References


See Also

cancor, ~~~

Examples

data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10])  # the PA tests
Y <- as.matrix(Rohwer[,3:5])  # the aptitude/ability variables

c <- cancor(X, Y, set.names=c("PA", "Ability"))

redundancy(c)
##
## Redundancies for the PA variables & total X canonical redundancy
##
##       Xcan1   Xcan2   Xcan3 total X|Y
##     0.17342 0.04211 0.00797 0.22350
## Redundancies for the Ability variables & total Y canonical redundancy
##
## | Ycan1 | Ycan2 | Ycan3 | total Y|X |
## |------|------|------|-------|---|
## | 0.2249 | 0.0369 | 0.0156 | 0.2774 |

---

**Draw Labeled Vectors in 2D or 3D**

**Description**

Graphics utility functions to draw vectors from an origin to a collection of points (using arrows in 2D or lines3d in 3D) with labels for each (using text or texts3d).

**Usage**

```r
evectors(x, origin = c(0, 0), labels = rownames(x),
 scale = 1,
 col="blue",
 lwd=1, cex=1,
 length=.1, angle=12, pos=NULL,
 ...)

evectors3d(x, origin=c(0,0,0), labels=rownames(x),
 scale=1,
 col="blue",
 lwd=1, cex=1,
 ...)
```

**Arguments**

- `x` A two-column matrix or a three-column matrix containing the end points of the vectors.
- `origin` Starting point(s) for the vectors.
- `labels` Labels for the vectors.
- `scale` A multiplier for the length of each vector.
- `col` color(s) for the vectors.
- `lwd` line width(s) for the vectors.
- `cex` color(s) for the vectors.
- `length` For vectors, length of the edges of the arrow head (in inches).
- `angle` For vectors, angle from the shaft of the arrow to the edge of the arrow head.
- `pos` For vectors, position of the text label relative to the vector head. If pos=NULL, labels are positioned labels outside, relative to arrow ends.
- `...` other graphical parameters, such as lty, xpd, ...
Details

The graphical parameters col, lty and lwd can be vectors of length greater than one and will be recycled if necessary.

Value

None

Author(s)

Michael Friendly

See Also

arrows, text, segments
lines3d, texts3d

Examples

plot(c(-3, 3), c(-3, 3), type="n")
X <- matrix(rnorm(10), ncol=2)
rownames(X) <- LETTERS[1:5]
vectors(X, scale=2, col=palette())

Wilks

Wilks Lambda Tests for Canonical Correlations

Description

Tests the sequential hypotheses that a given canonical correlation and all that follow it are zero.

Usage

Wilks(object, ...)

## S3 method for class 'cancor'
Wilks(object, ...)

Arguments

object

An object of class cancor

...

Other arguments passed to methods

Details

Wilks’ Lambda values are converted to F statistics using Rao’s approximation.
**Value**

A data.frame (of class "anova") containing the test statistics

**Author(s)**

Michael Friendly

**References**


**See Also**

cancor, ~~~

**Examples**

data(Rohwer, package="heplots")
X <- as.matrix(Rohwer[,6:10])  # the PA tests
Y <- as.matrix(Rohwer[,3:5])   # the aptitude/ability variables

cc <- cancorm(X, Y, set.names=c("PA", "Ability"))
Wilks(cc)

---

### WolvesWolf skulls

<table>
<thead>
<tr>
<th>Wolves</th>
<th>Wolf skulls</th>
</tr>
</thead>
</table>

**Description**

Skull morphometric data on Rocky Mountain and Arctic wolves (Canis Lupus L.) taken from Morrison (1990), originally from Jolicoeur (1959).

**Usage**

data(Wolves)

**Format**

A data frame with 25 observations on the following 11 variables.

- **group**: a factor with levels ar:f ar:m rm:f rm:m, comprising the combinations of location and sex
- **location**: a factor with levels ar=Artic, rm=Rocky Mountain
- **sex**: a factor with levels f=female, m=male
- **x1**: palatal length, a numeric vector
- **x2**: postpalatal length, a numeric vector
x3  zygomatic width, a numeric vector
x4  palatal width outside first upper molars, a numeric vector
x5  palatal width inside second upper molars, a numeric vector
x6  postglenoid foramina width, a numeric vector
x7  interorbital width, a numeric vector
x8  braincase width, a numeric vector
x9  crown length, a numeric vector

Details

All variables are expressed in millimeters.

The goal was to determine how geographic and sex differences among the wolf populations are determined by these skull measurements. For MANOVA or (canonical) discriminant analysis, the factors group or location and sex provide alternative parameterizations.

Source


References


Examples

data(Wolves)

# using group
wolf.mod <- lm(cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9)~group, data=Wolves)
Anova(wolf.mod)

wolf.can <- candisc(wolf.mod)
plot(wolf.can)
heplot(wolf.can)

# using location, sex
wolf.mod2 <- lm(cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9)~location*sex, data=Wolves)
Anova(wolf.mod2)

wolf.can2 <- candiscList(wolf.mod2)
plot(wolf.can2)
Index

*Topic **aplot**
  - vectors, 27

*Topic **datasets**
  - Grass, 14
  - HSB, 21
  - Wolves, 29

*Topic **hplot**
  - candisc, 8
  - candiscList, 12
  - heplot.cancor, 15
  - heplot.candisc, 18
  - heplot.candisclist, 20
  - plot.cancor, 23

*Topic **htest**
  - Wilks, 28

*Topic **manip**
  - dataIndex, 13

*Topic **multivariate**
  - cancors, 3
  - candisc, 8
  - candisc-package, 2
  - candisclist, 12
  - heplot.cancor, 15
  - heplot.candisc, 18
  - heplot.candisclist, 20
  - redundancy, 25

*Topic **package**
  - candisc-package, 2

*Topic **utilities**
  - dataIndex, 13

arrows, 27, 28
aspect3d, 19

cancor, 2, 3, 3, 7, 17, 24, 26, 29
  - candisc, 3, 7, 8, 13, 19, 21
  - candisc-package, 2
  - candisclist, 11, 12, 19, 21
  - cc, 7
  - cca, 7

cancor, 3
  - coef.cancor (cancor), 3
  - coef.candisc (candisc), 8
  - cov wt, 4

  - dataEllipse, 23, 24
  - dataIndex, 13

    - Grass, 14

    - heplot, 3, 11, 13, 17, 19, 21
    - heplot.cancor, 2, 5, 7, 15
    - heplot.candisc, 2, 15, 17, 18
    - heplot.candisclist, 20
    - heplot3d, 11, 13, 19, 21
    - heplot3d.cancor, 2
    - heplot3d.cancor (heplot.cancor), 15
    - heplot3d.candisc, 2
    - heplot3d.candisc (heplot.candisc), 18
    - heplot3d.candisclist
      - (heplot.candisclist), 20
    - heplots, 3, 7
    - HSB, 21

    - linearHypothesis, 17
    - lines3d, 27, 28
    - loessLine, 24

    - plot.cancor, 2, 7, 17, 23
    - plot.candisc, 2
    - plot.candisc (candisc), 8
    - plot.candisclist (candisclist), 12
    - print.cancor (cancor), 3
    - print.cancor.redundancy (redundancy), 25
    - print.candisc (candisc), 8
    - print.candisclist (candisclist), 12

    - redundancy, 7, 25

    - scores (cancor), 3
    - segments, 28
    - showLabels, 24
summary.cancor (cancor), 3
summary.candisc (candisc), 8
summary.candiscList (candiscList), 12

text, 27, 28
texts3d, 27, 28

vectors, 27
vectors3d (vectors), 27

Wilks, 28
Wolves, 29