
Package ‘decorators’
October 13, 2022

Type Package

Title Extend the Behaviour of a Function without Explicitly Modifying
it

Version 0.3.0

Date 2022-09-23

Maintainer Harel Lustiger <tidylab@gmail.com>

Description A decorator is a function that receives a function, extends
its behaviour, and returned the altered function. Any caller that uses
the decorated function uses the same interface as it were the
original, undecorated function. Decorators serve two primary uses: (1)
Enhancing the response of a function as it sends data to a second
component; (2) Supporting multiple optional behaviours. An example of
the first use is a timer decorator that runs a function, outputs its
execution time on the console, and returns the original function's
result. An example of the second use is input type validation
decorator that during running time tests whether the caller has passed
input arguments of a particular class. Decorators can reduce
execution time, say by memoization, or reduce bugs by adding defensive
programming routines.

License MIT + file LICENSE

URL https://tidylab.github.io/decorators/,

https://github.com/tidylab/decorators

BugReports https://github.com/tidylab/decorators/issues

Depends R (>= 3.5)

Imports purrr, methods

Suggests testthat

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

RoxygenNote 7.2.0

1

https://tidylab.github.io/decorators/
https://github.com/tidylab/decorators
https://github.com/tidylab/decorators/issues

2 time_it

NeedsCompilation no

Author Harel Lustiger [aut, cre] (<https://orcid.org/0000-0003-2953-9598>),
Tidylab [cph, fnd]

Repository CRAN

Date/Publication 2022-09-30 16:00:02 UTC

R topics documented:
time_it . 2
validate_arguments . 3

Index 5

time_it Measure Execution Time of Functions

Description

Wrap a function with a timer.

Usage

time_it(func, units = "auto", digits = 2)

Arguments

func (function) A function to decorate.

units (character) Units in which the results are desired, including: "auto", "secs",
"mins", "hours", "days", and "weeks". See difftime.

digits (integer) The number of significant digits to be used. See signif.

Value

(closure) An object that contains the original function bound to the environment of the decorator.

References

• timeit Python module

• Closures in R

Examples

Sys.sleep <- time_it(base::Sys.sleep)
Sys.sleep(0.1)

https://orcid.org/0000-0003-2953-9598
https://docs.python.org/3/library/timeit.html
http://adv-r.had.co.nz/Functional-programming.html

validate_arguments 3

validate_arguments Validate the Type of Input Arguments

Description

Wrap a function with a input validation.

Usage

validate_arguments(func)

Arguments

func (function) A function to decorate.

Details

validate_arguments decorator allows the arguments passed to a function to be parsed and vali-
dated using the function’s annotations before the function is called.

How It Works:
validate_arguments provides an extremely easy way to apply validation to your code with
minimal boilerplate. The original function needs to have key-value pairs in its declaration, where
the each value carries its designated class.

When to Use It:
• To protect functions from receiving unexpected types of input arguments.
• In ValueObjects.

Examples: Functions with Built-in NA classes:
Given a Customer ValueObject

Customer <- function(given = NA_character_, family = NA_character_)
return(data.frame(given = given, family = family))

When Customer is decorated with validate_arguments

Customer <- validate_arguments(Customer)

Then passing arguments of any type other then the declared type prompts an informative error.
In the Customer example, both input arguments given and family are declared as character.

Customer(given = "Bilbo", family = "Baggins") # Works as both arguments are character
#> given family
#> 1 Bilbo Baggins
try(Customer(given = "Bilbo", family = 90201)) # Fails because family is not a character
#> Error in Customer(given = "Bilbo", family = 90201) :
#> family is of type `numeric` rather than `character`!

https://tidylab.github.io/R6P/reference/ValueObject.html
https://tidylab.github.io/R6P/reference/ValueObject.html

4 validate_arguments

Value

(closure) An object that contains the original function bound to the environment of the decorator.

Note

The original function must have default values of the designated type.

References

• Similar Python module

• Closures in R

Examples

Car <- function(model = NA_character_, hp = NA_real_){
return(data.frame(model = model, hp = hp))

}

Car <- validate_arguments(Car)
try(Car(model = 555, hp = 120)) # fails because model is numeric rather than character

https://pydantic-docs.helpmanual.io/usage/validation_decorator/
http://adv-r.had.co.nz/Functional-programming.html

Index

∗ defensive programming
validate_arguments, 3

∗ misc decorators
time_it, 2

difftime, 2

signif, 2

time_it, 2

validate_arguments, 3

5

	time_it
	validate_arguments
	Index

