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time_it Measure Execution Time of Functions

Description

Wrap a function with a timer.

Usage

time_it(func, units = "auto", digits = 2)

Arguments

func (function) A function to decorate.

units (character) Units in which the results are desired, including: "auto", "secs",
"mins", "hours", "days", and "weeks". See difftime.

digits (integer) The number of significant digits to be used. See signif.

Value

(closure) An object that contains the original function bound to the environment of the decorator.

References

• timeit Python module

• Closures in R

Examples

Sys.sleep <- time_it(base::Sys.sleep)
Sys.sleep(0.1)

https://orcid.org/0000-0003-2953-9598
https://docs.python.org/3/library/timeit.html
http://adv-r.had.co.nz/Functional-programming.html
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validate_arguments Validate the Type of Input Arguments

Description

Wrap a function with a input validation.

Usage

validate_arguments(func)

Arguments

func (function) A function to decorate.

Details

validate_arguments decorator allows the arguments passed to a function to be parsed and vali-
dated using the function’s annotations before the function is called.

How It Works:
validate_arguments provides an extremely easy way to apply validation to your code with
minimal boilerplate. The original function needs to have key-value pairs in its declaration, where
the each value carries its designated class.

When to Use It:
• To protect functions from receiving unexpected types of input arguments.
• In ValueObjects.

Examples: Functions with Built-in NA classes:
Given a Customer ValueObject

Customer <- function(given = NA_character_, family = NA_character_)
return(data.frame(given = given, family = family))

When Customer is decorated with validate_arguments

Customer <- validate_arguments(Customer)

Then passing arguments of any type other then the declared type prompts an informative error.
In the Customer example, both input arguments given and family are declared as character.

Customer(given = "Bilbo", family = "Baggins") # Works as both arguments are character
#> given family
#> 1 Bilbo Baggins
try(Customer(given = "Bilbo", family = 90201)) # Fails because family is not a character
#> Error in Customer(given = "Bilbo", family = 90201) :
#> family is of type `numeric` rather than `character`!

https://tidylab.github.io/R6P/reference/ValueObject.html
https://tidylab.github.io/R6P/reference/ValueObject.html
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Value

(closure) An object that contains the original function bound to the environment of the decorator.

Note

The original function must have default values of the designated type.

References

• Similar Python module

• Closures in R

Examples

Car <- function(model = NA_character_, hp = NA_real_){
return(data.frame(model = model, hp = hp))

}

Car <- validate_arguments(Car)
try(Car(model = 555, hp = 120)) # fails because model is numeric rather than character

https://pydantic-docs.helpmanual.io/usage/validation_decorator/
http://adv-r.had.co.nz/Functional-programming.html
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