Package ‘ergm’

February 19, 2015

Version 3.2.4
Date 2014-12-13
Title Fit, Simulate and Diagnose Exponential-Family Models for Networks
Depends statnet.common (>= 3.1-0), network (>= 1.11)
Imports robustbase (>= 0.9-10), coda, trust, Matrix, Rglpk, parallel
Suggests lattice, latticeExtra, sna, latentnet, knitr
Description An integrated set of tools to analyze and simulate networks based on exponential-family random graph models (ERGM). "ergm" is a part of the `statnet` suite of packages for network analysis.
License GPL-3 + file LICENSE
URL http://statnet.org
VignetteBuilder knitr
Author Mark S. Handcock [aut],
David R. Hunter [aut],
Carter T. Butts [aut],
Steven M. Goodreau [aut],
Pavel N. Krivitsky [aut, cre],
Martina Morris [aut],
Li Wang [ctb],
Kirk Li [ctb]
Maintainer Pavel N. Krivitsky <pavel@uow.edu.au>
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-12-14 18:10:47

R topics documented:

 ergm-package .. 3
 anova.ergm ... 5
 as.network.numeric ... 7
R topics documented:

coef.ergm ... 8
control.ergm ... 9
control.ergm.bridge ... 17
control.gof .. 18
control.logLik.ergm .. 20
control.san .. 22
control.simulate ... 24
ecoli ... 26
enformulate.curved ... 27
ergm ... 28
erqm-constraints ... 35
erqm-parallel ... 38
erqm-references ... 39
erqm-terms .. 40
erqm.allstats ... 60
erqm.bridge.dindstart.llk 62
erqm.bridge.llr .. 64
ergm.exact ... 65
erqmMPLE .. 66
ergm_MH_proposals .. 68
eut-upgrade ... 71
faux.magnolia.high .. 72
faux.mesa.high ... 73
fix.curved .. 75
flobusiness ... 76
fomarriage ... 77
florentine ... 78
g4 ... 79
Getting Started .. 79
gof ... 81
is.duration ... 84
is.dyad.independent .. 84
is.inCH .. 85
kapferer ... 86
lasttoggle .. 87
logLik.ergm ... 87
mcmc.diagnostics ... 89
molecule ... 91
network.update .. 92
plot.ergm .. 93
plot.gofobject .. 95
plot.network.ergm ... 97
print.ergm .. 102
samplk ... 103
sampson .. 104
san ... 106
search.ergmTerms ... 107
simulate.ergm .. 109
ergm-package

Description

`ergm` is a collection of functions to plot, fit, diagnose, and simulate from exponential-family random graph models (ERGMs). For a list of functions type: `help(package='ergm')`

For a complete list of the functions, use `library(help="ergm")` or read the rest of the manual. For a simple demonstration, use `demo(packages="ergm")`.

When publishing results obtained using this package, please cite the original authors as described in `citation(package="ergm")`.

All programs derived from this package must cite it.

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a generalization of the Markov random network models introduced by Frank and Strauss (1986), which in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the complex dependencies within relational data structures. To date, the use of stochastic network models for networks has been limited by three interrelated factors: the complexity of realistic models, the lack of simulation tools for inference and validation, and a poor understanding of the inferential properties of nontrivial models.

This manual introduces software tools for the representation, visualization, and analysis of network data that address each of these previous shortcomings. The package relies on the `network` package which allows networks to be represented in R. The `ergm` package implements maximum likelihood estimates of ERGMs to be calculated using Markov Chain Monte Carlo (via `ergm`). The package also provides tools for simulating networks (via `simulate.ergm`) and assessing model goodness-of-fit (see `mcmc.diagnostics` and `gof.ergm`).

A number of Statnet Project packages extend and enhance `ergm`. These include `tergm` (Temporal ERGM), which provides extensions for modeling evolution of networks over time; `ergm.count`, which facilitates exponential family modeling for networks whose dyadic measurements are counts; and `ergm.userterms`, which allows users to implement their own ERGM terms.

For detailed information on how to download and install the software, go to the `ergm` website: `statnet.org`. A tutorial, support newsgroup, references and links to further resources are provided there.
Author(s)

Mark S. Handcock <handcock@stat.ucla.edu>,
David R. Hunter <dhunter@stat.psu.edu>,
Carter T. Butts <buttsc@uci.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,
Pavel N. Krivitsky <krivitsky@stat.psu.edu>, and
Martina Morris <morrism@u.washington.edu>

Maintainer: Pavel N. Krivitsky <krivitsky@stat.psu.edu>

References

anova.ergm

anova.ergm

ANOVA for Linear Model Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

```r
## S3 method for class 'ergm'
anova(object, ..., eval.loglik = FALSE)
## S3 method for class 'ergmlist'
anova(object, ..., eval.loglik = FALSE, scale = 0, test = "F")
```

Arguments

- `object, ...` objects of class `ergm`, usually, a result of a call to `ergm`.
- `eval.loglik` a logical specifying whether the log-likelihood will be evaluated if missing.
- `test` a character string specifying the test statistic to be used. Can be one of "F", "Chisq" or "Cp", with partial matching allowed, or NULL for no test.
- `scale` numeric. An estimate of the noise variance σ^2. If zero this will be estimated from the largest model considered.
Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the reductions in the residual sum of squares as each term of the formula is added in turn are given in the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row to the residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom and sum of squares for each model. For all but the first model, the change in degrees of freedom and sum of squares is also given. (This only make statistical sense if the models are nested.) It is conventional to list the models from smallest to largest, but this is up to the user.

Optionally the table can include test statistics. Normally the F statistic is most appropriate, which compares the mean square for a row to the residual sum of squares for the largest model considered. If `scale` is specified chi-squared tests can be used. Mallows' C_p statistic is the residual sum of squares plus twice the estimate of σ^2 times the residual degrees of freedom.

If any of the objects do not have estimated log-likelihoods, produces an error, unless eval\-loglik=TRUE.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset. This may be a problem if there are missing values and R's default of na.action = na.omit is used, and `anova\-ergmlist` will detect this with an error.

See Also

The model fitting function `ergm`, `anova`, `logLik\-ergm` for adding the log-likelihood to an existing `ergm` object.

Examples

data(molecule)
molecule <- c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3)
fit0 <- ergm(molecule ~ edges)
anova(fit0)
fit1 <- ergm(molecule ~ edges + nodefactor("atomic type"))
anova(fit1)

fit2 <- ergm(molecule ~ edges + nodefactor("atomic type") + gwesp(0.5,
 fixed=TRUE), eval.loglik=TRUE) # Note the eval.loglik argument.
anova(fit0, fit1)
anova(fit0, fit1, fit2)
as.network.numeric

Create a Simple Random network of a Given Size

Description

as.network.numeric creates a random Bernoulli network of the given size as an object of class network.

Usage

S3 method for class 'numeric'

as.network(x, directed = TRUE,
 hyper = FALSE, loops = FALSE, multiple = FALSE, bipartite = FALSE,
 ignore.eval = TRUE, names.eval = NULL,
 edge.check = FALSE,
 density=NULL, init=NULL, numedges=NULL, ...)

Arguments

- **x** count; the number of nodes in the network. If bipartite=TRUE, it is the number of events in the network.
- **directed** logical; should edges be interpreted as directed?
- **hyper** logical; are hyperedges allowed? Currently ignored.
- **loops** logical; should loops be allowed? Currently ignored.
- **multiple** logical; are multiplex edges allowed? Currently ignored.
- **bipartite** count; should the network be interpreted as bipartite? If present (i.e., non-NULL) it is the count of the number of actors in the bipartite network. In this case, the number of nodes is equal to the number of actors plus the number of events (with all actors preceding all events). The edges are then interpreted as nondirected.
- **ignore.eval** logical; ignore edge values? Currently ignored.
- **names.eval** optionally, the name of the attribute in which edge values should be stored. Currently ignored.
- **edge.check** logical; perform consistency checks on new edges?
- **density** numeric; the probability of a tie for Bernoulli networks. If neither density nor init is given, it defaults to the number of nodes divided by the number of dyads (so the expected number of ties is the same as the number of nodes.)
- **init** numeric; the log-odds of a tie for Bernoulli networks. It is only used if density is not specified.
- **numedges** count; if present, sample the Bernoulli network conditional on this number of edges (rather than independently with the specified probability).
- **...** additional arguments
Details

The network will not have vertex, edge or network attributes. These can be added with operators such as %v%, %n%, %e%.

Value

An object of class network

References

See Also

network

Examples

```r
# Draw a random directed network with 25 nodes
g <- network(25)
# Draw a random undirected network with density 0.1
h <- network(25, directed=FALSE, density=0.1)
# Draw a random bipartite network with 10 events and 5 actors and density 0.1
j <- network(5, bipartite=TRUE, density=0.1)
```

coef.ergm

Extract Model Coefficients

Description

`coef` is a method which extracts model coefficients from objects returned by the `ergm` function. `coefficients` is an alias for it.

Usage

```r
## S3 method for class 'ergm'
coef(object, ...)
## S3 method for class 'ergm'
coefficients(object, ...)
```

Arguments

- `object` an object for which the extraction of model coefficients is meaningful.
- `...` other arguments.
Value

Coefficients extracted from the model object object.

See Also

fitted.values and residuals for related methods: glm, lm for model fitting.

Examples

data(molecule)
molecule %>% "atomic type" <- c(1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3)
fit <- ergm(molecule ~ edges + nodefactor("atomic type"))
coef(fit)

control.ergm

Auxiliary for Controlling ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning 'ergm' fitting.

Usage

control.ergm(drop=TRUE,

init=NULL,
init.method=NULL,

main.method=c("MCMLE","Robbins-Monro",
 "Stochastic-Approximation","Stepping"),
force.main=FALSE,
main.hessian=TRUE,

MLE.max.dyad.types=1e+6,
MLE.samplesize=50000,
MLE.type=c("glm", "penalized"),

MCMC.prop.weights="default", MCMC.prop.args=list(),
MCMC.interval=1024,
MCMC.burnin=MCMC.interval*16,
MCMC.samplesize=1024,

MCMC.effectiveSize=NULL,
MCMC.effectiveSize.damp=10,
MCMC.effectiveSize.maxruns=1000,
MCMC.effectiveSize.base=1/2,
MCMC.effectiveSize.points=5,
MCMC.effectiveSize.order=1,
MCMC.return.stats=TRUE,
MCMC.runtime.traceplot=FALSE,
MCMC.init.maxedges=20000,
MCMC.max.maxedges=Inf,
MCMC.addto.se=TRUE,
MCMC.compress=FALSE,
MCMC.packagenames=c(),

SAN.maxit=10,
SAN.control=control.san(coef=init,
 SAN.prop.weights=MCMC.prop.weights,
 SAN.prop.args=MCMC.prop.args,
 SAN.init.maxedges=MCMC.init.maxedges,
 SAN.burnin=MCMC.burnin*10,
 SAN.interval=MCMC.interval,
 SAN.packagenames=MCMC.packagenames,
 MPLE.max.dyad.types=MPLE.max.dyad.types,
 parallel=parallel,
 parallel.type=parallel.type,
 parallel.version.check=parallel.version.check),

MCMLE.termination=c("Hummel", "Hotelling", "precision", "none"),
MCMLE.maxit=20,
MCMLE.conv.min.pval=0.5,
MCMLE.NR.maxit=100,
MCMLE.NR.reltol=sqrt(.Machine$double.eps),
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,
obs.MCMC.burnin.min=obs.MCMC.burnin/10,
MCMLE.check.degeneracy=FALSE,
MCMLE.MCMC.precision=0.005,
MCMLE.MCMC.max.ESS.frac=0.1,
MCMLE.metric=c("lognormal", "logtaylor",
 "Median.Likelihood",
 "EF.Likelihood", "naive"),
MCMLE.method=c("BFGS","Nelder-Mead"),
MCMLE.trustregion=20,
MCMLE.dampening=FALSE,
MCMLE.dampening.min.ess=20,
MCMLE.dampening.level=0.1,
MCMLE.steplength.margin=0.05,
MCMLE.steplength=if(is.null(MCMLE.steplength.margin)) 0.5 else 1,
MCMLE.adaptive.trustregion=3,
MCMLE.sequential=TRUE,
MCMLE.density.guard.min=10000,
Arguments

drop

Logical: If TRUE, terms whose observed statistic values are at the extremes of their possible ranges are dropped from the fit and their corresponding parameter estimates are set to plus or minus infinity, as appropriate. This is done because maximum likelihood estimates cannot exist when the vector of observed statistic lies on the boundary of the convex hull of possible statistic values.

init

numeric or NA vector equal in length to the number of parameters in the model or NULL (the default); the initial values for the estimation and coefficient offset terms. If NULL is passed, all of the initial values are computed using the method specified by control$init.method. If a numeric vector is given, the elements of the vector are interpreted as follows:

• Elements corresponding to terms enclosed in offset() are used as the fixed offset coefficients. Note that offset coefficients alone can be more conveniently specified using ergm argument offset.coef. If both offset.coef and init arguments are given, values in offset.coef will take precedence.
• Elements that do not correspond to offset terms and are not NA are used as starting values in the estimation.
• Initial values for the elements that are NA are fit using the method specified by `control$init.method`.

Passing `control.ergm(init=coef(prev.fit))` can be used to “resume” an uncovered `ergm` run, but see `enformulate.curved`.

init.method
A character vector or NULL. The default method for finding the starting coefficient values, if `init` is not specified, is maximum pseudo-likelihood estimation (MPLE). Another valid value is "zeros" for a \(\theta \) vector of appropriate length.

main.method
One of "MCMLE","Robbins-Monro", "Stochastic-Approximation", or "Stepping". Chooses the estimation method used to find the MLE. MCMLE attempts to maximize an approximation to the log-likelihood function. Robbins-Monro and Stochastic-Approximation are both stochastic approximation algorithms that try to solve the method of moments equation that yields the MLE in the case of an exponential family model. Another alternative is a partial stepping algorithm (Stepping) as in Hummel et al. (2012). The direct use of the likelihood function has many theoretical advantages over stochastic approximation, but the choice will depend on the model and data being fit. See Handcock (2000) and Hunter and Handcock (2006) for details.

force.main
Logical: If TRUE, then force MCMC-based estimation method, even if the exact MLE can be computed via maximum pseudolikelihood estimation.

main.hessian
Logical: If TRUE, then an approximate Hessian matrix is used in the MCMC-based estimation method.

MPLE.max.dyad.types
Maximum number of unique values of change statistic vectors, which are the predictors in a logistic regression used to calculate the MPLE. This calculation uses a compression algorithm that allocates space based on `MPLE.max.dyad.types`.

MPLE.samplesize
Not currently documented; used in conditional-on-degree version of MPLE.

MPLE.type
One of "glm" or "penalized". Chooses method of calculating MPLE. "glm" is the usual formal logistic regression, whereas "penalized" uses the bias-reduced method of Firth (1993) as originally implemented by Meinhard Ploner, Daniela Dunkler, Harry Southworth, and Georg Heinze in the "logistf" package.

MCMC.prop.weights
Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices are "TNT" or "random": the "default" is one of these two, depending on the constraints in place (as defined by the constraints argument of the `ergm` function), though not all weights may be used with all constraints. The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with or without a tie as a candidate for toggling, whereas the random option puts equal weight on all possible dyads, though the interpretation of random may change according to the constraints in place. When no constraints are in place, the default is TNT, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks.

MCMC.prop.args
An alternative, direct way of specifying additional arguments to proposal.

MCMC.interval
Number of proposals between sampled statistics. Increasing interval will reduces the autocorrelation in the sample, and may increase the precision in esti-
mates by reducing MCMC error, at the expense of time. Set the interval higher for larger networks.

MCMC.burnin
Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.

MCMC.samplesize
Number of network statistics, randomly drawn from a given distribution on the set of all networks, returned by the Metropolis-Hastings algorithm. Increasing sample size may increase the precision in the estimates by reducing MCMC error, at the expense of time. Set it higher for larger networks, or when using parallel functionality.

Set MCMLE.effectiveSize to non-NULL value to adaptively determine the burn-in and the MCMC length needed to get the specified effective size using the method of Sahlin (2011): 50 is a reasonable value. This feature is in experimental status until we verify the coverage of the standard errors.

MCMC.return.stats
Logical: If TRUE, return the matrix of MCMC-sampled network statistics. This matrix should have MCMC.samplesize rows. This matrix can be used directly by the coda package to assess MCMC convergence.

MCMC.runtime.traceplot
Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC MLE iteration.

MCMC.init.maxedges, MCMC.max.maxedges
Maximum number of edges expected in network. Starting at MCMC.init.maxedges, it will be incremented by a factor of 10 if exceeded during fitting, up to MCMC.max.maxedges, at which point the process will stop with an error.

MCMC.addto.se
Whether to add the standard errors induced by the MCMC algorithm to the estimates’ standard errors.

MCMC.compress
Logical: If TRUE, the matrix of sample statistics returned is compressed to the set of unique statistics with a column of frequencies post-pended.

MCMC.packagenames
Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.

SAN.maxit
When target.stats argument is passed to *ergm*, the maximum number of attempts to use *san* to obtain a network with statistics close to those specified.

SAN.control
Control arguments to *san*. See *control.san* for details.

MCMLE.termination
The criterion used for terminating MCMLE estimation:

- "Hummel" Terminate when the Hummel step length is 1 for two consecutive iterations. For the last iteration, the sample size is boosted by a factor of MCMLE.last.boost. See Hummel et. al. (2012)
- "Hotelling" After every MCMC sample, an autocorrelation-adjusted Hotelling's T^2 test for equality of MCMC-simulated network statistics to observed is conducted, and if its P-value exceeds MCMLE.conv.min.pval, the estimation is considered to have converged and finishes. This was the default option in *ergm* version 3.1.
- "precision" Terminate when the estimated loss in estimating precision due to using MCMC standard errors is below the precision bound specified by `MCMLE.MCMC.precision`, and the Hummel step length is 1 for two consecutive iterations. See `MCMLE.MCMC.precision` for details. This feature is in experimental status until we verify the coverage of the standard errors.
- "none" Stop after `MCMLE.maxit` iterations.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MCMLE.maxit</code></td>
<td>Maximum number of times the parameter for the MCMC should be updated by maximizing the MCMC likelihood. At each step the parameter is changed to the values that maximizes the MCMC likelihood based on the current sample.</td>
</tr>
<tr>
<td><code>MCMLE.conv.min.pval</code></td>
<td>The P-value used in the Hotelling test for early termination.</td>
</tr>
<tr>
<td><code>MCMLE.NR.maxit</code>, <code>MCMLE.NR.reltol</code></td>
<td>The method, maximum number of iterations and relative tolerance to use within the <code>optim</code> routine in the MLE optimization. Note that by default, <code>ergm</code> uses trust, and falls back to <code>optim</code> only when trust fails.</td>
</tr>
<tr>
<td><code>obs.MCMC.samplesize</code>, <code>obs.MCMC.burnin</code>, <code>obs.MCMC.interval</code>, <code>obs.MCMC.burnin.min</code></td>
<td>Sample size, burnin, and interval parameters for the MCMC sampling used when unobserved data are present in the estimation routine.</td>
</tr>
<tr>
<td><code>MCMLE.check.degeneracy</code></td>
<td>Logical: If TRUE, employ a check for model degeneracy.</td>
</tr>
<tr>
<td><code>MCMLE.MCMC.precision</code>, <code>MCMLE.MCMC.max.ESS.frac</code></td>
<td><code>MCMLE.MCMC.precision</code> is a vector of upper bounds on the standard errors induced by the MCMC algorithm, expressed as a percentage of the total standard error. The MCMLE algorithm will terminate when the MCMC standard errors are below the precision bound, and the Hummel step length is 1 for two consecutive iterations. This is an experimental feature. If effective sample size is used (see <code>MCMC.effectiveSize</code>), then <code>ergm</code> may increase the target ESS to reduce the MCMC standard error.</td>
</tr>
<tr>
<td><code>MCMLE.metric</code></td>
<td>Method to calculate the loglikelihood approximation. See Hummel et al (2010) for an explanation of "lognormal" and "naive".</td>
</tr>
<tr>
<td><code>MCMLE.method</code></td>
<td>Deprecated. By default, <code>ergm</code> uses trust, and falls back to <code>optim</code> with Nelder-Mead method when trust fails.</td>
</tr>
<tr>
<td><code>MCMLE.trustregion</code></td>
<td>Maximum increase the algorithm will allow for the approximated likelihood at a given iteration. See Snijders (2002) for details.</td>
</tr>
<tr>
<td><code>MCMLE.dampening</code></td>
<td>(logical) Should likelihood dampening be used?</td>
</tr>
<tr>
<td><code>MCMLE.dampening.min.ess</code></td>
<td>The effective sample size below which dampening is used.</td>
</tr>
<tr>
<td><code>MCMLE.dampening.level</code></td>
<td>The proportional distance from boundary of the convex hull move.</td>
</tr>
<tr>
<td><code>MCMLE.steplength.margin</code></td>
<td>The extra margin required for a Hummel step to count as being inside the convex hull of the sample. Set this to 0 if the step length gets stuck at the same value over several iterations. Set it to NULL to use fixed step length.</td>
</tr>
</tbody>
</table>
MCMLE.steplength
Multiplies the step length, which may (for values less than one) make fitting more stable at the cost of computational efficiency. Can be set to "adaptive"; see MCMLE.adaptive.trustregion.

If MCMLE.steplength.margin is not NULL, the step length will be set using the algorithm of Hummel et al. (2010). In that case, it will serve as the maximum step length considered.

MCMLE.adaptive.trustregion
Maximum increase the algorithm will allow for the approximated loglikelihood at a given iteration when MCMLE.steplength="adaptive".

MCMLE.sequential
Logical: If TRUE, the next iteration of the fit uses the last network sampled as the starting network. If FALSE, always use the initially passed network. The results should be similar (stochastically), but the TRUE option may help if the target.stats in the ergm function are far from the initial network.

MCMLE.density.guard.min, MCMLE.density.guard
A simple heuristic to stop optimization if it finds itself in an overly dense region, which usually indicates ERGM degeneracy: if the sampler encounters a network configuration that has more than MCMLE.density.guard.min edges and whose number of edges is exceeds the observed network by more than MCMLE.density.guard, the optimization process will be stopped with an error.

MCMLE.last.boost
For the Hummel termination criterion, increase the MCMC sample size of the last iteration by this factor.

MCMLE.Hummel.esteq
For curved ERGMs, should the estimating function values be used to compute the Hummel step length? This allows the Hummel stepping algorithm converge when some sufficient statistics are at 0.

SA.phase1_n
Number of MCMC samples to draw in Phase 1 of the stochastic approximation algorithm. Defaults to 7 plus 3 times the number of terms in the model. See Snijders (2002) for details.

SA.initial_gain
Initial gain to Phase 2 of the stochastic approximation algorithm. See Snijders (2002) for details.

SA.nsubphases
Number of sub-phases in Phase 2 of the stochastic approximation algorithm. Defaults to MCMLE.maxit. See Snijders (2002) for details.

SA.niterations
Number of MCMC samples to draw in Phase 2 of the stochastic approximation algorithm. Defaults to 7 plus the number of terms in the model. See Snijders (2002) for details.

SA.phase3_n
Sample size for the MCMC sample in Phase 3 of the stochastic approximation algorithm. See Snijders (2002) for details.

SA.trustregion
The trust region parameter for the likelihood functions, used in the stochastic approximation algorithm.

RM.phase1n_base, RM.phase2n_base, RM.phase2sub, RM.init_gain, RM.phase3n
The Robbins-Monro control parameters are not yet documented.
Step.MCMC.samplesize
MCMC sample size for the preliminary steps of the "Stepping" method of optimization. This is usually chosen to be smaller than the final MCMC sample size (which equals MCMC.samplesize). See Hummel et al. (2012) for details.

Step.maxit
Maximum number of iterations (steps) allowed by the "Stepping" method.

Step.gridsize
Integer \(N \) such that the "Stepping" style of optimization chooses a step length equal to the largest possible multiple of \(1/N \). See Hummel et al. (2012) for details.

loglik.control
See control.ergm.bridge

seed
Seed value (integer) for the random number generator. See set.seed

parallel
Number of threads in which to run the sampling. Defaults to 0 (no parallelism). See the entry on parallel processing for details and troubleshooting.

parallel.type
API to use for parallel processing. Supported values are "MPI" and "PSOCK". Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check
Logical: If TRUE, check that the version of ergm running on the slave nodes is the same as that running on the master node.

...
Additional arguments, passed to other functions This argument is helpful because it collects any control parameters that have been deprecated; a warning message is printed in case of deprecated arguments.

Details
This function is only used within a call to the ergm function. See the usage section in ergm for details.

Value
A list with arguments as components.

References
control.ergm.bridge

See Also

ergm. The control.simulate function performs a similar function for simulate.ergm; control.gof performs a similar function for gof.

Description

Auxiliary function as user interface for fine-tuning ergm.bridge algorithm, which approximates log likelihood ratios using bridge sampling.

Usage

control.ergm.bridge(nsteps=20,
MCMC.burnin=10000,
MCMC.interval=100,
MCMC.samplesize=10000,
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,
MCMC.prop.weights="default",
MCMC.prop.args=list(),
MCMC.init.maxedges=20000,
MCMC.packagenames=c(),
seed=NULL)

Arguments

nsteps Number of geometric bridges to use.
MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.
MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize Number of network statistics, randomly drawn from a given distribution on the set of all networks, returned by the Metropolis-Hastings algorithm.
obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize
The obs versions of these arguments are for the unobserved data simulation algorithm.
MCMC.prop.weights Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints argument of the \texttt{ergm} function), though not all weights may be used with all constraints. The \texttt{TNT} (tie / no tie) option puts roughly equal weight on selecting a dyad with or without a tie as a candidate for toggling, whereas the \texttt{random} option puts equal weight on all possible dyads, though the interpretation of \texttt{random} may change according to the constraints in place. When no constraints are in place, the default is \texttt{TNT}, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks.

- \texttt{MCMC.prop.args} An alternative, direct way of specifying additional arguments to proposal.
- \texttt{MCMC.init.maxedges} Maximum number of edges expected in network.
- \texttt{MCMC.packagenames} Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.
- \texttt{seed} Seed value (integer) for the random number generator. See \texttt{set.seed}

\textbf{Details}

This function is only used within a call to the \texttt{ergm.bridge.llr} or \texttt{ergm.bridge.dindstart.llk} functions.

\textbf{Value}

A list with arguments as components.

\textbf{See Also}

\texttt{ergm.bridge.llr}, \texttt{ergm.bridge.dindstart.llk}

\texttt{control.gof} \hspace{1cm} \textit{Auxiliary for Controlling ERGM Goodness-of-Fit Evaluation}

\textbf{Description}

Auxiliary function as user interface for fine-tuning ERGM Goodness-of-Fit Evaluation.

\textbf{Usage}

\texttt{control.gof.formula(nsim=100,}
\texttt{ MCMC.burnin=10000,}
\texttt{ MCMC.interval=1000,}
\texttt{ MCMC.prop.weights="default",}
\texttt{ MCMC.prop.args=list(),}
\texttt{ MCMC.init.maxedges=20000,}
control.gof

```r
MCMC.packagenames=c(),
MCMC.runtime.traceplot=FALSE,
network.output="network",

seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE)

control.gof.ergm(nsim=100,
MCMC.burnin=NULL,
MCMC.interval=NULL,
MCMC.prop.weights=NULL,
MCMC.prop.args=NULL,

MCMC.init.maxedges=NULL,
MCMC.packagenames=NULL,

MCMC.runtime.traceplot=FALSE,
network.output="network",

seed=NULL,
parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE)
```

Arguments

nsim

Number of networks to be randomly drawn using Markov chain Monte Carlo. This sample of networks provides the basis for comparing the model to the observed network.

MCMC.burnin

Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.

MCMC.interval

Number of proposals between sampled statistics.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices are "TNT" or "random"; the "default" is one of these two, depending on the constraints in place (as defined by the constraints argument of the `ergm` function), though not all weights may be used with all constraints. The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with or without a tie as a candidate for toggling, whereas the random option puts equal weight on all possible dyads, though the interpretation of random may change according to the constraints in place. When no constraints are in place, the default is TNT, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks.

MCMC.prop.args

An alternative, direct way of specifying additional arguments to proposal.
MCMC.init.maxedges
 Maximum number of edges expected in network.

MCMC.packagenames
 Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.

MCMC.runtime.traceplot
 Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC MLE iteration.

network.output
 R class with which to output networks. The options are "network" (default) and "edgelist.compressed" (which saves space but only supports networks without vertex attributes)

seed
 Seed value (integer) for the random number generator. See set.seed

parallel
 Number of threads in which to run the sampling. Defaults to 0 (no parallelism). See the entry on parallel processing for details and troubleshooting.

parallel.type
 API to use for parallel processing. Supported values are "MPI" and "PSOCK". Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check
 Logical: If TRUE, check that the version of ergm running on the slave nodes is the same as that running on the master node.

Details

This function is only used within a call to the gof function. See the usage section in gof for details.

Value

A list with arguments as components.

See Also

gof. The control.simulate function performs a similar function for simulate.ergm; control.ergm performs a similar function for ergm.

control.logLik.ergm Auxiliary for Controlling logLik.ergm

Description

Auxiliary function as user interface for fine-tuning logLik.ergm algorithm, which approximates log likelihood values.
Usage

control.logLik.ergm(nsteps=20,
MCMC.burnin=NULL,
MCMC.interval=NULL,
MCMC.samplesize=NULL,
obs.MCMC.samplesize=MCMC.samplesize,
obs.MCMC.interval=MCMC.interval,
obs.MCMC.burnin=MCMC.burnin,
MCMC.prop.weights=NULL,
MCMC.prop.args=NULL,
warn.dyads=TRUE,
MCMC.init.maxedges=NULL,
MCMC.packagenames=NULL,
seed=NULL)

Arguments

nsteps Number of geometric bridges to use.
MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.
MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize Number of network statistics, randomly drawn from a given distribution on the set of all networks, returned by the Metropolis-Hastings algorithm.
obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize The obs versions of these arguments are for the unobserved data simulation algorithm.
MCMC.prop.weights Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices are "TNT" or "random"; the "default" is one of these two, depending on the constraints in place (as defined by the constraints argument of the ergm function), though not all weights may be used with all constraints. The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with or without a tie as a candidate for toggling, whereas the random option puts equal weight on all possible dyads, though the interpretation of random may change according to the constraints in place. When no constraints are in place, the default is TNT, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks.
MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
warn.dyads Whether or not a warning should be issued when sample space constraints render the observed number of dyads ill-defined.
MCMC.init.maxedges Maximum number of edges expected in network.
control.san

MCMC.packagenames
 Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.

seed Seed value (integer) for the random number generator. See set.seed

Details
 This function is only used within a call to the logLik.ergm function.

Value
 A list with arguments as components.

See Also
 logLik.ergm

control.san Auxiliary for Controlling SAN

Description
 Auxiliary function as user interface for fine-tuning simulated annealing algorithm.

Usage
 control.san(coef=NULL,

 SAN.tau=1,
 SAN.inv_cov=NULL,
 SAN.burnin=100000,
 SAN.interval=10000,
 SAN.init.max_edges=20000,

 SAN.prop.weights="default",
 SAN.prop.args=list(),
 SAN.packagenames=c(),

 MPLE.max.dyad.types=1e6,
 MPLE.samplesize = 50000,

 network.output="network",

 seed=NULL,
 parallel=0,
 parallel.type=NULL,
 parallel.version.check=TRUE)
Arguments

coef
- Vector of model coefficients used for MCMC simulations, one for each model term.

SAN.tau
- Currently unused.

SAN.inv cov
- Initial inverse covariance matrix used to calculate Mahalanobis distance in determining how far a proposed MCMC move is from the `target.stats` vector. If NULL, taken to be the covariance matrix returned when fitting the MPLE if `coef` is NULL, or the identity matrix otherwise.

SAN.burnin
- Number of MCMC proposals before any sampling is done.

SAN.interval
- Number of proposals between sampled statistics.

SAN.init.max edges
- Maximum number of edges expected in network.

SAN.prop.weights
- Specifies the method to allocate probabilities of being proposed to dyads. Defaults to "default", which picks a reasonable default for the specified constraint. Other possible values are "TNT", "random", and "nonobserved", though not all values may be used with all possible constraints.

SAN.prop.args
- An alternative, direct way of specifying additional arguments to proposal.

SAN.packagenames
- Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.

MPLE.max.dyad.types
- Maximum number of unique values of change statistic vectors, which are the predictors in a logistic regression used to calculate the MPLE. This calculation uses a compression algorithm that allocates space based on `MPLE.max.dyad.types`

MPLE.samplesize
- Not currently documented; used in conditional-on-degree version of MPLE.

network.output
- R class with which to output networks. The options are "network" (default) and "edgelist.compressed" (which saves space but only supports networks without vertex attributes).

seed
- Seed value (integer) for the random number generator. See `set.seed`

parallel
- Number of threads in which to run the sampling. Defaults to 0 (no parallelism). See the entry on parallel processing for details and troubleshooting.

parallel.type
- API to use for parallel processing. Supported values are "MPI" and "PSOCK". Defaults to using the parallel package with PSOCK clusters. See `ergm-parallel`

parallel.version.check
- Logical: If TRUE, check that the version of `ergm` running on the slave nodes is the same as that running on the master node.

Details

This function is only used within a call to the `san` function. See the usage section in `san` for details.
control.simulate

Value

A list with arguments as components.

See Also

san

control.simulate Auxiliary for Controlling ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning ERGM simulation.

Usage

control.simulate(MCMC.burnin=10000,
 MCMC.interval=1000,
 MCMC.prop.weights="default",
 MCMC.prop.args=list(),
 MCMC.init.maxedges=20000,
 MCMC.packagenames=c(),
 MCMC.runtime.traceplot=FALSE,
 network.output="network",

 parallel=0,
 parallel.type=NULL,
 parallel.version.check=TRUE,
 ...
)

close.simulate.formula(MCMC.burnin=10000,
 MCMC.interval=1000,
 MCMC.prop.weights="default",
 MCMC.prop.args=list(),
 MCMC.init.maxedges=20000,
 MCMC.packagenames=c(),
 MCMC.runtime.traceplot=FALSE,
 network.output="network",

 parallel=0,
 parallel.type=NULL,
 parallel.version.check=TRUE,
 ...
)

close.simulate.formula.ergm(MCMC.burnin=10000,
 MCMC.interval=1000,
 MCMC.prop.weights="default",
control.simulate

MCMC.prop.args=list(),
MCMC.init.maxedges=20000,
MCMC.packagenames=c(),
MCMC.runtime.traceplot=FALSE,
network.output="network",

parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...

control.simulate.ergm(MCMC.burnin=NULL,
MCMC.interval=NULL,
MCMC.prop.weights=NULL,
MCMC.prop.args=NULL,
MCMC.init.maxedges=NULL,
MCMC.packagenames=NULL,
MCMC.runtime.traceplot=FALSE,
network.output="network",

parallel=0,
parallel.type=NULL,
parallel.version.check=TRUE,
...

Arguments

MCMC.prop.weights
Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices are "TNT" or "random"; the "default" is one of these two, depending on the constraints in place (as defined by the constraints argument of the ergm function), though not all weights may be used with all constraints. The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with or without a tie as a candidate for toggling, whereas the random option puts equal weight on all possible dyads, though the interpretation of random may change according to the constraints in place. When no constraints are in place, the default is TNT, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks.

MCMC.prop.args
An alternative, direct way of specifying additional arguments to proposal.

MCMC.burnin
Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.

MCMC.interval
Number of proposals between sampled statistics.

MCMC.init.maxedges
Maximum number of edges expected in network.

MCMC.packagenames
Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange
sets.

MCMC.runtime.traceplot Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC MLE iteration.

network.output R class with which to output networks. The options are "network" (default) and "edgelist.compressed" (which saves space but only supports networks without vertex attributes)

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism). See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK". Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check Logical: If TRUE, check that the version of ergm running on the slave nodes is the same as that running on the master node.

... Additional arguments, passed to other functions This argument is helpful because it collects any control parameters that have been deprecated; a warning message is printed in case of deprecated arguments.

Details

This function is only used within a call to the simulate function. See the usage section in simulate.ergm for details.

Value

A list with arguments as components.

See Also

simulate.ergm, simulate.formula.control.ergm performs a similar function for ergm; control.gof performs a similar function for gof.

ecoli Two versions of an E. Coli network dataset

description

This network data set comprises two versions of a biological network in which the nodes are operons in Escherichia Coli and a directed edge from one node to another indicates that the first encodes the transcription factor that regulates the second.

Usage

data(ecoli)
Details

The network object ecoli1 is directed, with 423 nodes and 519 arcs. The object ecoli2 is an undirected version of the same network, in which all arcs are treated as edges and the five isolated nodes (which exhibit only self-regulation in ecoli1) are removed, leaving 418 nodes.

Licenses and Citation

When publishing results obtained using this data set, the original authors (Salgado et al, 2001; Shen-Orr et al, 2002) should be cited, along with this R package.

Source

The data set is based on the RegulonDB network (Salgado et al, 2001) and was modified by Shen-Orr et al (2002).

References

`enformulate.curved` *Convert a curved ERGM into a form suitable as initial values for the same ergm.*

Description

The generic `enformulate.curved` converts an `ergm` object or formula of a model with curved terms to the variant in which the curved parameters embedded into the formula and are removed from the parameter vector. This is the form required by `ergm` calls.

Usage

```r
## S3 method for class 'ergm'
enformulate.curved(object, ...)
## S3 method for class 'formula'
enformulate.curved(object, theta, response=NULL, ...)
```

Arguments

- `object` An `ergm` object or an ERGM formula. The curved terms of the given formula (or the formula used in the fit) must have all of their arguments passed by name.
- `theta` Curved model parameter configuration.
- `response` Not for release.
- `...` Unused at this time.
Details

Because of a current kludge in \texttt{ergm}, output from one run cannot be directly passed as initial values (\texttt{control.ergm(init=)}) for the next run if any of the terms are curved. One workaround is to embed the curved parameters into the formula (while keeping \texttt{fixed=FALSE}) and remove them from \texttt{control.ergm(init=}.

This function automates this process for curved ERGM terms included with the \texttt{ergm} package. It does not work with curved terms not included in \texttt{ergm}.

Value

A list with the following components:

- \texttt{formula}: The formula with curved parameter estimates incorporated.
- \texttt{theta}: The coefficient vector with curved parameter estimates removed.

See Also

\texttt{ergm, simulate.ergm}

Examples

```r
data(sampson)
gest<-ergm(samplike=edges+gwesp(alpha=.5, fixed=FALSE),
  control=control.ergm(MCMLE.maxit=1))
# Error:
gest2<-try(ergm(gest$formula, control=control.ergm(init=coef(gest), MCMLE.maxit=2)))
print(gest2)
# Works:
tmp<-enformulate.curved(gest)
tmp
gest2<-try(ergm(tmp$formula, control=control.ergm(init=tmp$theta, MCMLE.maxit=2)))
summary(gest2)
```

\textbf{Description}

\texttt{ergm} is used to fit linear exponential random graph models (ERGMs), in which the probability of a given network, y, on a set of nodes is $h(y) \exp(\eta(\theta) \cdot g(y))/c(\theta)$, where $h(y)$ is the reference measure (usually $h(y) = 1$), $g(y)$ is a vector of network statistics for y, $\eta(\theta)$ is a natural parameter vector of the same length (with $\eta(\theta) = \theta$ for most terms), and $c(\theta)$ is the normalizing constant for the distribution. \texttt{ergm} can return either a maximum pseudo-likelihood estimate or an approximate maximum likelihood estimator based on a Monte Carlo scheme.
Usage

```r
ergm(formula, response=NULL, reference=~Bernoulli, constraints=~., offset.coef=NULL, target.stats=NULL, eval.loglik=TRUE, estimate=c("MLE", "MPLE"), control=control.ergm(), verbose=FALSE, ...)
```

Arguments

- **formula**: An R formula object, of the form \(y \sim <\text{model terms}> \), where \(y \) is a network object or a matrix that can be coerced to a network object. For the details on the possible \(<\text{model terms}>\), see `ergm-terms` and Morris, Handcock and Hunter (2008) for binary ERGM terms and Krivitsky (2012) for valued ERGM terms (terms for weighted edges). To create a network object in R, use the `network()` function, then add nodal attributes to it using the `EvE` operator if necessary. Enclosing a model term in `offset()` fixes its value to one specified in `offset.coef`.

- **response**: EXPERIMENTAL. Name of the edge attribute whose value is to be modeled. Defaults to `NULL` for simple presence or absence, modeled via binary ERGM terms. Passing anything but `NULL` uses valued ERGM terms.

- **reference**: EXPERIMENTAL. A one-sided formula specifying the reference measure (\(h(y) \)) to be used. (Defaults to `~Bernoulli`.) See help for ERGM reference measures implemented in the `ergm` package.

- **constraints**: A one-sided formula specifying one or more constraints on the support of the distribution of the networks being modeled, using syntax similar to the `formula` argument. Multiple constraints may be given, separated by `+` operators. Together with the model terms in the formula and the reference measure, the constraints define the distribution of networks being modeled.

- **offset.coef**: A vector of coefficients for the offset terms.

- **target.stats**: vector of "observed network statistics," if these statistics are for some reason different than the actual statistics of the network on the left-hand side of `formula`. Equivalently, this vector is the mean-value parameter values for the model. If
this is given, the algorithm finds the natural parameter values corresponding to these mean-value parameters. If NULL, the mean-value parameters used are the observed statistics of the network in the formula.

eval.loglik Logical: For dyad-dependent models, if TRUE, use bridge sampling to evaluate the log-likelihood associated with the fit. Has no effect for dyad-independent models. Since bridge sampling takes additional time, setting to FALSE may speed performance if likelihood values (and likelihood-based values like AIC and BIC) are not needed.

estimate If "MPLE," then the maximum pseudolikelihood estimator is returned. If "MLE" (the default), then an approximate maximum likelihood estimator is returned. For certain models, the MPLE and MLE are equivalent, in which case this argument is ignored. (To force MCMC-based approximate likelihood calculation even when the MLE and MPLE are the same, see the force.main argument of control.ergm.)

control A list of control parameters for algorithm tuning. Constructed using control.ergm.

verbose logical; if this is true, the program will print out additional information, including goodness of fit statistics.

Additional arguments, to be passed to lower-level functions.

Value

`ergm` returns an object of class `ergm` that is a list consisting of the following elements:

coeff The Monte Carlo maximum likelihood estimate of \(\theta \), the vector of coefficients for the model parameters.
sample The \(n \times p \) matrix of network statistics, where \(n \) is the sample size and \(p \) is the number of network statistics specified in the model, that is used in the maximum likelihood estimation routine.
sample.obs As sample, but for the constrained sample.
iterations The number of Newton-Raphson iterations required before convergence.
MCMCtheta The value of \(\theta \) used to produce the Markov chain Monte Carlo sample. As long as the Markov chain mixes sufficiently well, sample is roughly a random sample from the distribution of network statistics specified by the model with the parameter equal to MCMCtheta. If `estimate="MPLE"` then MCMCtheta equals the MPLE.

loglikelihood The approximate change in log-likelihood in the last iteration. The value is only approximate because it is estimated based on the MCMC random sample.

gradient The value of the gradient vector of the approximated loglikelihood function, evaluated at the maximizer. This vector should be very close to zero.

covar Approximate covariance matrix for the MLE, based on the inverse Hessian of the approximated loglikelihood evaluated at the maximizer.

failure Logical: Did the MCMC estimation fail?

network Original network

newnetwork The final network at the end of the MCMC simulation
The initial value of θ.

The covariance matrix of the model statistics in the final MCMC sample.

For the MCMLE method, the history of coefficients, Hummel step lengths, and average model statistics for each iteration.

The control list passed to the call.

The set of functions mapping the true parameter theta to the canonical parameter eta (irrelevant except in a curved exponential family model)

The original formula entered into the `ergm` function.

The target.stats used during estimation (passed through from the Arguments)

Used for curved models to preserve the target mean values of the curved terms. It is identical to target.stats for non-curved models.

The list of constraints implied by the constraints used by original `ergm` call

Constraints used during estimation (passed through from the Arguments)

The reference measure used during estimation (passed through from the Arguments)

The estimation method used (passed through from the Arguments).

vector of logical telling which model parameters are to be set at a fixed value (i.e., not estimated).

If control$\$drop=TRUE, a numeric vector indicating which terms were dropped due to extreme values of the corresponding statistics on the observed network, and how:

0 The term was not dropped.

-1 The term was at its minimum and the coefficient was fixed at $-\infty$.

+1 The term was at its maximum and the coefficient was fixed at $+\infty$.

A logical vector indicating which terms could not be estimated due to a constraints constraint fixing that term at a constant value.

Log-likelihood of the null model. Valid only for unconstrained models.

The approximate log-likelihood for the MLE. The value is only approximate because it is estimated based on the MCMC random sample.

Score calculated to assess the degree of degeneracy in the model. Only shows when MCMLE.check.degeneracy is TRUE in control.ergm.

Supporting output for degeneracy=value. Only shows when MCMLE.check.degeneracy is TRUE in control.ergm. Mainly for internal use.

See the method `print.ergm` for details on how an `ergm` object is printed. Note that the method `summary.ergm` returns a summary of the relevant parts of the `ergm` object in concise summary format.
Notes on model specification

Although each of the statistics in a given model is a summary statistic for the entire network, it is rarely necessary to calculate statistics for an entire network in a proposed Metropolis-Hastings step. Thus, for example, if the triangle term is included in the model, a census of all triangles in the observed network is never taken; instead, only the change in the number of triangles is recorded for each edge toggle.

In the implementation of `ergm`, the model is initialized in R, then all the model information is passed to a C program that generates the sample of network statistics using MCMC. This sample is then returned to R, which implements a simple Newton-Raphson algorithm to approximate the MLE. An alternative style of maximum likelihood estimation is to use a stochastic approximation algorithm. This can be chosen with the `control.ergm(style="Robbins-Monro")` option.

The mechanism for proposing new networks for the MCMC sampling scheme, which is a Metropolis-Hastings algorithm, depends on two things: The constraints, which define the set of possible networks that could be proposed in a particular Markov chain step, and the weights placed on these possible steps by the proposal distribution. The former may be controlled using the constraints argument described above. The latter may be controlled using the `prop.weights` argument to the `control.ergm` function.

The package is designed so that the user could conceivably add additional proposal types.

References

See Also

network, \%\%v\%, \%\%n\%, \texttt{ergm-terms}, \texttt{ergmMLE}, \texttt{summary.ergm}, \texttt{print.ergm}

Examples

```r
# load the Florentine marriage data matrix
#
data(flo)
#
# attach the sociomatrix for the Florentine marriage data
# This is not yet a network object.
#
flo
#
# Create a network object out of the adjacency matrix
#
flomarriage <- network(flo,directed=FALSE)
flomarriage
#
# print out the sociomatrix for the Florentine marriage data
#
flomarriage[,]
#
# create a vector indicating the wealth of each family (in thousands of lira)
# and add it as a covariate to the network object
#
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)
```
flomarriage
#
create a plot of the social network
#
plot(flomarriage)
#
now make the vertex size proportional to their wealth
#
plot(flomarriage, vertex.cex = flomarriage %>% "wealth" / 20, main = "Marriage Ties")
#
Use 'data(package = "ergm")' to list the data sets in a
#
data(package = "ergm")
#
Load a network object of the Florentine data
#
data(florentine)
#
Fit a model where the propensity to form ties between
families depends on the absolute difference in wealth
#gest <- ergm(flomarriage ~ edges + absdiff("wealth"))
#summary(gest)
#
add terms for the propensity to form 2-stars and triangles
of families
#gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)
#summary(gest)

import synthetic network that looks like a molecule
data(molecule)
Add a attribute to it to mimic the atomic type
molecule %>% "atomic type" <- c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3)
#
create a plot of the social network
colored by atomic type
#
plot(molecule, vertex.col = "atomic type", vertex.cex = 3)

measure tendency to match within each atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle + nodematch("atomic type"),
 control = control.ergm(MCMC.samplesize = 10000))
summary(gest)

compare it to differential homophily by atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle
 + nodematch("atomic type", diff = TRUE),
 control = control.ergm(MCMC.samplesize = 10000))
summary(gest)
Description

`ergm` is used to fit linear exponential random graph models (ERGMs), in which the probability of a given network, y, on a set of nodes is $h(y) \exp\{\eta(\theta) \cdot g(y)\}/c(\theta)$, where $h(y)$ is the reference measure (usually $h(y) = 1$), $g(y)$ is a vector of network statistics for y, $\eta(\theta)$ is a natural parameter vector of the same length (with $\eta(\theta) = \theta$ for most terms), and $c(\theta)$ is the normalizing constant for the distribution.

This page describes the constraints (the networks y for which $h(y) > 0$) that are included with the `ergm` package. Other packages may add new constraints.

Constraints implemented in the `ergm` package

- **. or NULL** A placeholder for no constraints: all networks of a particular size and type have non-zero probability. Cannot be combined with other constraints.

- **bd(attribs, maxout, minout, minin)** Constrain maximum and minimum vertex degree. See “Placing Bounds on Degrees” section for more information.

- **blockdiag(attrname)** Force a block-diagonal structure on the network. Only dyads (i, j) for which $attrname(i) = attrname(j)$ can have edges.

- **degrees and nodedegrees** Preserve the degree of each vertex of the given network: only networks whose vertex degrees are the same as those in the network passed in the model formula have non-zero probability. If the network is directed, both indegree and outdegree are preserved.

- **odegrees, idegrees, b1degrees, b2degrees** For directed networks, `odegrees` preserves the outdegree of each vertex of the given network, while allowing indegree to vary, and conversely for `idegrees`. `b1degrees` and `b2degrees` perform a similar function for bipartite networks.

- **degreedist** Preserve the degree distribution of the given network: only networks whose degree distributions are the same as those in the network passed in the model formula have non-zero probability.

- **idegreedist and odegreedist** Preserve the (respectively) indegree or outdegree distribution of the given network.

- **edges** Preserve the edge count of the given network: only networks having the same number of edges as the network passed in the model formula have non-zero probability.

- **observed** Preserve the observed dyads of the given network.

- **fixedas(present, absent)** Preserve the edges in 'present' and preclude the edges in 'absent'. Both 'present' and 'absent' can take input object as edgelist and network, the latter will convert to the corresponding edgelist.

- **fixallbut(free.dyads)** Preserve the dyad status in all but free.dyads. `free.dyads` can take input object as edgelist and network, the latter will convert to the corresponding edgelist.

Not all combinations of the above are supported.
Placing Bounds on Degrees:

There are many times when one may wish to condition on the number of inedges or outedges possessed by a node, either as a consequence of some intrinsic property of that node (e.g., to control for activity or popularity processes), to account for known outliers of some kind, and thus we wish to limit its indegree, an intrinsic property of the sampling scheme whence came our data (e.g., the survey asked everyone to name only three friends total) or as a function of the attributes of the nodes to which a node has edges (e.g., we specify that nodes designated “male” have a maximum number of outdegrees to nodes designated “female”). To accomplish this we use the constraints term \(bd \).

Let’s consider the simple cases first. Suppose you want to condition on the total number of degrees regardless of attributes. That is, if you had a survey that asked respondents to name three alters and no more, then you might want to limit your maximal outdegree to three without regard to any of the alters’ attributes. The argument is then:

```r
constraints<-bd(maxout=3)
```

Similar calls are used to restrict the number of indegrees (\(\text{maxin} \)), the minimum number of outdegrees (\(\text{minout} \)), and the minimum number of indegrees (\(\text{minin} \)).

You can also set ego specific limits. For example:

```r
constraints<-bd(maxout=rep(c(3,4),c(36,35)))
```

limits the first 36 to 3 and the other 35 to 4 outdegrees.

Multiple restrictions can be combined. \(bd \) is very flexible. In general, the \(bd \) term can contain up to five arguments:

```r
bd(attribs=attribs, 
    maxout=maxout, 
    maxin=maxin, 
    minout=minout, 
    minin=minin)
```

Omitted arguments are unrestricted, and arguments of length 1 are replicated out to all nodes (as above). If an individual entry in \(\text{maxout}, \ldots, \text{minin} \) is \(\text{NA} \) then no restriction of that kind is applied to that actor.

In general, \(\text{attribs} \) is a matrix of the attributes on which we are conditioning. The dimensions of \(\text{attribs} \) are \(n_{\text{nodes}} \) rows by \(\text{attrcount} \) columns, where \(\text{attrcount} \) is the number of distinct attribute values on which we want to condition (i.e., a separate column is required for “male” and “female” if we want to condition on the number of ties to both “male” and “female” partners). The value of \(\text{attribs}[n, i] \), therefore, is TRUE if node \(n \) has attribute value \(i \), and FALSE otherwise. (Note that, since each column represents only a single value of a single attribute, the values of this matrix are all Boolean (TRUE or FALSE).) It is important to note that \(\text{attribs} \) is a matrix of nodal attributes, not alter attributes.

So, for instance, if we wanted to construct an \(\text{attribs} \) matrix with two columns, one each for male and female attribute values (we are conditioning on these values of the attribute “sex”), and the attribute sex is represented in \(\text{ads.sex} \) as an \(n_{\text{node}} \)-long vector of 0s and 1s (men and women), then our code would look as follows:
male column: bit vector, TRUE for males
attrsex1 <- (ads.sex == 0)
female column: bit vector, TRUE for females
attrsex2 <- (ads.sex == 1)
now create attribs matrix
attribs <- matrix(ncol=2,nrow=71, data=c(attrsex1,attrsex2))

maxout is a matrix of alter attributes, with the same dimensions as the attribs matrix. maxout is n_nodes rows by attrcount columns. The value of maxout[n,i], therefore, is the maximum number of outdegrees permitted from node n to nodes with the attribute i (where a NA means there is no maximum).

For example: if we wanted to create a maxout matrix to work with our attribs matrix above, with a maximum from every node of five outedges to males and five outedges to females, our code would look like this:

every node has maximum of 5 outdegrees to male alters
maxoutsex1 <- c(rep(5,71))
every node has maximum of 5 outdegrees to female alters
maxoutsex2 <- c(rep(5,71))
now create maxout matrix
maxout <- cbind(maxoutsex1,maxoutsex2)

The maxin, minout, and minin matrices are constructed exactly like the maxout matrix, except for the maximum allowed indegree, the minimum allowed outdegree, and the minimum allowed indegree, respectively. Note that in an undirected network, we only look at the outdegree matrices; maxin and minin will both be ignored in this case.

References

Description

For estimation that require MCMC, `ergm` can take advantage of multiple CPUs or CPU cores on the system on which it runs, as well as computing clusters. It uses package `parallel` and `snow` to facilitate this, and supports all cluster types that they do.

The number of nodes used and the parallel API are controlled using the `parallel` and `parallel.type` arguments passed to the control functions, such as `control.ergm`.

PSOCK clusters

The `parallel` package is used with PSOCK clusters by default, to utilize multiple cores on a system. The number of cores on a system can be determined with the `detectCores` function.

This method works with the base installation of R on all platforms, and does not require additional software.

For more advanced applications, such as clusters that span multiple machines on a network, the clusters can be initialized manually, and passed into `ergm` using the `parallel` control argument. See the second example below.

MPI clusters

To use MPI to accelerate ERGM sampling, pass the control parameter `parallel.type="MPI"`. `ergm` requires the `snow` and `rmpi` packages to communicate with an MPI cluster.

Using MPI clusters requires the system to have an existing MPI installation. See the MPI documentation for your particular platform for instructions.

To use `ergm` across multiple machines in a high performance computing environment, see the section "User initiated clusters" below.

User initiated clusters

A cluster can be passed into `ergm` with the `parallel` control parameter. `ergm` will detect the number of nodes in the cluster, and use all of them for MCMC sampling. This method is flexible: it will accept any cluster type that is compatible with `snow` or `parallel` packages. Usage examples for a multiple-machine high performance MPI cluster can be found at the statnet wiki: https://statnet.csde.washington.edu/trac/wiki/ergmParallel

Examples

```r
# Uses 2 SOCK clusters for MCMLE estimation
data(faux.mesa.high)
nw <- faux.mesa.high
fauxmodel.01 <- ergm(nw ~ edges + isolates + gwesp(0.2, fixed=TRUE),
                     control=control.ergm(parallel=2, parallel.type="PSOCK"))```

Description

This page describes the possible reference measures (baseline distributions) for found in the `ergm` package, particularly the default (Bernoulli) reference measure for binary ERGMs.

The reference measure is specified on the RHS of a one-sided formula passed as the `reference` argument to `ergm`. See the `ergm` documentation for a complete description of how reference measures are specified.

Possible reference measures to represent baseline distributions

Reference measures currently available are:

- **Bernoulli** *Bernoulli-reference ERGM*: Specifies each dyad’s baseline distribution to be Bernoulli with probability of the tie being 0.5. This is the only reference measure used in binary mode.

- **DiscUnif(a,b)** *Discrete-Uniform-reference ERGM*: Specifies each dyad’s baseline distribution to be discrete uniform between a and b (both inclusive): \( h(y) = 1 \), with the support being a,a+1,...,b-1,b. At this time, both a and b must be finite.

- **Unif(a,b)** *Continuous-Uniform-reference ERGM*: Specifies each dyad’s baseline distribution to be continuous uniform between a and b (both inclusive): \( h(y) = 1 \), with the support being [a,b]. At this time, both a and b must be finite.

- **StdNormal** *Standard-Normal-reference ERGM*: Specifies each dyad’s baseline distribution to be the normal distribution with mean 0 and variance 1.

References


See Also

- `ergm`, `network`, `%v%`, `%n%`, `sna`, `summary.ergm`, `print.ergm`
Description

The function \texttt{ergm} is used to fit exponential random graph models, in which the probability of a given network, \( y \), on a set of nodes is \( h(y) \exp(\eta(\theta) \cdot g(y))/c(\theta) \), where \( h(y) \) is the reference measure (for valued network models), \( g(y) \) is a vector of network statistics for \( y \), \( \eta(\theta) \) is a natural parameter vector of the same length (with \( \eta(\theta) = \theta \) for most terms), and \( c(\theta) \) is the normalizing constant for the distribution.

The network statistics \( g(y) \) are entered as terms in the function call to \texttt{ergm}.

This page describes the possible terms (and hence network statistics) included in \texttt{ergm} package. Other packages may add their own terms, and package \texttt{ergm.userterms} provides tools for implementing them.

The current recommendation for any package implementing additional terms is to create a help file with a name or alias \texttt{ergmMterms}, so that \texttt{helpHBergmMtermsBI} will list ERGM terms available from all loaded packages.

Specifying models

Terms to \texttt{ergm} are specified by a formula to represent the network and network statistics. This is done via a formula, that is, an \texttt{R} formula object, of the form \( y \sim <\text{term } 1> + <\text{term } 2> \ldots \), where \( y \) is a network object or a matrix that can be coerced to a network object, and \texttt{<term 1>}, \texttt{<term 2>}, etc, are each terms chosen from the list given below. To create a network object in \texttt{R}, use the \texttt{network} function, then add nodal attributes to it using the \%\% operator if necessary.

Binary and valued ERGM terms

\texttt{ergm} functions such as \texttt{ergm} and \texttt{simulate} (for ERGMs) may operate in two modes: binary and weighted/valued, with the latter activated by passing a non-NULL value as the \texttt{response} argument, giving the edge attribute name to be modeled/simulated.

Binary ERGM statistics cannot be used in valued mode and vice versa. However, a substantial number of binary ERGM statistics — particularly the ones with dyadic indepenence — have simple generalizations to valued ERGMs, and have been adapted in \texttt{ergm}. They have the same form as their binary ERGM counterparts, with an additional argument: \texttt{form}, which, at this time, has two possible values: "\texttt{sum}" (the default) and "\texttt{nonzero}". The former creates a statistic of the form \( \sum_{i,j} x_{i,j} y_{i,j} \), where \( y_{i,j} \) is the value of dyad \((i,j)\) and \( x_{i,j} \) is the term’s covariate associated with it. The latter computes the binary version, with the edge considered to be present if its value is not 0.

Valued version of some binary ERGM terms have an argument \texttt{threshold}, which sets the value above which a dyad is considered to have a tie. (Value less than or equal to \texttt{threshold} is considered a nontie.)
Terms to represent network statistics included in the `ergm` package

A cross-referenced html version of the term documentation is available via vignette(`ergm-term-crossRef`) and terms can also be searched via `search.ergmTerms`.

`absdiff(attrname, pow=1)` *(binary) (dyad-independent) (frequently-used) (directed) (undirected) (quantitative nodal attribute)*

Absolute difference: The `attrname` argument is a character string giving the name of a quantitative attribute in the network’s vertex attribute list. This term adds one network statistic to the model equaling the sum of `abs(attrname[i]-attrname[j])^pow` for all edges (i,j) in the network.

`absdiffcat(attrname, base=NULL)` *(binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute)*

Categorical absolute difference: The `attrname` argument is a character string giving the name of a quantitative attribute in the network’s vertex attribute list. This term adds one statistic for every possible nonzero distinct value of `abs(attrname[i]-attrname[j])` in the network; the value of each such statistic is the number of edges in the network with the corresponding absolute difference. The optional base argument is a vector indicating which nonzero differences, in order from smallest to largest, should be omitted from the model (i.e., treated like the zero-difference category). The base argument, if used, should contain indices, not differences themselves. For instance, if the possible values of `abs(attrname[i]-attrname[j])` are 0, 0.5, 3, 3.5, and 10, then to omit 0.5 and 10 one should set `base=c(1, 4)`. Note that this term should generally be used only when the quantitative attribute has a limited number of possible values; an example is the "Grade" attribute of the `faux.mesa.high` or `faux.magnolia.high` datasets.

`altkstar(lambda, fixed=FALSE)` *(binary) (undirected) (curved) (categorical nodal attribute)*

Alternating k-star: This term adds one network statistic to the model equal to a weighted alternating sequence of k-star statistics with weight parameter `lambda`. This is the version given in Snijders et al. (2006). The `gwdegree` and `altkstar` produce mathematically equivalent models, as long as they are used together with the edges (or `kstar(1)`) term, yet the interpretation of the `gwdegree` parameters is slightly more straightforward than the interpretation of the `altkstar` parameters. For this reason, we recommend the use of the `gwdegree` instead of `altkstar`. See Section 3 and especially equation (13) of Hunter (2007) for details. The optional argument `fixed` indicates whether the scale parameter `lambda` is to be fit as a curved exponential family model (see Hunter and Handcock, 2006). The default is `FALSE`, which means the scale parameter is not fixed and thus the model is a CEF model. This term can only be used with undirected networks.

`asymmetric(attrname=NULL, diff=FALSE, keep=NULL)` *(binary) (directed) (dyad-independent) (triad-related)*

Asymmetric dyads: This term adds one network statistic to the model equal to the number of pairs of actors for which exactly one of `(i→j)` or `(j→i)` exists. This term can only be used with directed networks. If the optional `attrname` argument is used, only asymmetric pairs that match on the named vertex attribute are counted. The optional modifiers `diff` and `keep` are used in the same way as for the `nodematch` term; refer to this term for details and an example.

`atleast(threshold=0)` *(valued) (directed) (undirected)*

Number of ties with values greater than or equal to a threshold Adds one statistic equaling to the number of ties whose values equal or exceed threshold.

`blconcurrent(by=NULL)` *(binary) (bipartite) (undirected) (categorical nodal attribute)*

Concurrent node count for the first mode in a bipartite (aka two-mode) network: This term adds one network statistic to the model, equal to the number of nodes in the first mode of the network with degree 2 or higher. The first mode of a bipartite network object is sometimes known as the
"actor" mode. The optional argument by is a character string giving the name of an attribute in the network’s vertex attribute list; it functions just like the by argument of the `b1degree` term. Without the optional argument, this statistic is equivalent to `b1mindegree(d)`. This term can only be used with undirected bipartite networks.

`b1degrange(from, to=+Inf, by= NULL, homophily = FALSE)` *(binary) (bipartite) (undirected)*

*Degree range for the first mode in a bipartite (a.k.a. two-mode) network*: The `from` and `to` arguments are vectors of distinct integers (or `+Inf`, for `to` (its default)). If one of the vectors has length 1, it is recycled to the length of the other. Otherwise, they must have the same length. This term adds one network statistic to the model for each element of `from` (or `to`); the `i`th such statistic equals the number of nodes of the first mode ("actors") in the network of degree greater than or equal to `from[i]` but strictly less than `to[i]`, i.e. with edge count in semiopen interval `[from, to)`. The optional argument `by` is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified and `homophily` is `TRUE`, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If `by` is specified and `homophily` is `FALSE` (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.

This term can only be used with bipartite networks; for directed networks see `idegrange` and `odegrange`. For undirected networks, see `degrange`, and see `b2degrange` for degrees of the second mode ("events").

`b1degree(d, by= NULL)` *(binary) (bipartite) (undirected) (categorical nodal attribute) (frequently-used)*

*Degree for the first mode in a bipartite (aka two-mode) network*: The `d` argument is a vector of distinct integers. This term adds one network statistic to the model for each element of `d`; the `i`th such statistic equals the number of nodes of degree `d[i]` in the first mode of a bipartite network, i.e. with exactly `d[i]` edges. The first mode of a bipartite network object is sometimes known as the "actor" mode. The optional argument `by` is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified then each node’s degree is tabulated only with other nodes having the same value of the by attribute. This term can only be used with undirected bipartite networks.

`b1factor(attrname, base=1)` *(binary) (bipartite) (undirected) (dyad-independent) (frequently-used) (categorical nodal attribute)*

*Factor attribute effect for the first mode in a bipartite (aka two-mode) network*: The `attrname` argument is a character string giving the name of a categorical attribute in the network’s vertex attribute list. This term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the `attrname` attribute. Each of these statistics gives the number of times a node with that attribute in the first mode of the network appears in an edge. The first mode of a bipartite network object is sometimes known as the "actor" mode. To include all attribute values is usually not a good idea, because the sum of all such statistics equals the number of edges and hence a linear dependency would arise in any model also including edges. Thus, the base argument tells which value(s) (numbered in order according to the `sort` function) should be omitted. The default value, `base=1`, means that the smallest (i.e., first in sorted order) attribute value is omitted. For example, if the "fruit" factor has levels "orange", "apple", "banana", and "pear", then to add just two terms, one for "apple" and one for "pear", then set "banana" and "orange" to the base (remember to sort the values first) by using `nodefactor("fruit", base=2:3)`. This term can only be used with undirected bipartite networks.

`b1mindegree(d)` *(binary) (bipartite) (undirected)*

*Minimum degree for the first mode in a bipartite (aka two-mode) network*: The `d` argument is a vector of distinct integers. This term adds
one network statistic to the model for each element in \( d \); the \( i \)th such statistic equals the number of nodes in the first mode of a bipartite network with at least degree \( d_i \). The first mode of a bipartite network object is sometimes known as the "actor" mode. This term can only be used with undirected bipartite networks.

**b1nodematch**

Nodal attribute-based homophily effect for the first mode in a bipartite (aka two-mode) network: This term is introduced in Bomiriya et al (2014). The attrname argument is a character string giving the name of a categorical attribute in the network’s vertex attribute list. Out of the two arguments (discount parameters) \( \alpha \) and \( \beta \), both which takes values from \([0,1]\), only one should be set at a time. If none is set to a value other than 1, this term will simply be a homophily based two-star statistic. This term adds one statistic to the model unless \( \text{diff} \) is set to \( \text{TRUE} \), in which case the term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attrname attribute. To include only the attribute values you wish, use the keep argument. If an \( \alpha \) discount parameter is used, each of these statistics gives the sum of the number of common second-mode nodes raised to the power \( \alpha \) for each pair of first-mode nodes with that attribute. If a \( \beta \) discount parameter is used, each of these statistics gives half the sum of the number of two-paths with two first-mode nodes with that attribute as the two ends of the two path raised to the power \( \beta \) for each edge in the network. The byb2attr argument is a character string giving the name of a second mode categorical attribute in the network’s attribute list. Setting this argument will separate the original statistics based on the values of the set second mode attribute— i.e. for example, if \( \text{diff} \) is \( \text{FALSE} \), then the sum of all the statistics for each level of this second-mode attribute will be equal to the original \( \text{b1nodematch} \) statistic where byb2attr set to \( \text{NULL} \). This term can only be used with undirected bipartite networks.

**b1star**

\( k \)-Stars for the first mode in a bipartite (aka two-mode) network: The \( k \) argument is a vector of distinct integers. This term adds one network statistic to the model for each element in \( k \). The \( i \)th such statistic counts the number of distinct \( k_i \)-stars whose center node is in the first mode of the network. The first mode of a bipartite network object is sometimes known as the "actor" mode. A \( k \)-star is defined to be a center node \( N \) and a set of \( k \) different nodes \( \{O_1, \ldots, O_k\} \) such that the ties \( \{N, O_i\} \) exist for \( i = 1, \ldots, k \). The optional argument attrname is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified then the count is over the number of \( k \)-stars (with center node in the first mode) where all nodes have the same value of the attribute. This term can only be used for undirected bipartite networks. Note that \( \text{b1star}(1) \) is equal to \( \text{b2star}(1) \) and to edges.

**b1starmix**

Mixing matrix for \( k \)-stars centered on the first mode of a bipartite network: Only a single value of \( k \) is allowed. This term counts all \( k \)-stars in which the b2 nodes (called events in some contexts) are homophilous in the sense that they all share the same value of attrname. However, the b1 node (in some contexts, the actor) at the center of the k-star does NOT have to have the same value as the b2 nodes; indeed, the values taken by the b1 nodes may be completely distinct from those of the b2 nodes, which allows for the use of this term in cases where there are two separate nodal attributes, one for the b1 nodes and another for the b2 nodes (in this case, however, these two attributes should be combined to form a single nodal attribute called attrname. A different statistic is created for each value of attrname seen in a b1 node, even if no \( k \)-stars are observed with this value. Whether a different statistic is created for each value seen in a b2 node depends on the value of the \( \text{diff} \) argument: When \( \text{diff} = \text{TRUE} \), the default, a different statistic is created for each value and thus the behavior of this term is reminiscent of...
the nodemix term, from which it takes its name; when diff=FALSE, all homophilous k-stars are counted together, though these k-stars are still categorized according to the value of the central b1 node. The base term may be used to control which of the possible terms are left out of the model: By default, all terms are included, but if base is set to a vector of indices then the corresponding terms (in the order they would be created when base=NULL) are left out.

**b1twostar(blattname, b2attrname, base=NULL)** (binary) (bipartite) (undirected) (categorical nodal attribute)

*Two-star census for central nodes centered on the first mode of a bipartite network:* This term takes two nodal attribute names, one for b1 nodes (actors in some contexts) and one for b2 nodes (events in some contexts). Only blattname is required; if b2attrname is not passed, it is assumed to be the same as blattname. Assuming that there are $n_1$ values of blattname among the b1 nodes and $n_2$ values of b2attrname among the b2 nodes, then the total number of distinct categories of two stars according to these two attributes is $n_1(n_2(n_2+1))/2$. This model term creates a distinct statistic counting each of these categories. The base term may be used to leave some of these categories out; when passed as a vector of integer indices (in the order the statistics would be created when base=NULL), the corresponding terms will be left out.

**b2concurrent(by=NULL)** (binary) (bipartite) (undirected) (frequently-used)

*Concurrent node count for the second mode in a bipartite (aka two-mode) network:* This term adds one network statistic to the model, equal to the number of nodes in the second mode of the network with degree 2 or higher. The second mode of a bipartite network object is sometimes known as the "event" mode. The optional argument by is a character string giving the name of an attribute in the network’s vertex attribute list; it functions just like the by argument of the bRdegree term. Without the optional argument, this statistic is equivalent to bRmindegree. This term can only be used with undirected bipartite networks.

**b2degrange(from, to=+Inf, by=NULL, homophily=FALSE)** (binary) (bipartite) (undirected)

*Degree range for the second mode in a bipartite (aka two-mode) network:* The from and to arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the vectors has length 1, it is recycled to the length of the other. Otherwise, they must have the same length. This term adds one network statistic to the model for each element of from (or to); the $i$th such statistic equals the number of nodes of the second mode ("events") in the network of degree greater than or equal to from[i] but strictly less than to[i], i.e. with edge count in semiopen interval $[\text{from}, \text{to})$. The optional argument by is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.

This term can only be used with bipartite networks; for directed networks see idegrange and odegrange. For undirected networks, see degrange, and see b1degrange for degrees of the first mode ("actors").

**b2degree(d, by=NULL)** (binary) (bipartite) (undirected) (categorical nodal attribute) (frequently-used)

*Degree for the second mode in a bipartite (aka two-mode) network:* The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d; the $i$th such statistic equals the number of nodes of degree $d[i]$ in the second mode of a bipartite network, i.e. with exactly $d[i]$ edges. The second mode of a bipartite network object is sometimes known as the "event" mode. The optional term by is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified then each node’s
degree is tabulated only with other nodes having the same value of the by attribute. This term can only be used with undirected bipartite networks.

\texttt{b2factor(attrname, base=1)} (binary) (bipartite) (undirected) (dyad-independent) (categorical nodal attribute) (frequently-used)

Factor attribute effect for the second mode in a bipartite (aka two-mode) network: The \texttt{attnname} argument is a character string giving the name of a categorical attribute in the network’s vertex attribute list. This term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the \texttt{attnname} attribute. Each of these statistics gives the number of times a node with that attribute in the second mode of the network appears in an edge. The second mode of a bipartite network object is sometimes known as the "event" mode. To include all attribute values is usually not a good idea, because the sum of all such statistics equals the number of edges and hence a linear dependency would arise in any model also including edges. Thus, the base argument tells which value(s) (numbered in order according to the \texttt{sort} function) should be omitted. The default value, \texttt{base=1}, means that the smallest (i.e., first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels “orange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one for “pear”, then set “banana” and “orange” to the base (remember to sort the values first) by using \texttt{nodefactor("fruit", base=2:3)}. This term can only be used with undirected bipartite networks.

\texttt{b2mindegree(d)} (binary) (bipartite) (undirected) 

Minimum degree for the second mode in a bipartite (aka two-mode) network: The \texttt{d} argument is a vector of distinct integers. This term adds one network statistic to the model for each element in \texttt{d}; the \texttt{i}th such statistic equals the number of nodes in the second mode of a bipartite network with at least degree \texttt{d[i]}. The second mode of a bipartite network object is sometimes known as the "event" mode. This term can only be used with undirected bipartite networks.

\texttt{b2nodematch(attrname, diff=FALSE, keep=NULL, by=NULL, alpha=1, beta=1, byb1attr=NULL)} (binary) (bipartite) (undirected) 

Nodal attribute-based homophily effect for the second mode in a bipartite (aka two-mode) network: This term is introduced in Bomiriya et al (2014). The \texttt{attnname} argument is a character string giving the name of a categorical attribute in the network’s vertex attribute list. Out of the two arguments (discount parameters) \texttt{alpha} and \texttt{beta}, both which takes values from [0,1], only one should be set at a time. If none is set to a value other than 1, this term will simply be a homophily based two-star statistic. This term adds one statistic to the model unless \texttt{diff} is set to \texttt{TRUE}, in which case the term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the \texttt{attnname} attribute. To include only the attribute values you wish, use the keep argument. If an \texttt{alpha} discount parameter is used, each of these statistics gives the sum of the number of common first-mode nodes raised to the power \texttt{alpha} for each pair of second-mode nodes with that attribute. If a \texttt{beta} discount parameter is used, each of these statistics gives half the sum of the number of two-paths with two second-mode nodes with that attribute as the two ends of the two path raised to the power \texttt{beta} for each edge in the network. The \texttt{byb1attr} argument is a character string giving the name of a first mode categorical attribute in the network’s attribute list. Setting this argument will separate the original statistics based on the values of the set first mode attribute—i.e. for example, if \texttt{diff} is \texttt{FALSE}, then the sum of all the statistics for each level of this first-mode attribute will be equal to the original \texttt{b2nodematch} statistic where \texttt{byb1attr} set to \texttt{NULL}. This term can only be used with undirected bipartite networks.

\texttt{b2star(k, attrname=NULL)} (binary) (bipartite) (undirected) (categorical nodal attribute) 

\texttt{k} Stars for the second mode in a bipartite (aka two-mode) network: The \texttt{k} argument is a vector of distinct integers. This term adds one network statistic to the model for each element in \texttt{k}. The \texttt{i}th such statistic counts the number of distinct \texttt{k[i]}-stars whose center node is in the
second mode of the network. The second mode of a bipartite network object is sometimes known as the "event" mode. A $k$-star is defined to be a center node $N$ and a set of $k$ different nodes $\{O_1, \ldots, O_k\}$ such that the ties $\{N, O_i\}$ exist for $i = 1, \ldots, k$. The optional argument attrname is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified then the count is over the number of $k$-stars (with center node in the second mode) where all nodes have the same value of the attribute. This term can only be used for undirected bipartite networks. Note that $b_{\text{2star}}(1)$ is equal to $b_{\text{1star}}(1)$ and to edges.

$$b_{\text{2star}}(k, \text{attrname}, \text{base=\text{NULL}}, \text{diff=\text{TRUE}})$$

(binary) (bipartite) (undirected) (categorical nodal attribute)

Mixing matrix for $k$-stars centered on the second mode of a bipartite network: This term is exactly the same as $b_{\text{1star}}$ except that the roles of $b_1$ and $b_2$ are reversed.

$$b_{\text{2twostar}}(\text{b1attrname}, \text{b2attrname}, \text{base=\text{NULL}})$$

(binary) (bipartite) (undirected) (categorical nodal attribute)

Two-star census for central nodes centered on the second mode of a bipartite network: This term is exactly the same as $b_{\text{twostar}}$ except that the roles of $b_1$ and $b_2$ are reversed.

$$\text{balance}$$

(binary) (triad-related) (directed) (undirected)

Balanced triads: This term adds one network statistic to the model equal to the number of triads in the network that are balanced. The balanced triads are those of type $102$ or $300$ in the categorization of Davis and Leinhardt (1972). For details on the 16 possible triad types, see ?\text{triad.classify} in the \{\text{sna}\} package. For an undirected network, the balanced triads are those with an even number of ties (i.e., 0 and 2).

$$\text{coincidence}(\text{d=\text{NULL}}, \text{active=0})$$

(binary) (bipartite) (undirected)

Coincident node count for the second mode in a bipartite (aka two-mode) network: By default this term adds one network statistic to the model for each pair of nodes of mode two. It is equal to the number of (first mode) mutual partners of that pair. The first mode of a bipartite network object is sometimes known as the "actor" mode and the seconds as the "event" mode. So this is the number of actors going to both events in the pair. The optional argument $d$ is a two-column matrix of (row-wise) pairs indices where the first row is less than the second row. The second optional argument, active, selects pairs for which the observed count is at least active. This term can only be used with undirected bipartite networks.

$$\text{concurrent}(\text{by=\text{NULL}})$$

(binary) (undirected) (categorical nodal attribute)

Concurrent node count: This term adds one network statistic to the model, equal to the number of nodes in the network with degree 2 or higher. The optional argument by is a character string giving the name of an attribute in the network’s vertex attribute list; it functions just like the by argument of the degree term. This term can only be used with undirected networks.

$$\text{concurrentties}(\text{by=\text{NULL}})$$

(binary) (undirected) (categorical nodal attribute)

Concurrent tie count: This term adds one network statistic to the model, equal to the number of ties incident on each actor beyond the first. The optional argument by is a character string giving the name of an attribute in the network’s vertex attribute list; it functions just like the by argument of the degree term. This term can only be used with undirected networks.

$$\text{ctriple}(\text{attrname=\text{NULL}})$$

(binary) (directed) (triad-related) (categorical nodal attribute), a.k.a. $\text{ctriad}$

Cyclic triples: This term adds one statistic to the model, equal to the number of cyclic triples in the network, defined as a set of edges of the form $\{(i \rightarrow j), (j \rightarrow k), (k \rightarrow i)\}$. Note that for all directed networks, $\text{triangle}$ is equal to $\text{ttriple}+\text{ctriple}$, so at most two of these three terms can be in a model. The optional argument attrname is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified then the count is over the number of cyclic triples where all three nodes have the same value of the attribute. This term can only be used with directed networks.
cycle(k) (binary) (directed) (undirected) Cycles: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k; the ith such statistic equals the number of cycles in the network with length exactly k[i]. The cycle statistic applies to both directed and undirected networks. For directed networks, it counts directed cycles of length k, as opposed to undirected cycles in the undirected case. The directed cycle terms of lengths 2 and 3 are equivalent to mutual and ctriiple (respectively). The undirected cycle term of length 3 is equivalent to triangle, and there is no undirected cycle term of length 2.

cyclicalties(attrname=NULL) (binary) (directed), cyclicalties(threshold=0) (valued) (directed) (undirected)
Cyclical ties: This term adds one statistic, equal to the number of ties i \rightarrow j such that there exists a two-path from i to j. (Related to the ttriple term.) The binary version takes a nodal attribute attrname, and, if given, all three nodes involved (i, j, and the node on the two-path) must match on this attribute in order for i \rightarrow j to be counted. The binary version of this term can only be used with directed networks. The valued version can be used with both directed and undirected.

cyclicalweights(twopath="min", combine="max", affect="min") (valued) (directed) (undirected)
Cyclical weights: This statistic implements the cyclical weights statistic, like that defined by Krivitsky (2012), Equation 13, but with the focus dyad being \(y_{j,i}\) rather than \(y_{i,j}\). The currently implemented options for twopath is the minimum of the constituent dyads ("min") or their geometric mean ("geomean"); for combine, the maximum of the 2-path strengths ("max") or their sum ("sum"); and for affect, the minimum of the focus dyad and the combined strength of the two paths ("min") or their geometric mean ("geomean"). For each of these options, the first (and the default) is more stable but also more conservative, while the second is less sensitive but more likely to induce a multimodal distribution of networks.

degree(d, by=NULL, homophily=FALSE) (binary) (undirected) (categorical nodal attribute) (frequently-used)
Degree: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d; the ith such statistic equals the number of nodes in the network of degree d[i], i.e. with exactly d[i] edges. The optional argument by is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.

This term can only be used with undirected networks; for directed networks see idegree and odegree. This term can be used with bipartite networks, and will count nodes of both first and second mode in the specified degree range. To count only nodes of the first mode ("actors"), use b1degree and to count only those fo the second mode ("events"), use b2degree.
only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree statistics are calculated for nodes having each separate value of the attribute. This term can only be used with undirected networks; for directed networks see idegree and odegree.

degreepopularity (binary) (undirected) Degree popularity: This term adds one network statistic to the model equaling the sum over the actors of each actor's degree taken to the 3/2 power (or, equivalently, multiplied by its square root). This term is an undirected analog to the terms of Snijders et al. (2010), equations (11) and (12). This term can only be used with undirected networks.

degcrossprod (binary) (undirected) Degree Cross-Product: This term adds one network statistic equal to the mean of the cross-products of the degrees of all pairs of nodes in the network which are tied. Only coded for undirected networks.

degcor (binary) (undirected) Degree Correlation: This term adds one network statistic equal to the correlation of the degrees of all pairs of nodes in the network which are tied. Only coded for undirected networks.

density (binary) (dyad-independent) (directed) (undirected) Density: This term adds one network statistic equal to the density of the network. For undirected networks, density equals kstar(1) or edges divided by n(n−1)/2; for directed networks, density equals edges or istar(1) or ostar(1) divided by n(n−1).

dsp(d) (binary) (directed) (undirected) Dyadwise shared partners: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d; the ith such statistic equals the number of dyads in the network with exactly d[i] shared partners. This term can be used with directed and undirected networks. For directed networks the count is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the dyad).

dyadcov(x, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute) Dyadic covariate: If the network is directed, x is either a (symmetric) matrix of covariates, one for each possible dyad (i,j), or an undirected network; if the latter, optional argument attrname provides the name of the quantitative edge attribute to use for covariate values (in this case, missing edges in x are assigned a covariate value of zero). This term adds three statistics to the model, each equal to the sum of the covariate values for all dyads occupying one of the three possible non-empty dyad states (mutual, upper-triangular asymmetric, and lower-triangular asymmetric dyads, respectively), with the empty or null state serving as a reference category. If the network is undirected, x is either a matrix of edgewise covariates, or a network; if the latter, optional argument attrname provides the name of the edge attribute to use for edge values. This term adds one statistic to the model, equal to the sum of the covariate values for each edge appearing in the network. The edgecov and dyadcov terms are equivalent for undirected networks.

dyadcov(x, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) (frequently-used) Edge covariate: The x argument is either a square matrix of covariates, one for each possible edge in the network, the name of a network attribute of covariates, or a network; if the latter, optional argument attrname provides the name of the quantitative edge attribute to use for covariate values (in this case, missing edges in x are assigned a covariate value of zero). This term adds one statistic to the model, equal to the sum of the covariate values for each edge appearing in the network. The edgecov term applies to both directed and undirected networks. For undirected networks the covariates are also assumed to be undirected. The edgecov and dyadcov terms are equivalent for undirected networks.
edges (binary) (valued) (dyad-independent) (directed) (undirected) (frequently-used), a.k.a. nonzero (valued) (directed) (undirected) (dyad-independent) Edges: This term adds one network statistic equal to the number of edges (i.e., nonzero values) in the network. For undirected networks, edges is equal to $k_{\text{star}}^H(1)$; for directed networks, edges is equal to both $o_{\text{star}}(1)$ and $i_{\text{star}}(1)$.

$\text{esp}(d)$ (binary) (directed) (undirected) Edgewise shared partners: This is just like the dsp term, except this term adds one network statistic to the model for each element in $d$ where the $i$th such statistic equals the number of edges (rather than dyads) in the network with exactly $d[i]$ shared partners. This term can be used with directed and undirected networks. For directed networks the count is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the edge and in the same direction).

greater than (threshold=0) (valued) (directed) (undirected) (dyadic-independent) Number of dyads with values strictly greater than a threshold: Adds one statistic equaling to the number of ties whose values exceed threshold.

gwb1degree(decay, fixed=FALSE, cutoff=30) (binary) (bipartite) (undirected) (curved) Geometrically weighted degree distribution for the first mode in a bipartite (aka two-mode) network: This term adds one network statistic to the model equal to the weighted degree distribution with decay controlled by the decay parameter, for nodes in the first mode of a bipartite network. The first mode of a bipartite network object is sometimes known as the "actor" mode. The decay parameter is the same as $\theta_s$ in equation (14) in Hunter (2007). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used as merely the starting value for the estimation in a curved exponential family model (the default). The optional argument cutoff is only relevant if fixed=FALSE. In that case it only uses this number of terms in computing the statistics to reduce the computational burden. This term can only be used with undirected bipartite networks.

gwb2degree(decay, fixed=FALSE, cutoff=30) (binary) (bipartite) (undirected) (curved) Geometrically weighted degree distribution for the second mode in a bipartite (aka two-mode) network: This term adds one network statistic to the model equal to the weighted degree distribution with decay controlled by the decay parameter, for nodes in the second mode of a bipartite network. The second mode of a bipartite network object is sometimes known as the "event" mode. The decay parameter is the same as $\theta_s$ in equation (14) in Hunter (2007). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used as merely the starting value for the estimation in a curved exponential family model (the default). The optional argument cutoff is only relevant if fixed=FALSE. In that case it only uses this number of terms in computing the statistics to reduce the computational burden. This term can only be used with undirected bipartite networks.

gwdegree(decay, fixed=FALSE, cutoff=30) (binary) (undirected) (curved) (frequently-used) Geometrically weighted degree distribution: This term adds one network statistic to the model equal to the weighted degree distribution with decay controlled by the decay parameter. The decay parameter is the same as $\theta_s$ in equation (14) in Hunter (2007). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used as merely the starting value for the estimation in a curved exponential family model (the default). The optional argument cutoff is only relevant if fixed=FALSE. In that case it only uses this number of terms in computing the statistics to reduce the computational burden. This term can only be used with undirected networks.

gwsp(alpha=0, fixed=FALSE, cutoff=30) (binary) (directed) (undirected) (curved) Geometrically weighted dyadwise shared partner distribution: This term adds one network statistic to the model equal to the geometrically weighted dyadwise shared partner distribution with weight
parameter \( \alpha > 0 \). The optional argument \texttt{fixed} indicates whether the scale parameter \( \lambda \) is to be fit as a curved exponential family model (see Hunter and Handcock, 2006). The default is \texttt{FALSE}, which means the scale parameter is not fixed and thus the model is a CEF model. This term can be used with directed and undirected networks. For directed networks the count is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the dyad). The optional argument \texttt{cutoff} is only relevant if \texttt{fixed=FALSE}. In that case it only uses this number of terms in computing the statistics to reduce the computational burden.

\texttt{gweisp(alpha=0, fixed=FALSE, cutoff=30) (binary) (frequently-used) (directed) (undirected) (curved)}

*Geometrically weighted edgewise shared partner distribution:* This term is just like \texttt{gwsp} except it adds a statistic equal to the geometrically weighted edgewise (not dyadwise) shared partner distribution with weight parameter \( \alpha \). The optional argument \texttt{fixed} indicates whether the scale parameter \( \lambda \) is to be fit as a curved exponential-family model (see Hunter and Handcock, 2006). The default is \texttt{FALSE}, which means the scale parameter is not fixed and thus the model is a CEF model. This term can be used with directed and undirected networks. For directed networks the geometric weighting is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the edge and in the same direction). The optional argument \texttt{cutoff} is only relevant if \texttt{fixed=FALSE}. In that case it only uses this number of terms in computing the statistics to reduce the computational burden.

\texttt{gwidegree(decay, fixed=FALSE, cutoff=30) (binary) (directed) (curved) Geometrically weighted in-degree distribution:} This term adds one network statistic to the model equal to the weighted in-degree distribution with weight parameter \( \text{decay} \). The optional argument \texttt{fixed} indicates whether the scale parameter \( \lambda \) is to be fit as a curved exponential family model (see Hunter and Handcock, 2006). The default is \texttt{FALSE}, which means the scale parameter is not fixed and thus the model is a CEF model. This term can only be used with directed networks. The optional argument \texttt{cutoff} is only relevant if \texttt{fixed=FALSE}. In that case it only uses this number of terms in computing the statistics to reduce the computational burden.

\texttt{gwnsp(alpha=0, fixed=FALSE, cutoff=30) (binary) (directed) (undirected) (curved) Geometrically weighted nonedgewise shared partner distribution:} This term is just like \texttt{gweisp} and \texttt{gwsp} except it adds a statistic equal to the geometrically weighted nonedgewise (that is, over dyads that do not have an edge) shared partner distribution with weight parameter \( \alpha \). The optional argument \texttt{fixed} indicates whether the scale parameter \( \lambda \) is to be fit as a curved exponential-family model (see Hunter and Handcock, 2006). The default is \texttt{FALSE}, which means the scale parameter is not fixed and thus the model is a CEF model. This term can be used with directed and undirected networks. For directed networks the geometric weighting is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the non-edge and in the same direction). The optional argument \texttt{cutoff} is only relevant if \texttt{fixed=FALSE}. In that case it only uses this number of terms in computing the statistics to reduce the computational burden.

\texttt{gwdegree(decay, fixed=FALSE, cutoff=30) (binary) (directed) (curved) Geometrically weighted out-degree distribution:} This term adds one network statistic to the model equal to the weighted out-degree distribution with weight parameter \( \text{decay} \). The optional argument \texttt{fixed} indicates whether the scale parameter \( \lambda \) is to be fit as a curved exponential family model (see Hunter and Handcock, 2006). The default is \texttt{FALSE}, which means the scale parameter is not fixed and thus the model is a CEF model. This term can only be used with directed networks. The optional argument \texttt{cutoff} is only relevant if \texttt{fixed=FALSE}. In that case it only uses this number of terms in computing the statistics to reduce the computational burden.
Hammimg distance: This term adds one statistic to the model equal to the weighted or unweighted Hamming distance of the network from the network specified by \(x\). (If no argument is given, \(x\) is taken to be the observed network, i.e., the network on the left side of the \(\sim\) in the formula that defines the ERGM.) Unweighted Hamming distance is defined as the total number of pairs \((i,j)\) (ordered or unordered, depending on whether the network is directed or undirected) on which the two networks differ. If the optional argument \(cov\) is specified, then the weighted Hamming distance is computed instead, where each pair \((i,j)\) contributes a pre-specified weight toward the distance when the two networks differ on that pair. The argument \(cov\) is either a matrix of edgewise weights or a network; if the latter, the optional argument \(attrname\) provides the name of the edge attribute to use for weight values.

Hamming mix: This term adds one statistic to the model for every possible pairing of attribute values of the network for the vertex attribute named \(attrname\). Each such statistic is the Hamming distance (i.e., the number of differences) between the appropriate subset of dyads in the network and the corresponding subset in \(x\). The ordering of the attribute values is alphabetical. The option \(base\) gives the index of statistics to be omitted from the tabulation. For example \(base=2\) will omit the second statistic, making it the de facto reference category. This term can only be used with directed networks.

In-degree range: The \(from\) and \(to\) arguments are vectors of distinct integers (or \(+\inf\), for \(to\) (its default)). If one of the vectors has length 1, it is recycled to the length of the other. Otherwise, they must have the same length. This term adds one network statistic to the model for each element of \(from\) (or \(to\)); the \(i\)th such statistic equals the number of nodes in the network of in-degree greater than or equal to \(from[i]\) but strictly less than \(to[i]\), i.e. with in-edge count in semiopen interval \([from,to)\). The optional argument \(by\) is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified and \(homophily\) is \(TRUE\), then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the \(by\) attribute. If \(by\) is specified and \(homophily\) is \(FALSE\) (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.

This term can only be used with directed networks; for undirected networks (bipartite and not) see \(degrange\). For degrees of specific modes of bipartite networks, see \(b1degrange\) and \(b2degrange\). For in-degrees, see \(idegrange\).

In-degree popularity: This term adds one network statistic to the model equaling the sum over the actors of each actor’s in-degree taken to the \(3/2\) power (or, equivalently, multiplied by its square root). This term is analogous to the term of Snijders et al. (2010), equation (11). This term can only be used with directed networks.
ininterval(lower=-Inf, upper=+Inf, open=c(TRUE,TRUE)) (valued) (directed) (undirected) (dyadic-independent)

Number of ties whose values are in an interval Adds one statistic equaling to the number of ties whose values are between lower and upper. Argument open is a logical vector of length 2 that controls whether the interval is open (exclusive) on the lower and on the upper end, respectively.

intransitive (binary) (directed) (triad-related) Intransitive triads: This term adds one statistic to the model, equal to the number of triads in the network that are intransitive. The intransitive triads are those of type 111D, 201, 111U, 021c, or 030c in the categorization of Davis and Leinhardt (1972). For details on the 16 possible triad types, see triad.classify in the sna package. Note the distinction from the ctriiple term. This term can only be used with directed networks.

isolates (binary) (directed) (undirected) (frequently-used) Isolates: This term adds one statistic to the model equal to the number of isolates in the network. For an undirected network, an isolate is defined to be any node with degree zero. For a directed network, an isolate is any node with both in-degree and out-degree equal to zero.

istar(k, attrname=NULL) (binary) (directed) (categorical nodal attribute) In-stars: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k. The ith such statistic counts the number of distinct k[i]-instars in the network, where a k-instar is defined to be a node N and a set of k different nodes {O1, ..., Ok} such that the ties (Oi→N) exist for j = 1, ..., k. The optional argument attrname is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified then the count is over the number of k-instars where all nodes have the same value of the attribute. This term can only be used for directed networks; for undirected networks see kstar. Note thatistar(1) is equal to both ostar(1) and edges.

kstar(k, attrname=NULL) (binary) (undirected) (categorical nodal attribute) k-Stars: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k. The ith such statistic counts the number of distinct k[i]-stars in the network, where a k-star is defined to be a node N and a set of k different nodes {O1, ..., Ok} such that the ties {Ni, Oi} exist for i = 1, ..., k. The optional argument attrname is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified then the count is over the number of k-stars where all nodes have the same value of the attribute. This term can only be used for undirected networks; for directed networks, see istar, ostar, twopath and m2star. Note that kstar(1) is equal to edges.

localtriangle(x) (binary) (triad-related) (directed) (undirected) Triangles within neighborhoods: This term adds one statistic to the model equal to the number of triangles in the network between nodes “close to” each other. For an undirected network, a local triangle is defined to be any set of three edges between nodal pairs {(i,j), (j,k), (k,i)} that are in the same neighborhood. For a directed network, a triangle is defined as any set of three edges (i→j), (j→k) and either (k→i) or (k←i) where again all nodes are within the same neighborhood. The argument x is an undirected network or an symmetric adjacency matrix that specifies whether the two nodes are in the same neighborhood. Note that triangle, with or without an argument, is a special case of localtriangle.

m2star (binary) (directed) Mixed 2-stars, a.k.a 2-paths: This term adds one statistic to the model, equal to the number of mixed 2-stars in the network, where a mixed 2-star is a pair of distinct edges (i→j), (j→k). A mixed 2-star is sometimes called a 2-path because it is a directed path of length 2 from i to k via j. However, in the case of a 2-path the focus is usually on the endpoints i and k, whereas for a mixed 2-star the focus is usually on the midpoint j. This
term can only be used with directed networks; for undirected networks see kstar(2). See also twopath.

**meandeg** *(binary) (dyad-independent) (directed) (undirected)* Mean vertex degree: This term adds one network statistic to the model equal to the average degree of a node. Note that this term is a constant multiple of both edges and density.

**mutual** *(same=NULL, diff=FALSE, by=NULL, keep=NULL) (binary) (directed) (dyad-independent) (frequently-used)*, n

Mutuality: In binary ERGMs, equal to the number of pairs of actors $i$ and $j$ for which $(i \rightarrow j)$ and $(j \rightarrow i)$ both exist. For valued ERGMs, equal to $\sum_{i<j} m(y_{i,j}, y_{j,i})$, where $m$ is determined by form argument: "min" for $\min(y_{i,j}, y_{j,i})$, "nabsdiff" for $-|y_{i,j} - y_{j,i}|$, "product" for $y_{i,j} y_{j,i}$, and "geometric" for $\sqrt[2]{y_{i,j} y_{j,i}}$. See Krivitsky (2012) for a discussion of these statistics. form="threshold" simply computes the binary mutuality after thresholding at threshold.

This term can only be used with directed networks. The binary version also has the following capabilities: if the optional same argument is passed the name of a vertex attribute, only mutual pairs that match on the attribute are counted; separate counts for each unique matching value can be obtained by using diff=TRUE with same; and if by is passed the name of a vertex attribute, then each node is counted separately for each mutual pair in which it occurs and the counts are tabulated by unique values of the attribute. This means that the sum of the mutual statistics when by is used will equal twice the standard mutual statistic. Only one of same or by may be used, and only the former is affected by diff; if both same and by are passed, by is ignored. Finally, if keep is passed a numerical vector, this vector of integers tells which statistics should be kept whenever the mutual term would ordinarily result in multiple statistics.

**nearsimmelian** *(binary) (directed) (triad-related)* Near simmelian triads: This term adds one statistic equal to the number of near Simmelian triads, as defined by Krackhardt and Handcock (2007). This is a sub-graph of size three which is exactly one tie short of being complete. This term can only be used with directed networks.

**nodecov** *(attrname) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (quantitative nodal attribute)*, n

Main effect of a covariate: The attrname argument is a character string giving the name of a numeric (not categorical) attribute in the network’s vertex attribute list. This term adds a single network statistic to the model equaling the sum of attrname(i) and attrname(j) for all edges $(i, j)$ in the network. For categorical attributes, see nodefactor. Note that for directed networks, nodecov equals nodecov plus nodcovar.

**nodecovar** *(valued) (directed) (undirected) (quantitative nodal attribute)* Uncentered covariance of dyad values incident on each actor: This term adds one statistic equal to $\sum_{i,j,k} (y_{i,j} y_{k,j} y_{k,j} y_{k,j})$. This can be viewed as a valued analog of the kstar(2) statistic.

**nodefactor** *(attrname, base=1) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute)*, f

Factor attribute effect: The attrname argument is a character vector giving one or more names of categorical attributes in the network’s vertex attribute list. This term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attrname attribute (or each combination of the attributes given). Each of these statistics gives the number of times a node with that attribute or those attributes appears in an edge in the network. In particular, for edges whose endpoints both have the same attribute values, this value is counted twice. To include all attribute values is usually not a good idea – though this may be accomplished if desired by setting base=0 – because the sum of all such statistics equals twice the number of edges and hence a linear dependency would arise in any model also including edges. Thus, the base argument tells which value(s) (numbered in order according to the
sort function) should be omitted. The default value, base=1, means that the smallest (i.e.,
first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels
“orange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one
for “pear”, then set “banana” and “orange” to the base (remember to sort the values first) by
using nodefactor(“fruit”, base=2:3). For an analogous term for quantitative vertex
attributes, see nodeicov.
	nodeicov(atrname) (binary) (directed) (quantitative nodal attribute) (frequently-used), nodeicov(atrname, form

Main effect of a covariate for in-edges: The atrname argument is a character string giving
the name of a numeric (not categorical) attribute in the network’s vertex attribute list. This
term adds a single network statistic to the model equaling the total value of atrname(j)
for all edges (i, j) in the network. This term may only be used with directed networks. For
categorical attributes, see nodeifactor.

nodeicovar (valued) (directed) (quantitative nodal attribute) Uncentered covariance of in-dyad
values incident on each actor: This term adds one statistic equal to \( \sum_{i,j,k} y_{i,j} y_{k,j} \). This can
be viewed as a valued analog of the istar(2) statistic.

nodeifactor(atrname, base=1) (binary) (dyad-independent) (directed) (categorical nodal attribute) (frequently-used)

Factor attribute effect for in-edges: The atrname argument is a character vector giving one
or more names of a categorical attribute in the network’s vertex attribute list. This term adds
multiple network statistics to the model, one for each (of a subset of) the unique values of the
atrname attribute (or each combination of the attributes given). Each of these statistics gives
the number of times a node with that attribute or those attributes appears as the terminal node
of a directed tie. To include all attribute values is usually not a good idea – though this may
be accomplished if desired by setting base=0 – because the sum of all such statistics equals
the number of edges and hence a linear dependency would arise in any model also including
degrees. Thus, the base argument tells which value(s) (numbered in order according to the
sort function) should be omitted. The default value, base=1, means that the smallest (i.e.,
first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels “or-
ange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one for
“pear”, then set “banana” and “orange” to the base (remember to sort the values first) by using
nodefactor(“fruit”, base=2:3). For an analogous term for quantitative vertex attributes,
see nodeicov.

nodeisqrtcovar (valued) (directed) (non-negative) (quantitative nodal attribute) Uncentered
covariance of square roots of in-dyad values incident on each actor: This term adds one statistic equal to \( \sum_{i,j,k} \sqrt{y_{i,j}}\sqrt{y_{k,j}} \). This can be viewed as a valued analog of the istar(2)
statistic.
	nodematch(atrname, diff=FALSE, keep=NULL) (binary) (dyad-independent) (directed) (undirected)

Uniform homophily and differential homophily: The atrname argument is a character vector
giving one or more names of attributes in the network’s vertex attribute list. When diff=FALSE,
this term adds one network statistic to the model, which counts the number of edges (i, j) for
which atrname(i)=atrname(j). (When multiple names are given, the statistic counts
only those on which all the named attributes match.) When diff=TRUE, p network statistics
are added to the model, where p is the number of unique values of the atrname attribute.
The kth such statistic counts the number of edges (i, j) for which atrname(i) == atrname(j) == value(k), where value(k) is the kth smallest unique value of the atrname attribute. If set to non-NULL, the optional keep argument should be a vector of integers giving
the values of k that should be considered for matches; other values are ignored (this works for
both diff=FALSE and diff=TRUE). For instance, to add two statistics, counting the matches
for just the 2nd and 4th categories, use nodematch with diff=TRUE and keep=c(2,4).
nodeocov(attrname, base=NULL) (binary) (directed) (dyadic-independent) (quantitative nodal attribute)

Nodal attribute mixing: The attrname argument is a character vector giving the names of categorical attributes in the network’s vertex attribute list. By default, this term adds one network statistic to the model for each possible pairing of attribute values. The statistic equals the number of edges in the network in which the nodes have that pairing of values. (When multiple names are given, a statistic is added for each combination of attribute values for those names.) In other words, this term produces one statistic for every entry in the mixing matrix for the attribute(s). The ordering of the attribute values is alphabetical (for nominal categories) or numerical (for ordered categories). The optional base argument is a vector of integers corresponding to the pairings that should not be included. If base contains only negative integers, then these integers correspond to the only pairings that should be included. By default (i.e., with base=NULL or base=0), all pairings are included.

nodeofactor(attrname, base=1) (binary) (dyadic-independent) (directed) (categorical nodal attribute)

Factor attribute effect for out-edges: The attrname argument is a character string giving one or more names of categorical attributes in the network’s vertex attribute list. This term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attrname attribute (or each combination of the attributes given). Each of these statistics gives the number of times a node with that attribute or those attributes appears as the node of origin of a directed tie. To include all attribute values is usually not a good idea – though this may be accomplished if desired by setting base=0 – because the sum of all such statistics equals the number of edges and hence a linear dependency would arise in any model also including edges. Thus, the base argument tells which value(s) (numbered in order according to the sort function) should be omitted. The default value, base=1, means that the smallest (i.e., first in sorted order) attribute value is omitted. For example, if the “fruit” factor has levels “orange”, “apple”, “banana”, and “pear”, then to add just two terms, one for “apple” and one for “pear”, then set “banana” and “orange” to the base (remember to sort the values first) by using nodeofactor("fruit", base=2:3). For an analogous term for quantitative vertex attributes, see nodeocov.

nodesqrtcovar(values, center=TRUE) (valued) (non-negative) (directed) (quantitative nodal attribute)

Uncentered covariance of square roots of out-dyad values incident on each actor: This term adds one statistic equal to \[ \sum_{i,j,k} \sqrt{y_{i,j,k}}. \] This can be viewed as a valued analog of the \texttt{ostar(2)} statistic.

nodesqrtcovar(center=TRUE) (valued) (non-negative) (directed) (undirected) (quantitative nodal attribute)

Covariance of square roots of dyad values incident on each actor: This term adds one statistic equal to \[ \sum_{i,j,k} (\sqrt{y_{i,j,k}} - \sqrt{y}) (\sqrt{y_{i,k}} - \sqrt{y}) = \sum_{i,j,k} (\sqrt{y_{i,j,k}} - \sqrt{y}) (\sqrt{y_{k,j}} - \sqrt{y}) + (\sqrt{y_{k,j}} - \sqrt{y})(\sqrt{y_{i,k}} - \sqrt{y}), \] where \sqrt{y} is the mean of the square root of dyad values.
nsd(d) (binary) (directed) (undirected) Nonedgewise shared partners: This is just like the dsp and esp terms, except this term adds one network statistic to the model for each element in d where the ith such statistic equals the number of non-edges (that is, dyads that do not have an edge) in the network with exactly d[i] shared partners. This term can be used with directed and undirected networks. For directed networks the count is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the non-edge and in the same direction).

odegrange(from, to=+Inf, by=NULL, homophily=FALSE) (binary) (directed) (categorical nodal attribute) Out-degree range: The from and to arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the vectors has length 1, it is recycled to the length of the other. Otherwise, they must have the same length. This term adds one network statistic to the model for each element of from (or to); the ith such statistic equals the number of nodes in the network of out-degree greater than or equal to from[i] but strictly less than to[i], i.e. with out-edge count in semiopen interval [from, to). The optional argument by is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.

This term can only be used with directed networks; for undirected networks (bipartite and not) see degrange. For degrees of specific modes of bipartite networks, see b1degrange and b2degrange. For in-degrees, see idegrange.

odegree(d, by=NULL, homophily=FALSE) (binary) (directed) (categorical nodal attribute) (frequently-used) Out-degree: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d; the ith such statistic equals the number of nodes in the network of out-degree d[i], i.e. the number of nodes with exactly d[i] out-edges. The optional argument by is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree statistics are calculated for nodes having each separate value of the attribute. This term can only be used with directed networks; for undirected networks see degree.

odegreepopularity (binary) (directed) Out-degree popularity: This term adds one network statistic to the model equaling the sum over the actors of each actor’s outdegree taken to the 3/2 power (or, equivalently, multiplied by its square root). This term is analogous to the term of Snijders et al. (2010), equation (12). This term can only be used with directed networks.

opentriad (binary) (undirected) (triad-related) Open triads: This term adds one statistic to the model equal to the number of 2-stars minus three times the number of triangles in the network. It is currently only implemented for undirected networks.

ostar(k, attrname=NULL) (binary) (directed) (categorical nodal attribute) k-Outstars: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k. The ith such statistic counts the number of distinct k[i]-outstars in the network, where a k-outstar is defined to be a node N and a set of k different nodes \{O_1, \ldots, O_k\} such that the ties (N→O_j) exist for j = 1, \ldots, k. The optional argument attrname is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified then the count is the number of k-outstars where all nodes have the same value of
the attribute. This term can only be used with directed networks; for undirected networks see kstar. Note that ostar(1) is equal to both istar(1) and edges.

receiver(base=1) (binary) (directed) (dyad-independent) Receiver effect: This term adds one network statistic for each node equal to the number of in-ties for that node. This measures the popularity of the node. The term for the first node is omitted by default because of linear dependence that arises if this term is used together with edges, but its coefficient can be computed as the negative of the sum of the coefficients of all the other actors. That is, the average coefficient is zero, following the Holland-Leinhardt parametrization of the $p_1$ model (Holland and Leinhardt, 1981). The base argument allows the user to determine which nodes' statistics should be omitted. The base argument can also be a vector of negative indices, to specify which should be added instead of deleted, and base=0 specifies that all statistics should be included. This term can only be used with directed networks. For undirected networks, see sociality.

sender(base=1) (binary) (directed) (dyad-independent) Sender effect: This term adds one network statistic for each node equal to the number of out-ties for that node. This measures the activity of the node. The term for the first node is omitted by default because of linear dependence that arises if this term is used together with edges, but its coefficient can be computed as the negative of the sum of the coefficients of all the other actors. That is, the average coefficient is zero, following the Holland-Leinhardt parametrization of the $p_1$ model (Holland and Leinhardt, 1981). The base argument allows the user to determine which nodes' statistics should be omitted. The base argument can also be a vector of negative indices, to specify which should be added instead of deleted, and base=0 specifies that all statistics should be included. This term can only be used with directed networks. For undirected networks, see sociality.

simmelian (binary) (directed) (triad-related) Simmelian triads: This term adds one statistic to the model equal to the number of Simmelian triads, as defined by Krackhardt and Handcock (2007). This is a complete sub-graph of size three. This term can only be used with directed networks.

simmelian_ties (binary) (triad-related) (directed) Ties in simmelian triads: This term adds one statistic to the model equal to the number of ties in the network that are associated with Simmelian triads, as defined by Krackhardt and Handcock (2007). Each Simmelian has six ties in it but, because Simmelians can overlap in terms of nodes (and associated ties), the total number of ties in these Simmelians is less than six times the number of Simmelians. Hence this is a measure of the clustering of Simmelians (given the number of Simmelians). This term can only be used with directed networks.

smalldiff(attrname, cutoff) (binary) (dyad-independent) (directed) (undirected) (quantitative nodal attribute) Number of ties between actors with similar (but not necessarily identical) attribute values: The attrname argument is a character string giving the name of a quantitative attribute in the network’s vertex attribute list. This term adds one statistic, having as its value the number of edges in the network for which the incident actors’ attribute values differ less than cutoff; that is, number of edges between $i$ to $j$ such that $|\text{attrname}[i]-\text{attrname}[j]|<\text{cutoff}$.

sociality(attrname=NULL, base=1) (binary) (undirected) (categorical nodal attribute) Undirected degree: This term adds one network statistic for each node equal to the number of ties of that node. The optional attrname argument is a character string giving the name of an attribute in the network’s vertex attribute list that takes categorical values. If provided, this term only counts ties between nodes with the same value of the attribute (an actor-specific version of
the nodematch term). This term can only be used with undirected networks. For directed networks, see sender and receiver. By default, base=1 means that the statistic for the first node will be omitted, but this argument may be changed to control which statistics are included just as for the sender and receiver terms.

\[ \text{sum} \left( \text{pow}=1 \right) \] (valued) (directed) (undirected) Sum of dyad values (optionally taken to a power):
This term adds one statistic equal to the sum of dyad values taken to the power pow, which defaults to 1.

\[ \text{threepath} \left( \text{keep}=1:4 \right) \] (binary) (directed) (undirected) (triad-related) Three-paths: For an undirected network, this term adds one statistic equal to the number of threepaths, where a threepath is defined as a path of length three that traverses three distinct edges. Note that a threepath need not include four distinct nodes; in particular, a triangle counts as three threepaths. For a directed network, this term adds four statistics (or some subset of these four specified by the keep argument), one for each of the four distinct types of directed three-paths. If the nodes of the path are written from left to right such that the middle edge points to the right (R), then the four types are RRR, RRL, LRR, and LRL. That is, an RRR threepath is of the form \( i \rightarrow j \rightarrow k \rightarrow l \), and RRL threepath is of the form \( i \rightarrow j \rightarrow k \leftarrow l \), etc. Like in the undirected case, there is no requirement that the nodes be distinct in a directed threepath. However, the three edges must all be distinct. Thus, a mutual tie \( i \leftrightarrow j \) does not count as a threepath of the form \( i \rightarrow j \rightarrow i \leftarrow j \); however, in the subnetwork \( i \leftrightarrow j \rightarrow k \), there are two directed threepaths, one LRR \( (k \leftarrow j \rightarrow i \leftarrow j) \) and one RRR \( (j \rightarrow i \rightarrow j \rightarrow k) \).

transitive (binary) (directed) (triad-related) Transitive triads: This term adds one statistic to the model, equal to the number of triads in the network that are transitive. The transitive triads are those of type 120, 030, 120, or 300 in the categorization of Davis and Leinhardt (1972). For details on the 16 possible triad types, see triadNclassify in the sna package. Note the distinction from the ttriple term. This term can only be used with directed networks.

transitiveties( attrname=NULLL) (binary) (directed) (triad-related) (categorical nodal attribute), transitiveties( attrname) Transitive ties: This term adds one statistic, equal to the number of ties \( i \rightarrow j \) such that there exists a two-path from \( i \) to \( j \). (Related to the ttriple term.) The binary version takes a nodal attribute attrname, and, if given, all three nodes involved \( (i,j,\text{and the node on the two-path}) \) must match on this attribute in order for \( i \rightarrow j \) to be counted. The binary version of this term can only be used with directed networks. The valued version can be used with both directed and undirected.

transitiveweights( twopath="min", combine="max", affect="min") (valued) (directed) (undirected) (non-negative) Transitive weights: This statistic implements the transitive weights statistic defined by Krivitsky (2012), Equation 13. The currently implemented options for twopath is the minimum of the constituent dyads (“min”) or their geometric mean (“geomean”); for combine, the maximum of the 2-path strengths (“max”) or their sum (“sum”); and for affect, the minimum of the focus dyad and the combined strength of the two paths (“min”) or their geometric mean (“geomean”). For each of these options, the first (and the default) is more stable but also more conservative, while the second is more sensitive but more likely to induce a multimodal distribution of networks.

triadcensus( d) (binary) (triad-related) (directed) (undirected) Triad census: For a directed network, this term adds one network statistic for each of an arbitrary subset of the 16 possible types of triads categorized by Davis and Leinhardt (1972) as 003, 012, 102, 021D, 021U, 021C, 111D, 111U, 021, and 300. Note that at least one category should be dropped; otherwise a linear dependency will exist among the 16 statistics, since they must sum to the total number of three-node sets. By default, the category 003, which is the category of completely empty three-node sets, is
dropped. This is considered category zero, and the others are numbered 1 through 15 in the order given above. By specifying a numeric vector of integers from 0 to 15 as the `d` argument, the user may specify a set of terms to add other than the default value of 1:15. Each statistic is the count of the corresponding triad type in the network. For details on the 16 types, see `?triad.classify` in the `{sna}` package, on which this code is based. For an undirected network, the triad census is over the four types defined by the number of ties (i.e., 0, 1, 2, and 3), and the default is to add 1:3, which is to say that the 0 is dropped; however, this too may be controlled by changing the `d` argument to a numeric vector giving a subset of \{0, 1, 2, 3\}.

### triangle
- **attrname=NULL** (binary) (frequently-used) (triad-related) (directed) (undirected) (categorical nodal attribute)
- **Triangles:** This term adds one statistic to the model equal to the number of triangles in the network. For an undirected network, a triangle is defined to be any set \{(i,j),(j,k),(k,i)\} of three edges. For a directed network, a triangle is defined as any set of three edges \((i\rightarrow j)\) and \((j\rightarrow k)\) and either \((k\rightarrow i)\) or \((k\leftarrow i)\). The former case is called a “transitive triple” and the latter is called a “cyclic triple”, so in the case of a directed network, triangle equals \(ttriple + ctri\) — thus at most two of these three terms can be in a model. The optional argument `attrname` restricts the count to those triples of nodes with equal values of the vertex attribute specified by `attrname`.

### tripercent
- **attrname=NULL** (binary) (undirected) (triad-related) (categorical nodal attribute)
- **Triangle percentage:** This term adds one statistic to the model equal to 100 times the ratio of the number of triangles in the network to the sum of the number of triangles and the number of 2-stars not in triangles (the latter is considered a potential but incomplete triangle). In case the denominator equals zero, the statistic is defined to be zero. For the definition of triangle, see `triangle`. The optional argument `attrname` restricts the counts (both numerator and denominator) to those triples of nodes with equal values of the vertex attribute specified by `attrname`. This is often called the mean correlation coefficient. This term can only be used with undirected networks; for directed networks, it is difficult to define the numerator and denominator in a consistent and meaningful way.

### ttriple
- **attrname=NULL** (binary) (directed) (triad-related) (categorical nodal attribute), a.k.a. `ttriad` (binary) (directed) (triad-related) (categorical nodal attribute)
- **Transitive triples:** This term adds one statistic to the model equal to the number of transitive triples in the network, defined as a set of edges \\{\((i\rightarrow j)\),\((j\rightarrow k)\),\((i\rightarrow k)\)\}. Note that triangle equals \(ttriple + ctri\) for a directed network, so at most two of the three terms can be in a model. The optional argument `attrname` is a character string giving the name of an attribute in the network’s vertex attribute list. If this is specified then the count is over the number of transitive triples where all three nodes have the same value of the attribute. This term can only be used with directed networks.

### twopath
- **binary** (directed) (undirected) **2-Paths:** This term adds one statistic to the model, equal to the number of 2-paths in the network. For a directed network this is defined as a pair of edges \((i\rightarrow j),(j\rightarrow k)\), where \(i\) and \(j\) must be distinct. That is, it is a directed path of length 2 from \(i\) to \(k\) via \(j\). For directed networks a 2-path is also a mixed 2-star but the interpretation is usually different; see `m2star`. For undirected networks a `twopath` is defined as a pair of edges \\{\(i,j\),\(j,k\)\}. That is, it is an undirected path of length 2 from \(i\) to \(k\) via \(j\), also known as a 2-star.

### References

See Also

ergm package, search.ergmTerms, ergm.network, %v%, %n%

Examples

## Not run:

ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)

ergm(molecule ~ edges + kstar(2:3) + triangle
    + nodematch("atomic type",diff=TRUE)
    + triangle + absdiff("atomic type"))

## End(Not run)

### ergm.allstats

Calculate all possible vectors of statistics on a network for an ERGM

**Description**

ergm.allstats produces a matrix of network statistics for an arbitrary statnet exponential-family random graph model. One possible use for this function is to calculate the exact loglikelihood function for a small network via the ergm.exact function.
Usage

```r
ergm.allstats(formula, zeroobs = TRUE, force = FALSE,
 maxNumChangeStatVectors = 2^16, ...)
```

Arguments

- `formula` an `R formula` object of the form `y ~ <model terms>`, where `y` is a network object or a matrix that can be coerced to a `network` object. For the details on the possible `<model terms>`, see `ergm::terms`. To create a `network` object in R, use the `network()` function, then add nodal attributes to it using the `%v%` operator if necessary.

- `zeroobs` Logical: Should the vectors be centered so that the network passed in the `formula` has the zero vector as its statistics?

- `force` Logical: Should the algorithm be run even if it is determined that the problem may be very large, thus bypassing the warning message that normally terminates the function in such cases?

- `maxNumChangeStatVectors` Maximum possible number of distinct values of the vector of statistics. It’s good to use a power of 2 for this.

- `...` further arguments; not currently used.

Details

The mechanism for doing this is a recursive algorithm, where the number of levels of recursion is equal to the number of possible dyads that can be changed from 0 to 1 and back again. The algorithm starts with the network passed in `formula`, then recursively toggles each edge twice so that every possible network is visited.

`ergm.allstats` should only be used for small networks, since the number of possible networks grows extremely fast with the number of nodes. An error results if it is used on a directed network of more than 6 nodes or an undirected network of more than 8 nodes; use `force=TRUE` to override this error.

Value

Returns a list object with these two elements:

- `weights` integer of counts, one for each row of `statmat` telling how many networks share the corresponding vector of statistics.

- `statmat` matrix in which each row is a unique vector of statistics.

See Also

- `ergm.exact`
Examples

# Count by brute force all the edge statistics possible for a 7-node
# undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
unix.time(a <- ergm.allstats(mynw~edges))

# Summarize results
rbind(t(a$statmat),a$weights)

# Each value of a$weights is equal to 21-choose-k,
# where k is the corresponding statistic (and 21 is
# the number of dyads in an 7-node undirected network).
# Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))

# Simple ergm.exact output for this network.
# We know that the log-likelihood for my empty 7-node network
# should simply be -21*log(1+exp(eta)), so we may check that
# the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)

---

**ergm.bridge.dindstart.llk**

*Bridge sampling to estimate log-likelihood of an ERGM, using a dyad-independent ERGM as a starting point.*

**Description**

This function is a wrapper around `ergm.bridge.llr` that uses a dyad-independent ERGM as a starting point for bridge sampling to estimate the log-likelihood for a given dyad-dependent model and parameter configuration. The dyad-independent model may be specified or can be chosen adaptively.

**Usage**

```r
ergm.bridge.dindstart.llk(object,
response=TRUE,
constraints=~.,
coef,
dind=NULL,
coef.dind=NULL,
basis=NULL,
...
llkonly=TRUE,
control=control.ergm.bridge())
```
Arguments

object
A model formula. See \texttt{ergm} for details.

response
The name of the edge attribute that is the response. Note that it’s included solely for consistency, since \texttt{ergm.bridge.dindstart.llk} can only handle binary ERGMs.

constraints
A model constraints formula. See \texttt{ergm} for details. Note that only constraints that do not induce dyadic dependence can be handled by \texttt{ergm.bridge.dindstart.llk}.

coeff
A vector of coefficients for the configuration of interest.

dind
A one-sided formula with the dyad-independent model to use as a starting point. Defaults to the dyad-independent terms found in the formula object with an overall density term (edges) added if not redundant.

coeff.dind
Parameter configuration for the dyad-independent starting point. Defaults to the MLE of dind.

basis
An optional \texttt{network} object to start the Markov chain. If omitted, the default is the left-hand-side of the object.

... Further arguments to \texttt{ergm.bridge.llr} and \texttt{simulate.formula.ergm}.

llkonly
Whether only the estimated log-likelihood should be returned. (Defaults to true.)

control
Control parameters. See \texttt{control.ergm.bridge}.

Value

If \texttt{llkonly}=TRUE, returns the scalar log-likelihood. Otherwise, returns a copy of the list returned by \texttt{ergm.bridge.llr} in addition to the following components:

1lk.dind
The log-likelihood of the dyad-independence model.

1lk
The estimated log-likelihood.

References


See Also

\texttt{ergm.bridge.llr, simulate.formula.ergm}
ergm.bridge.llr  A simple implementation of bridge sampling to evaluate log-likelihood-ratio between two ERGM configurations

Description

This function uses bridge sampling with geometric spacing to estimate the difference between the log-likelihoods of two parameter vectors for an ERGM via repeated calls to `simulate.formula.ergm`.

Usage

```r
ergm.bridge.llr(object,
 response=NULL,
 constraints=~.,
 from,
 to,
 basis=NULL,
 verbose=FALSE,
 ...,
 llronly=FALSE,
 control=control.ergm.bridge())
```

Arguments

- **object**: A model formula. See `ergm` for details.
- **response**: Not for release.
- **constraints**: A one-sided formula specifying one or more constraints on the support of the distribution of the networks being simulated. See the documentation for a similar argument for `ergm` for more information. For `simulate.formula.ergm`, defaults to no constraints. For `simulate.ergm`, defaults to using the same constraints as those with which `object` was fitted.
- **from, to**: The initial and final parameter vectors.
- **basis**: An optional `network` object to start the Markov chain. If omitted, the default is the left-hand-side of the object.
- **verbose**: Logical: If TRUE, print detailed information.
- **...**: Further arguments to `simulate.formula.ergm`.
- **llronly**: Logical: If TRUE, only the estimated log-ratio will be returned.
- **control**: Control arguments. See `control.ergm.bridge` for details.

Value

If `llronly=TRUE`, returns the scalar log-likelihood-ratio. Otherwise, returns a list with the following components:

- **llr**: The estimated log-ratio.
The estimated log-ratios for each of the \textit{nsteps} bridges.

A numeric matrix with \textit{nsteps} rows, with each row being the respective bridge’s parameter configuration.

A numeric matrix with \textit{nsteps} rows, with each row being the respective bridge’s vector of simulated statistics.

The gradient vector of the parameter values with respect to position of the bridge.


\textbf{See Also}

\texttt{simulate.formula.ergm}

\textbf{Description}

\texttt{ergm.exact} calculates the exact loglikelihood, evaluated at \texttt{eta}, for the \texttt{statnet} exponential-family random graph model represented by \texttt{formula}.

\textbf{Usage}

\texttt{ergm.exact (eta, formula, statmat=NULL, weights=NULL, \ldots)}

\textbf{Arguments}

\begin{itemize}
  \item \texttt{eta} vector of canonical parameter values at which the loglikelihood should be evaluated.
  \item \texttt{formula} an \texttt{R} \texttt{link{formula}} object of the form \texttt{y \sim <model terms>}, where \texttt{y} is a network object or a matrix that can be coerced to a \texttt{network} object. For the details on the possible \texttt{<model terms>}, see \texttt{ergm-terms}. To create a \texttt{network} object in \texttt{R}, use the \texttt{network()} function, then add nodal attributes to it using the \texttt{\%v\%} operator if necessary.
  \item \texttt{statmat} if \texttt{NULL}, call \texttt{ergm.allstats} to generate all possible graph statistics for the networks in this model.
  \item \texttt{weights} In case \texttt{statmat} is not \texttt{NULL}, this should be the vector of counts corresponding to the rows of \texttt{statmat}. If \texttt{statmat} is \texttt{NULL}, this is generated by the call to \texttt{ergm.allstats}.
  \item \ldots further arguments; not currently used.
\end{itemize}
ergm.exact should only be used for small networks, since the number of possible networks grows extremely fast with the number of nodes. An error results if it is used on a directed network of more than 6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override this error.

In case this function is to be called repeatedly, for instance by an optimization routine, it is preferable to call `ergm.allstats` first, then pass `statmat` and `weights` explicitly to avoid repeatedly calculating these objects.

Value

Returns the value of the exact loglikelihood, evaluated at `eta`, for the `statnet` exponential-family random graph model represented by `formula`.

See Also

`ergm.allstats`

Examples

```r
Count by brute force all the edge statistics possible for a 7-node
undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
unix.time(a <- ergm.allstats(mynw~edges))

Summarize results
rbind(t(a$statmat),a$weights)

Each value of a$weights is equal to 21-choose-k,
where k is the corresponding statistic (and 21 is
the number of dyads in an 7-node undirected network).
Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))

Simple ergm.exact output for this network.
We know that the loglikelihood for my empty 7-node network
should simply be -21*log(1+exp(eta)), so we may check that
the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)
```

Description

Return the predictor matrix, response vector, and vector of weights that can be used to calculate the MPLE for an ERGM.
Usage

```r
ergmMLE(formula, fitmodel=FALSE, output=c("matrix", "array", "fit"),
 as.initialfit = TRUE, control=control.ergm(),
 verbose=FALSE, ...)
```

Arguments

- `formula`: An ERGM formula. See `ergm`.
- `fitmodel`: Deprecated. Use `output="fit"` instead.
- `output`: Character, partially matched. See Value.
- `as.initialfit`: Logical. Specifies whether terms are initialized with argument `initialfit=`TRUE (the default). Generally, if TRUE, all curved ERGM terms will be treated as having their curved parameters fixed. See Example.
- `control`: A list of control parameters for tuning the fitting of an ERGM. Most of these parameters are irrelevant in this context. See `control.ergm` for details about all of the control parameters.
- `verbose`: Logical; if TRUE, the program will print out some additional information.
- `...`: Additional arguments, to be passed to lower-level functions.

Details

The MPLE for an ERGM is calculated by first finding the matrix of change statistics. Each row of this matrix is associated with a particular pair (ordered or unordered, depending on whether the network is directed or undirected) of nodes, and the row equals the change in the vector of network statistics (as defined in `formula`) when that pair is toggled from a 0 (no edge) to a 1 (edge), holding all the rest of the network fixed. The MPLE results if we perform a logistic regression in which the predictor matrix is the matrix of change statistics and the response vector is the observed network (i.e., each entry is either 0 or 1, depending on whether the corresponding edge exists or not).

Using `output="matrix"`, note that the result of the fit may be obtained from the `glm` function, as shown in the examples below.

When `output="array"`, the MPLE.max.dyad.types control parameter must be greater than network.dyadcount(.) of the response network, or not all elements of the array that ought to be filled in will be.

Value

If `output="matrix"` (the default), then only the response, predictor, and weights are returned; thus, the MPLE may be found by hand or the vector of change statistics may be used in some other way. To save space, the algorithm will automatically search for any duplicated rows in the predictor matrix (and corresponding response values). `ergmMLE` function will return a list with three elements, response, predictor, and weights, respectively the response vector, the predictor matrix, and a vector of weights, which are really counts that tell how many times each corresponding response, predictor pair is repeated.

If `output="array"`, a list with similarly named three elements is returned, but response is formatted into a sociomatrix; predictor is a 3-dimensional array of with cell `predictor[t,h,k]` containing the change score of term k for dyad (t,h); and weights is also formatted into a sociomatrix, with an element being 1 if it is to be added into the pseudolikelihood and 0 if it is not.
In particular, for a unipartite network, cells corresponding to self-loops, i.e., predictor[i,i,k] will be NA and weights[i,i] will be 0; and for a unipartite undirected network, lower triangle of each predictor[,k] matrix will be set to NA, with the lower triangle of weights being set to 0.

If output="fit", then `ergm` simply calls the `ergm` function with the estimate="MLE" option set, returning an object of class `ergm` that gives the fitted pseudolikelihood model.

See Also

`ergm`, `glm`

Examples

data(faux.mesa.high)
formula <- faux.mesa.high ~ edges + nodematch("Sex") + nodefactor("Grade")
mplesetup <- ergmMLE(formula)

# Obtain MLE coefficients "by hand":
glm(mplesetup$response ~ . - 1, data = data.frame(mplesetup$predictor),
weights = mplesetup$weights, family="binomial")$coefficients

# Check that the coefficients agree with the output of the ergm function:
ergmMLE(formula, output="fit")$coef

# We can also format the predictor matrix into an array:
mplesarray <- ergmMLE(formula, output="array")

# The resulting matrices are big, so only print the first 5 actors:
mplesarray$response[1:5,1:5]
mplesarray$predictor[1:5,1:5]
mplesarray$weights[1:5,1:5]

formula2 <- faux.mesa.high ~ gwesp(0.5,fix=FALSE)

# The term is treated as fixed: only the gwesp term is returned:
colnames(ergmMLE(formula2, as.initialfit=TRUE)$predictor)

# The term is treated as curved: individual esp# terms are returned:
colnames(ergmMLE(formula2, as.initialfit=FALSE)$predictor)
by the MH acceptance ratio. The role of the different MH methods implemented in \texttt{ergm} is to vary how the sets of dyads are selected for toggle proposals. This is used in some cases to improve the performance (speed and mixing) of the algorithm, and in other cases to constrain the sample space.

\textbf{MH proposal methods implemented in the} \texttt{ergm} \textbf{package}

\textbf{MH proposals for non-constrained \texttt{ergm} models}

\texttt{InitMHP.randomtoggle} Propose a randomly selected dyad to toggle.

\texttt{InitMHP.TNT} Default MH algorithm. Stratifies the population of dyads by edge status: those having ties and those having no ties (hence T/N). This is useful for improving performance in sparse networks, because it gives at least 50\% chance of proposing a toggle of an existing edge.

\textbf{MH proposals for constrained \texttt{ergm} models}

\texttt{InitMHP.blockdiag} MHp for \texttt{constraints} = \texttt{\textasciitilde blockdiag}. Select a diagonal block according to the weight, then randomly select a dyad within the block for the toggle proposal.

\texttt{InitMHP.blockdiagNonObserved} MHp for \texttt{constraints} = \texttt{\textasciitilde blockdiag + observed}. Similar to \texttt{InitMHP.blockdiag}, but applied only to missing dyads.

\texttt{InitMHP.blockdiagTNT} MHp for \texttt{constraints} = \texttt{\textasciitilde blockdiag}. Similar to \texttt{InitMHP.blockdiag}, except that it selects ties and non-ties for proposed toggles (in the block by construction) with equal probability. Like the unconstrained TNT proposal, this is useful for improving performance in sparse networks.

\texttt{InitMHP.CondB1Degree} MHp for \texttt{constraints} = \texttt{\textasciitilde b1degrees}. For bipartite networks, randomly select an edge B1i, B2j and an empty dyad with the same node B1i, B1i, B2k, and propose to toggle both B1i, B2j and B1i, B2k. This ensures that the degrees of individual nodes in mode 1 are preserved.

\texttt{InitMHP.CondB2Degree} MHp for \texttt{constraints} = \texttt{\textasciitilde b2degrees}. For bipartite network, randomly select an edge B1j, B2i and an empty dyad with the same node B2i, B1k, B2i, and propose to toggle both B1j, B2i and B1k, B2i. This ensures that the degrees of individual nodes in mode 2 are preserved.

\texttt{InitMHP.CondDegree} MHp for \texttt{constraints} = \texttt{\textasciitilde degree}. Propose either 4 toggles (\texttt{MH\_CondDegreeTetrad}) or 6 toggles (\texttt{MH\_CondDegreeHexad}) at once. For undirected networks, propose 4 toggles (\texttt{MH\_CondDegreeTetrad}). \texttt{MH\_CondDegreeTetrad} selects two edges with no nodes in common, A1-A2 and B1-B2, s.t. A1-B2 and B1-A2 are not edges, and propose to replace the former two by the latter two. \texttt{MH\_CondDegreeHexad} selects three edges A1->A2, B1->B2, C1->C2 at random and rotate them to A1->B2, B1->C2, and C1->A2.

\texttt{InitMHP.CondDegreeDist} MHp for \texttt{constraints} = \texttt{\textasciitilde degreeDist}. Randomly select a node (T) and its edge (E). If the head node of the edge (H) has 1 degree more than another randomly select node (A), and A is disconnected to both T and H, then propose to toggle E and the dyad between T and A.

\texttt{InitMHP.CondDegreeMix} MHp for \texttt{constraints} = \texttt{\textasciitilde degreesmix}. Similar to \texttt{InitMHP\_CondDegree}, except that the toggle is proposed only if the mixing matrix of degrees is preserved before and after the toggle.
InitMHP.ConstantEdges  MHp for constraints = \texttt{\~edges}. Propose pairs of toggles that keep number of edges the same. This is done by (a) choosing an existing edge at random; (b) repeatedly choosing dyads at random until one is found that does not have an edge; and (c) proposing toggling both these dyads. Note that step (b) will be very inefficient if the network is nearly complete, so this proposal is NOT recommended for such networks. However, most network datasets are sparse, so this is not likely to be an issue.

InitMHP.CondInDegreeDist  MHp for constraints = \texttt{\~idegreedist}. For directed networks, similar to InitMHP.CondDegreeDist, except for indegree case

InitMHP.CondOutDegreeDist  MHp for constraints = \texttt{\~odegreedist}. For directed networks, similar to InitMHP.CondDegreeDist, except for outdegree case

InitMHP.fixedas  MHp for constraints = \texttt{\~fixedas(present, absent)}. Select a random dyad that is not in either 'present' edgelist or 'absent' edgelist to toggle. Edges in 'present' and empty dyads in 'absent' are remained fixed.

InitMHP.fixallbut  MHp for constraints = \texttt{\~fixallbut(free.dyads). Select a random dyad that is in free.dyads edgelist to toggle.

InitMHP.randomtoggleNonObserved  MHp for constraints = \texttt{\~observed}. Randomly select a missing/non-observed dyad and propose a toggle.

InitMHP.CondInDegree  MHp for constraints = \texttt{\~idegrees}. For directed networks, randomly select two dyads with a common head node, one having an edge one not, and propose to swap the tie from one tail to the other.

InitMHP.CondOutDegree  MHp for constraints = \texttt{\~odegrees}. For directed networks, randomly select two dyads with a common tail node, one having an edge and one not, and propose to swap the tie from one head to the other.

References


See Also

\texttt{ergm} package, \texttt{ergm.ergm-constraints}
Description

Explanation and instructions for updating custom ERGM terms developed prior to the release of 
ergm version 3.1 (including 3.0–999 preview release) to be used with versions 3.1 or later.

Explanation

`ergm.userterms` — Statnet’s mechanism enabling users to write their own ERGM terms — comes in a form of an R package containing files for the user to put their own statistics into (i.e., changestats.user.h, changestats.user.c, and InitErgmTerm.user.R), as well as some boilerplate to support them (e.g., edgetree.h, edgetree.c, changestat.h, changestat.c, etc.).

Although the `ergm.userterms` API is stable, recent developments in ergm have necessitated the boilerplate files in `ergm.userterms` to be updated. To reiterate, the user-written statistic source code (changestats.user.h, changestats.user.c, and InitErgmTerm.user.R) can be used without modification, but other files that came with the package need to be changed.

To make things easier in the future, we have implemented a mechanism (using R’s LinkingTo API, in case you are wondering) that will keep things in sync in releases after the upcoming one. However, for the upcoming release, we need to transition to this new mechanism.

Instructions

The transition entails the following steps. They only need to be done once for a package. Future releases will keep up to date automatically.

1. Download the up-to-date `ergm.userterms` source from CRAN using, e.g., `download.packages` and unpack it.

2. Copy the R and C files defining the user-written terms (usually changestats.user.h, changestats.user.c, and InitErgmTerm.user.R) and only those files from the old `ergm.userterms` source code to the new. Do not copy the boilerplate files that you did not modify.

3. If you have customized the package DESCRIPTION file (e.g., to change the package name) or zzz.R (e.g., to change the startup message), modify them as needed in the updated `ergm.userterms`, but do not simply overwrite them with their old versions.

4. Make sure that your `ergm` installation is up to date, and rebuild `ergm.userterms`. 
Description

This data set represents a simulation of an in-school friendship network. The network is named faux.magnolia.high because the school communities on which it is based are large and located in the southern US.

Usage

data(faux.magnolia.high)

Format

faux.magnolia.high is a network object with 1461 vertices (students, in this case) and 974 undirected edges (mutual friendships). To obtain additional summary information about it, type summary(faux.magnolia.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indicating each student’s grade in school. The Race attribute is based on the answers to two questions, one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black (non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997) should be cited. In addition this package should be cited as:


Source

The data set is based upon a model fit to data from two school communities from the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The two schools in question (a junior and senior high school in the same community) were combined into a single network dataset. Students who did not take the AddHealth survey or who were not listed on the schools’ student rosters were eliminated, then an undirected link was established between any two individuals who both named each other as a friend. All missing race, grade, and sex values were replaced by a random draw with weights determined by the size of the attribute classes in the school.

The following ergm model was fit to the original data:
Then the faux.magnolia.high dataset was created by simulating a single network from the above model fit:

```r
faux.magnolia.high <- simulate (magnolia.fit, nsim=1, burnin=10000000, constraint = "edges")
```

References

See Also
network, plot.network, ergm, faux.mesa.high

---

**faux.mesa.high**

*Goodreau's Faux Mesa High School as a network object*

**Description**
This data set (formerly called “fauxhigh”) represents a simulation of an in-school friendship network. The network is named `faux.mesa.high` because the school community on which it is based is in the rural western US, with a student body that is largely Hispanic and Native American.

**Usage**
data(faux.mesa.high)

**Format**
`faux.mesa.high` is a network object with 205 vertices (students, in this case) and 203 undirected edges (mutual friendships). To obtain additional summary information about it, type `summary(faux.mesa.high)`.

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indicating each student’s grade in school. The Race attribute is based on the answers to two questions, one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black (non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)
Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative Commons License http://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997) should be cited. In addition this package should be cited as:


Source

The data set is based upon a model fit to data from one school community from the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

A vector representing the sex of each student in the school was randomly re-ordered. The same was done with the students’ response to questions on race and grade. These three attribute vectors were permuted independently. Missing values for each were randomly assigned with weights determined by the size of the attribute classes in the school.

The following *ergm* formula was used to fit a model to the original data:

\[
\sim \text{edges} + \text{nodefactor("Grade")} + \text{nodefactor("Race")} + \text{nodefactor("Sex")}
+ \text{nodematch("Grade",diff=TRUE)} + \text{nodematch("Race",diff=TRUE)}
+ \text{nodematch("Sex",diff=FALSE)} + \text{gwdegree(1.0,fixed=TRUE)}
+ \text{gwesp(1.0,fixed=TRUE)} + \text{gdsp(1.0,fixed=TRUE)}
\]

The resulting model fit was then applied to a network with actors possessing the permuted attributes and with the same number of edges as in the original data.

The processes for handling missing data and defining the race attribute are described in Hunter, Goodreau \& Handcock (2008).

References


See Also

network, plot.network, ergm, faux.magnolia.high
Convert a curved ERGM into a corresponding “fixed” ERGM.

Description

The generic `fix.curved` converts an `ergm` object or formula of a model with curved terms to the variant in which the curved parameters are fixed. Note that each term has to be treated as a special case.

Usage

```r
S3 method for class 'ergm'
fix.curved(object, ...)
S3 method for class 'formula'
fix.curved(object, theta, response = NULL, ...)
```

Arguments

- `object` An `ergm` object or an ERGM formula. The curved terms of the given formula (or the formula used in the fit) must have all of their arguments passed by name.
- `theta` Curved model parameter configuration.
- `response` For valued ERGM, an edge attribute used as the response variable.
- `...` Unused at this time.

Details

Some ERGM terms such as `gwesp` and `gwdegree` have two forms: a curved form, for which their decay or similar parameters are to be estimated, and whose canonical statistics is a vector of the term’s components (`esp(1), esp(2), ...` and `degree(1), degree(2), ...`, respectively) and a "fixed" form where the decay or similar parameters are fixed, and whose canonical statistic is just the term itself. It is often desirable to fit a model estimating the curved parameters but simulate the "fixed" statistic. This function thus takes in a fit or a formula and performs this mapping, returning a “fixed” model and parameter specification. It only works for curved ERGM terms included with the `ergm` package. It does not work with curved terms not included in `ergm`.

Value

A list with the following components:

- `formula` The “fixed” formula.
- `theta` The “fixed” parameter vector.

See Also

`ergm`, `simulate.ergm`
Examples

data(sampson)
gest<--ergm(samplike-edges+gwesp(alpha=.5, fixed=FALSE),
  control=control.ergm(MCMLE.maxit=3))
summary(gest)
# A statistic for esp(1),...,esp(16)
simulate(gest, statsonly=TRUE)

tmp<--fix.curved(gest)
tmp
# A gwesp() statistic only
simulate(tmp$formula, coef=tmp$theta, statsonly=TRUE)

Florentine Family Business Ties Data as a “network” object

Description

This is a data set of business ties among Renaissance Florentine families. The data is originally from Padgett (1994) via UCINET and stored as a network object.

Breiger & Pattison (1986), in their discussion of local role analysis, use a subset of data on the social relations among Renaissance Florentine families (person aggregates) collected by John Padgett from historical documents. The relations are business ties (flobusiness - specifically, recorded financial ties such as loans, credits and joint partnerships).

As Breiger & Pattison point out, the original data are symmetrically coded. This is acceptable perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed). To remedy this, the financial ties can be recoded as directed relations using some external measure of power - for instance, a measure of wealth. Vertex information is provided (1) wealth each family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats on the civic council) held between 1282- 1344; and (3) totalties the total number of business or marriage ties in the total dataset of 116 families (see Breiger & Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the city of Florence around 1430. Two factions were dominant in this struggle: one revolved around the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data(florentine)

Source

References


See Also

flo, network, plot.network, ergm, flomarriage

flomarriage

Florentine Family Marriage Ties Data as a “network” object

Description

This is a data set of marriage ties among Renaissance Florentine families. The data is originally from Padgett (1994) via UCINET and stored as a network object.

Breiger & Pattison (1986), in their discussion of local role analysis, use a subset of data on the social relations among Renaissance Florentine families (person aggregates) collected by John Padgett from historical documents. The relations are marriage alliances (flomarriage between the families.

As Breiger & Pattison point out, the original data are symmetrically coded. This is perhaps acceptable perhaps for marital ties. Vertex information is provided on (1) wealth each family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats on the civic council) held between 1282-1344; and (3) totalties the total number of business or marriage ties in the total dataset of 116 families (see Breiger & Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the city of Florence around 1430. Two factions were dominant in this struggle: one revolved around the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data(florentine)

Source


References


See Also

tobusiness, flo, network, plot.network, ergm

florentine

Florentine Family Marriage and Business Ties Data as a “network” object

Description

This is a data set of marriage and business ties among Renaissance Florentine families. The data is originally from Padgett (1994) via UCINET and stored as a network object.

Breiger & Pattison (1986), in their discussion of local role analysis, use a subset of data on the social relations among Renaissance Florentine families (person aggregates) collected by John Padgett from historical documents. The two relations are business ties (flobusiness - specifically, recorded financial ties such as loans, credits and joint partnerships) and marriage alliances (flomarriage).

As Breiger & Pattison point out, the original data are symmetrically coded. This is acceptable perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed). To remedy this, the financial ties can be recoded as directed relations using some external measure of power - for instance, a measure of wealth. Both graphs provide vertex information on (1) wealth each family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats on the civic council) held between 1282-1344; and (3) totalties the total number of business or marriage ties in the total dataset of 116 families (see Breiger & Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the city of Florence around 1430. Two factions were dominant in this struggle: one revolved around the infamous Medicis (9), the other around the powerful Strozzis (15).

Usage

data(florentine)

Source


References


See Also

flo, network, plot.network, ergm
Description
This is an example thought of by Steve Goodreau. It is a directed network of four nodes and five
ties stored as a network object.
It is interesting because the maximum likelihood estimator of the model with out degree 3 in it
exists, but the maximum psuedolikelihood estimator does not.

Usage

data(g4)

Source
Steve Goodreau

See Also
florentine, network, plot.network, ergm

Examples

```r
data(g4)
summary(ergm(g4 ~ odegree(3), estimate="MPLE"))
summary(ergm(g4 ~ odegree(3), control=control.ergm(init=0)))
```

Getting Started

Getting Started with "ergm": Fit, simulate and diagnose exponential-family models for networks

Description

`ergm` is a collection of functions to plot, fit, diagnose, and simulate from random graph models. For
a list of functions type: `help(package='ergm')`
For a complete list of the functions, use `library(help="ergm")` or read the rest of the manual. For a
simple demonstration, use `demo(packages="ergm")`
When publishing results obtained using this package the original authors are to be cited as given in
citation("ergm"):
Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 ergm: Fit, simulate and diagnose exponential-family models for networks
statnet.org.
All published work derived from this package must cite it. For complete citation information, use
citation(package="ergm").
Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a generalization of the Markov random network models introduced by Frank and Strauss (1986), which in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the complex dependencies within relational data structures. To date, the use of stochastic network models for networks has been limited by three interrelated factors: the complexity of realistic models, the lack of simulation tools for inference and validation, and a poor understanding of the inferential properties of nontrivial models.

This manual introduces software tools for the representation, visualization, and analysis of network data that address each of these previous shortcomings. The package relies on the network package which allows networks to be represented in R. The ergm package allows maximum likelihood estimates of exponential random network models to be calculated using Markov Chain Monte Carlo. The package also provides tools for plotting networks, simulating networks and assessing model goodness-of-fit.

For detailed information on how to download and install the software, go to the ergm website: statnet.org. A tutorial, support newsgroup, references and links to further resources are provided there.

Author(s)

Mark S. Handcock <handcock@stat.ucla.edu>,
David R. Hunter <dhunter@stat.psu.edu>,
Carter T. Butts <butts@uci.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,
Pavel N. Krivitsky <krivitsky@stat.psu.edu>, and
Martina Morris <morrism@u.washington.edu>
Maintainer: David R. Hunter <dhunter@stat.psu.edu>

References


gof Conduct Goodness-of-Fit Diagnostics on a Exponential Family Random Graph Model

description
gof calculates p-values for geodesic distance, degree, and reachability summaries to diagnose the goodness-of-fit of exponential family random graph models. See ergm for more information on these models.
Usage

```r
Default S3 method:
gof(object,...)
S3 method for class 'formula'
gof(object,
 ...,
 coef=NULL,
 GOF=NULL,
 constraints=~.,
 control=control.gof.formula(),
 verbose=FALSE)
S3 method for class 'ergm'
gof(object,
 ...,
 coef=NULL,
 GOF=NULL,
 constraints=NULL,
 control=control.gof.ergm(),
 verbose=FALSE)
```

Arguments

- **object**
  - An R object. Either a formula or an ergm object. See documentation for ergm.

- **...**
  - Additional arguments, to be passed to lower-level functions in the future.

- **coef**
  - When given either a formula or an object of class ergm, coef are the parameters from which the sample is drawn. By default set to a vector of 0.

- **GOF**
  - A one-sided formula specifying one or more constraints on the support of the distribution of the networks being modeled. See the help for similarly-named argument in ergm for more information. For gof.formula, defaults to unconstrained. For gof.ergm, defaults to the constraints with which object was fitted.

- **control**
  - A list to control parameters, constructed using control.gof.formula or control.gof.ergm (which have different defaults).

- **verbose**
  - Provide verbose information on the progress of the simulation.
Details

A sample of graphs is randomly drawn from the specified model. The first argument is typically the output of a call to `ergm` and the model used for that call is the one fit.

A plot of the summary measures is plotted. More information can be found by looking at the documentation of `ergm`.

For `GOF = ~model`, the model's observed sufficient statistics are plotted as quantiles of the simulated sample. In a good fit, the observed statistics should be near the sample median (0.5).

For `gof.ergm` and `gof.formula`, default behavior depends on the directedness of the network involved; if undirected then degree, esparkners, and distance are used as default properties to examine. If the network in question is directed, “degree” in the above is replaced by idegree and odegree.

Value

gof, gof.ergm, and gof.formula return an object of class `gofobject`. This is a list of the tables of statistics and $p$-values. This is typically plotted using `plot.gofobject`.

See Also

`ergm`, `network`, `simulate.ergm`, `summary.ergm`, `plot.gofobject`

Examples

data(florentine)
gest <- ergm(flo Om ariage ~ edges + kstar(2))
gest
summary(gest)

# test the gof.ergm function
gofflo <- gof(gest)
gofflo
summary(gofflo)

# Plot all three on the same page
# with nice margins
par(mfrow=c(1,3))
par oma=c(0.5,2,1,0.5)
plot(gofflo)

# And now the log-odds
plot(gofflo, plotlogodds=TRUE)

# Use the formula version of gof
gofflo2 <- gof(flo Om ariage ~ edges + kstar(2), coef=c(-1.6339, 0.0049))
plot(gofflo2)
is.durational  

Testing for durational dependent models

Description

These functions test whether an ERGM model or formula is durational dependent or not. If the formula or model does not include any terms that need information about the duration of existing ties, the ergm process can use more efficient internal data structures.

Usage

```r
S3 method for class 'character'
is.durational(object, ...)
S3 method for class 'ergm.model'
is.durational(object, ...)
S3 method for class 'formula'
is.durational(object,
 response==NULL,
 basis==NULL,
 ...
)
```

Arguments

- `object`  
  An `ergm` object or an ERGM formula, or some characters, e.g., `object="all"` for monitoring purpose.
- `response, basis`
  See `ergm`.
- `...`
  Unused at this time.

Value

`TRUE` if the ERGM terms in the formula or model are durational dependent; `FALSE` otherwise.

is.dyad.independent  

Testing for dyad-independence

Description

These functions test whether an ERGM fit or formula is dyad-independent.
is.inCH

Usage

```r
S3 method for class 'ergm'
is.dyad.independent(object, ...)
S3 method for class 'formula'
is.dyad.independent(object, response=NULL,
 basis=NULL,
 ...)
```

Arguments

- `object` An `ergm` object or an ERGM formula.
- `response`, `basis` See `ergm`.
- `...` Unused at this time.

Value

TRUE if the model fit or one implied by the formula is dyad-independent; FALSE otherwise.

---

is.inCH

Determine whether a vector is in the closure of the convex hull of some sample of vectors

Description

is.inCH returns TRUE if and only if \( p \) is contained in the convex hull of the points given as the rows of \( M \).

Usage

```r
is.inCH(p, M)
```

Arguments

- `p` A \( d \)-dimensional vector
- `M` An \( r \) by \( d \) matrix. Each row of \( M \) is a \( d \)-dimensional vector.

Details

This function depends on the package `Rglpk` to solve a constrained linear optimization problem in order to determine an answer. The question of whether \( p \) is in a closed convex set \( S \) may be formulated as the question of whether there exists a separating hyperplane between \( p \) and \( S \), which may in turn be formulated as the question of whether the maximum possible value of a linear function, subject to constraints, has a strictly positive solution.
Note that the answer given could be incorrect simply due to rounding error if the true maximum is close to zero. For this reason, the package rcdd, which produces exact rational-number solutions to linear programs, could be used instead of rg1pk. However, this approach would require more computing and would therefore be slower.

Value

Logical, telling whether \( p \) is in the closed convex hull of the points in \( M \).

References


kapferer

Kapferer’s tailor shop data

Description

This well-known social network dataset, collected by Bruce Kapferer in Zambia from June 1965 to August 1965, involves interactions among workers in a tailor shop as observed by Kapferer himself. Here, an interaction is defined by Kapferer as "continuous uninterrupted social activity involving the participation of at least two persons"; only transactions that were relatively frequent are recorded. All of the interactions in this particular dataset are "sociational", as opposed to "instrumental". Kapferer explains the difference (p. 164) as follows:

"I have classed as transactions which were sociational in content those where the activity was markedly convivial such as general conversation, the sharing of gossip and the enjoyment of a drink together. Examples of instrumental transactions are the lending or giving of money, assistance at times of personal crisis and help at work."

Kapferer also observed and recorded instrumental transactions, many of which are unilateral (directed) rather than reciprocal (undirected), though those transactions are not recorded here. In addition, there was a second period of data collection, from September 1965 to January 1966, but these data are also not recorded here. All data are given in Kapferer’s 1972 book on pp. 176-179. During the first time period, there were 43 individuals working in this particular tailor shop; however, the better-known dataset includes only those 39 individuals who were present during both time collection periods. (Missing are the workers named Lenard, Peter, Lazarus, and Laurent.) Thus, we give two separate network datasets here: kapferer is the well-known 39-individual dataset, whereas kapferer2 is the full 43-individual dataset.

Usage

data(kapferer)

Format

Two network objects, kapferer and kapferer2. The kapferer dataset contains only the 39 individuals who were present at both data-collection time periods. However, these data only reflect data collected during the first period. The individuals’ names are included as a nodal covariate called names.
Source

Original source: Kapferer, Bruce (1972), Strategy and Transaction in an African Factory, Manchester University Press.

---

lasttoggle

Storing last toggle information in a network

Description

An informal extension to network objects allowing some limited temporal information to be stored.

Details

WARNING: THIS DOCUMENTATION IS PROVIDED AS A COURTESY, AND THE API DESCRIBED IS SUBJECT TO CHANGE WITHOUT NOTICE, DOWN TO COMPLETE REMOVAL. NOT ALL FUNCTIONS THAT COULD SUPPORT IT DO. USE AT YOUR OWN RISK.

While networkDynamic provides a flexible, consistent method for storing dynamic networks, the C routines of ergm and tergm required a simpler and more lightweight representation. This representation consisted of a single integer representing the time stamp and an integer vector of length to network.dyadcount(nw) — the number of potential ties in the network, giving the last time point during which each of the dyads in the network had changed.

Though this is an API intended for internal use, some functions, like stergm (for EGMME), simulate, and summary can be passed networks with this information using the following network (i.e., `network`) attributes:

- `time` the time stamp associated with the network
- `lasttoggle` a vector of length `network.dyadcount(nw)`, giving the last change time associated with each dyad. See the source code of ergm internal functions `to.matrix.lasttoggle`, `ergm.el.lasttoggle`, and `to.lasttoggle.matrix` for how they are serialized.

For technical reasons, the tergm routines treat the lasttoggle time points as shifted by −1. Again, this API is subject to change without notice.

---

logLik.ergm

A logLik method for ergm.

Description

A function to return the log-likelihood associated with an ergm fit, evaluating it if necessary. logLikNull computes, when possible (see Value), the log-probability of observing the observed, unconstrained dyads of the network observed under the null model.
Usage

```r
S3 method for class 'ergm'
logLik(object,
 add=FALSE,
 force.reeval=FALSE,
 eval.loglik=add || force.reeval,
 control=control.logLik.ergm(),
...)
```

```r
S3 method for class 'ergm'
logLikNull(object, ...)
```

Arguments

- `object` An `ergm` fit, returned by `ergm`.
- `add` Logical: If TRUE, instead of returning the log-likelihood, return `object` with log-likelihood value set.
- `force.reeval` Logical: If TRUE, reestimate the log-likelihood even if `object` already has an estimate.
- `eval.loglik` Logical: If TRUE, evaluate the log-likelihood if not set on `object`.
- `control` A list of control parameters for algorithm tuning. Constructed using `control.logLik.ergm`.
- `...` Other arguments to the likelihood functions.

Details

If the log-likelihood was not computed for `object`, produces an error unless `eval.loglik=TRUE`

Value

The form of the output of `logLik.ergm` depends on `add`: add=FALSE (the default), a `logLik` object. If add=TRUE (the default), an `ergm` object with the log-likelihood set.

`logLikNull` returns an object of type `logLik` if it is able to compute the null model probability, and NA otherwise.

As of version 3.1, all likelihoods for which `logLikNull` is not implemented are computed relative to the reference measure. (I.e., a null model, with no terms, is defined to have likelihood of 0, and all other models are defined relative to that.)

References

mcmc.diagnostics

Conduct MCMC diagnostics on an ergm fit

Description

This function prints diagnostic information and creates simple diagnostic plots for the MCMC sampled statistics produced from a fit.

Usage

```r
mcmc.diagnostics(object,
 center=TRUE,
 curved=TRUE,
 vars.per.page=3,
 ...)```

See Also

`logLik`, `ergm.bridge.llr`, `ergm.bridge.dindstart.llk`

Examples

```r
# See help(ergm) for a description of this model. The likelihood will
# not be evaluated.
data(florentine)
## Not run:
# The default maximum number of iterations is currently 20. We'll only
# use 2 here for speed's sake.
gest <- ergm(fomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE)
gest <- ergm(fomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE, 
control=control.ergm(MCMLE.maxit=2))
# Log-likelihood is not evaluated, so no deviance, AIC, or BIC:
summary(gest)
# Evaluate the log-likelihood and attach it to the object.

# The default number of bridges is currently 20. We'll only use 3 here
# for speed's sake.
gest.logLik <- logLik(gest, add=TRUE)
gest.logLik <- logLik(gest, add=TRUE, control=control.logLik.ergm(nsteps=3))
# Deviances, AIC, and BIC are now shown:
summary(gest.logLik)
# Null model likelihood can also be evaluated, but not for all constraints:
logLikNull(gest) # == network.dyadcount(fomarriage)*log(1/2)

## End(Not run)
```
Arguments

object
An ergm object. See documentation for `ergm`.

center
Logical: If TRUE, center the samples on the observed statistics.

curved
Logical: If TRUE, summarize the curved statistics (evaluated at the MLE of any non-linear parameters), rather than the raw components of the curved statistics.

vars.per.page
Number of rows (one variable per row) per plotting page. Ignored if `latticeExtra` package is not installed.

... Additional arguments, to be passed to plotting functions.

Details

The plots produced are a trace of the sampled output and a density estimate for each variable in the chain. The diagnostics printed include correlations and convergence diagnostics.

Recent changes in the ergm estimation algorithm mean that these plots can no longer be used to ensure that the mean statistics from the model match the observed network statistics. For that functionality, please use the GOF command: `gof(object, GOF=~model)`.

In fact, an ergm output object contains the matrix of statistics from the MCMC run as component Dsample. This matrix is actually an object of class `mcmc` and can be used directly in the coda package to assess MCMC convergence. *Hence all MCMC diagnostic methods available in coda are available directly.* See the examples and http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml.

More information can be found by looking at the documentation of `ergm`.

Value

`mcmc.diagnostics.ergm` returns some degeneracy information, if it is included in the original object. The function is mainly used for its side effect, which is to produce plots and summary output based on those plots.

References

This function is based on the coda package It is based on the the R function `raftery.diag` in coda. `raftery.diag`, in turn, is based on the FORTRAN program `gibbsit` written by Steven Lewis which is available from the Statlib archive.

See Also

`ergm`, network package, coda package, `summary.ergm`
Examples

```r
## Not run:
#
data(florentine)
#
# test the mcmc.diagnostics function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)
#
# Plot the probabilities first
#
mcmc.diagnostics(gest)
#
# Use coda directly
#
library(coda)
#
plot(gest$sample, ask=FALSE)
#
# A full range of diagnostics is available
# using codamenu()
#
## End(Not run)
```

molecule
Synthetic network with 20 nodes and 28 edges

Description

This is a synthetic network of 20 nodes that is used as an example within the `ergm` documentation. It has an interesting elongated shape - reminiscent of a chemical molecule. It is stored as a `network` object.

Usage

```r
data(molecule)
```

See Also

`florentine`, `sampson`, `network`, `plot.network`, `ergm`
network.update

Replaces the sociomatrix in a network object

Description

Replaces the edges in a network object with the edges corresponding to the sociomatrix specified by newmatrix. See ergm for more information.

Usage

network.update(nw, newmatrix, matrix.type=NULL, output="network",
ignore.nattr = c("bipartite", "directed", "hyper",
"loops", "mnext", "multiple", "n"), ignore.vattr = c())

Arguments

nw a network object. See documentation for the network package.
newmatrix Either an adjacency matrix (a matrix of zeros and ones indicating the presence of a tie from i to j) or an edgelist (a two-column matrix listing origin and destination node numbers for each edge; note that in an undirected matrix, the first column should be the smaller of the two numbers).
matrix.type One of "adjacency" or "edgelist" telling which type of matrix newmatrix is. Default is to use the which.matrix.type function.
output Currently unused.
ignore.nattr character vector of the names of network-level attributes to ignore when updating network objects (defaults to standard network properties)
ignore.vattr character vector of the names of vertex-level attributes to ignore when updating network objects

Value

network.update returns a new network object with the edges specified by newmatrix and network and vertex attributes copied from the input network nw. Input network is not modified.

See Also

ergm, network

Examples

#
data(florentine)
#
test the network.update function
#
Create a Bernoulli network
rand.net <- network(network.size(flomarriage))

store the sociomatrix
rand.mat <- rand.net[,]
Update the network
network.update(fomarriage, rand.mat, matrix.type="adjacency")
Try this with an edgelist
rand.mat <- as.matrix.network.edgelist(fomarriage)[1:5,]
network.update(fomarriage, rand.mat, matrix.type="edgelist")

plot.ergm
Plotting Method for class ergm

Description

plot.ergm is the plotting method for *ergm* objects.
It plots the MCMC diagnostics via the *mcmc.diagnostics* function.
See *ergm* for more information on how to fit these models.

Usage

```r
## S3 method for class 'ergm'
plot(x, ..., mle=FALSE, comp.mat = NULL,
     label = NULL, label.col = "black",
     xlab, ylab, main, label.cex = 0.8, edge.lwd = 1,
     edge.col=1, al = 0.1,
     contours=0, density=FALSE, only.subdens = FALSE,
     drawarrows=FALSE,
     contour.color=1, plotnetwork=FALSE, pie = FALSE, piesize=0.07,
     vertex.col=1, vertex.pch=19, vertex.cex=2,
     mycol=c("black","red","green","blue","cyan",
             "magenta","orange","yellow","purple"),
     mypch=15:19, mycex=2:10)
```

Arguments

- **x**
 - an R object of class *ergm*. See documentation for *ergm*.
- **mle**
 - Plots the network using the MLE of the positions for latent models.
- **pie**
 - For latent clustering models, each node is drawn as a pie chart representing the probabilities of cluster membership.
- **piesize**
 - The size of the pie charts.
- **contours**
 - For latent models, plots a contours by contours array of the network with one contour per network corresponding to the posterior distribution of each of the nodes.
- **contour.color**
 - Color of the contour lines.
- **density**
 - If density=TRUE, plots the density of the posterior position of the nodes. If density=c(nr,nc), plots a nr by nc array of density estimates for each cluster.
only.subdens If density=c(nr,nc), only plots the densities of the clusters, not the overall density.
drawarrows If density=TRUE, draws the ties on the density plot.
plotnetwork If density=c(nr,nc), a plot of the network is also shown.
comp.mat For latent models, the positions are Procrustes transformed to look like comp.mat.
label A vector of the same length as the number of nodes containing the labels of the nodes.
label.col The color to be used for plotting the labels.
label.cex The size of the node labels.
xlab Title for the x axis.
ylab Title for the y axis.
main The main title for the network.
edge.lwd The line width for the arrows between nodes.
edge.col The color of the arrows between nodes.
al The length of the arrow heads.
vertex.col The color of the nodes as defined by mycol. Can be specified as an attribute of the network used in the model.
vertex.pch The plotting character of the nodes as defined by mypch. Can be specified as an attribute of the network used in the model. By default it is 15 - a red square.
vertex.cex The size of the nodes as defined by mycex. Can be specified as an attribute of the network used in the model.
mycol Vector of colors to be used. Defaults to: c("black","red","green","blue","cyan","magenta","orange","yellow","purple")
mypch Vector of plotting characters to be used. Defaults to:
mycex Vector of character expansion values.
... Other optional arguments to be used by the plot function.

Details

Plots the results of an ergm fit.

More information can be found by looking at the documentation of ergm.

Value

NULL

See Also

ergm, network, plot.network, plot, add.contours
Examples

```r
## Not run:
#
# The example assumes you have the 'latentnet' package installed.
#
# Using Sampson's Monk data, let's fit a
# simple latent position model
#
data(sampson)
#
# Get the group labels
#
samp.labs <- substr(get.vertex.attribute(samplike,"group"),1,1)
#
samp.fit <- ergm(samplike ~ latent(k=2), burnin=10000,
#                  MCMCSamplesize=2000, interval=30)
#
# See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
# Plot the fit
#
plot(samp.fit,label=samp.labs, vertex.col="group")
#
# Using Sampson's Monk data, let's fit a latent clustering model
#
samp.fit <- ergm(samplike ~ latentcluster(k=2, ngroups=3), burnin=10000,
#                  MCMCSamplesize=2000, interval=30)
#
# See if we have convergence in the MCMC
mcmc.diagnostics(samp.fit)
#
# Let's look at the goodness of fit:
#
plot(samp.fit,label=samp.labs, vertex.col="group")
plot(samp.fit,pie=TRUE,label=samp.labs)
plot(samp.fit,density=c(2,2))
plot(samp.fit,contours=5,contour.color="red")
plot(samp.fit,density=TRUE,drawarrows=TRUE)
add.contours(samp.fit,nlevels=8,lwd=2)
points(samp.fit$mkl,pch=19,col=samp.fit$class)
```

End(Not run)
Description

plot.gofobject plots diagnostics such as the degree distribution, geodesic distances, shared partner distributions, and reachability for the goodness-of-fit of exponential family random graph models. See ergm for more information on these models.

Usage

S3 method for class 'gofobject'
plot(x, ...,
 cex.axis=0.7, plotlogodds=FALSE,
 main = "Goodness-of-fit diagnostics",
 normalize.reachability=FALSE,
 verbose=FALSE)

Arguments

x an object of class gofobject, typically produced by the gof.ergm or gof.formula functions. See the documentation for these.

cex.axis Character expansion of the axis labels relative to that for the plot.

plotlogodds Plot the odds of a dyad having given characteristics (e.g., reachability, minimum geodesic distance, shared partners). This is an alternative to the probability of a dyad having the same property.

main Title for the goodness-of-fit plots.

normalize.reachability Should the reachability proportion be normalized to make it more comparable with the other geodesic distance proportions.

verbose Provide verbose information on the progress of the plotting.

... Additional arguments, to be passed to the plot function.

Details

gof.ergm produces a sample of networks randomly drawn from the specified model. This function produces a plot of the summary measures.

Value

none

See Also

gof.ergm, gof.formula, ergm, network, simulate.ergm

Examples

Not run:
#
data(florentine)
#
test the gof.ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

#
Plot the probabilities first
#
gofflo <- gof(gest)
gofflo
plot(gofflo)
#
And now the odds
#
plot(gofflo, plotlogodds=TRUE)
#
Use the formula version
#
gof(flomarriage ~ edges + kstar(2), coef=c(-1.6339, 0.0049))

End(Not run)

plot.network.ergm
Two-Dimensional Visualization of Networks

Description
plot.network.ergm produces a simple two-dimensional plot of the network object *x*. A variety of options are available to control vertex placement, display details, color, etc. The function is based on the plotting capabilities of the *network* package with additional pre-processing of arguments. Some of the capabilities require the *latentnet* package. See *plot.network* in the *network* package for details.

Usage

```r
## S3 method for class 'ergm'
plot.network(x,
             attrname=NULL,
             label=network.vertex.names(x),
             coord=NULL,
             jitter=TRUE,
             thresh=0,
             usearrows=TRUE,
             mode="fruchtermanreingold",
             displayisolates=TRUE,
             interactive=FALSE,
             xlab=NULL,
             ylab=NULL,
```
plot.network.ergm

xlim=NULL,
ylim=NULL,
pad=0.2,
label.pad=0.5,
display.labels=FALSE,
boxed.labels=TRUE,
label.pos=0,
label.bg="white",
vertex.sides=8,
vertex.rot=0,
arrowshead.cex=1,
label.cex=1,
loop.cex=1,
vertex.cex=1,
edge.col=1,
label.col=1,
vertex.col=2,
label.border=1,
vertex.border=1,
edge.lty=1,
label.lty=NA,
vertex.lty=1,
edge.lwd=0,
label.lwd=par("lwd"),
edge.len=0.5,
edge.curve=0.1,
edge.steps=50,
loop.steps=20,
object.scale=0.01,
uselen=FALSE,
usecurve=FALSE,
suppress.axes=TRUE,
vertices.last=TRUE,
new=TRUE,
layout.par=NULL,
cex.main=par("cex.main"),
cex.sub=par("cex.sub"),
seed=NULL,
latent.control=list(maxit=500,
 trace=0,
 dyadsample=10000,
 penalty.sigma=c(5,0.5),
nsubsample=200),
colornames="rainbow",
verbose=FALSE,
latent=FALSE,
...
Arguments

x
an object of class `network`.

attrname
an optional edge attribute, to be used to set edge values.

label
a vector of vertex labels, if desired; defaults to the vertex labels returned by `network.vertex.names`.

coord
user-specified vertex coordinates, in an NCOL(dat)x2 matrix. Where this is specified, it will override the **mode** setting.

jitter
boolean; should the output be jittered?

thresh
real number indicating the lower threshold for tie values. Only ties of value >**thresh** are displayed. By default, **thresh**=0.

usearrows
boolean; should arrows (rather than line segments) be used to indicate edges?

mode
the vertex placement algorithm; this must correspond to a `network.layout` function. These include "latent", "latentPrior", and "fruchtermanreingold".

displayisolates
boolean; should isolates be displayed?

interactive
boolean; should interactive adjustment of vertex placement be attempted?

xlab
x axis label.

ylab
y axis label.

xlim
the x limits (min, max) of the plot.

ylim
the y limits of the plot.

pad
amount to pad the plotting range; useful if labels are being clipped.

label.pad
amount to pad label boxes (if **boxed.labels**=TRUE), in character size units.

displaylabels
boolean; should vertex labels be displayed?

boxed.labels
boolean; place vertex labels within boxes?

label.pos
position at which labels should be placed, relative to vertices. 0 results in labels which are placed away from the center of the plotting region; 1, 2, 3, and 4 result in labels being placed below, to the left of, above, and to the right of vertices (respectively); and **label.pos**=5 results in labels which are plotted with no offset (i.e., at the vertex positions).

label.bg
background color for label boxes (if **boxed.labels**=TRUE); may be a vector, if boxes are to be of different colors.

vertex.sides
number of polygon sides for vertices; may be given as a vector or a vertex attribute name, if vertices are to be of different types.

vertex.rot
angle of rotation for vertices (in degrees); may be given as a vector or a vertex attribute name, if vertices are to be rotated differently.

arrowhead.cex
expansion factor for edge arrowheads.

label.cex
character expansion factor for label text.

loop.cex
expansion factor for loops; may be given as a vector or a vertex attribute name, if loops are to be of different sizes.

vertex.cex
expansion factor for vertices; may be given as a vector or a vertex attribute name, if vertices are to be of different sizes.
edge.col color for edges; may be given as a vector, adjacency matrix, or edge attribute name, if edges are to be of different colors.

label.col color for vertex labels; may be given as a vector or a vertex attribute name, if labels are to be of different colors.

vertex.col color for vertices; may be given as a vector or a vertex attribute name, if vertices are to be of different colors.

label.border label border colors (if boxed.labels==TRUE); may be given as a vector, if label boxes are to have different colors.

vertex.border border color for vertices; may be given as a vector or a vertex attribute name, if vertex borders are to be of different colors.

edge.lty line type for edge borders; may be given as a vector, adjacency matrix, or edge attribute name, if edge borders are to have different line types.

label.lty line type for label boxes (if boxed.labels==TRUE); may be given as a vector, if label boxes are to have different line types.

vertex.lty line type for vertex borders; may be given as a vector or a vertex attribute name, if vertex borders are to have different line types.

edge.lwd line width scale for edges; if set greater than 0, edge widths are scaled by edge.lwd*dat. May be given as a vector, adjacency matrix, or edge attribute name, if edges are to be of different line widths.

label.lwd line width for label boxes (if boxed.labels==TRUE); may be given as a vector, if label boxes are to have different line widths.

edge.len if uselen==TRUE, curved edge lengths are scaled by edge.len.

edge.curve if usecurve==TRUE, the extent of edge curvature is controlled by edge.curv. May be given as a fixed value, vector, adjacency matrix, or edge attribute name, if edges are to have different levels of curvature.

edge.steps for curved edges (excluding loops), the number of line segments to use for the curve approximation.

loop.steps for loops, the number of line segments to use for the curve approximation.

object.scale base length for plotting objects, as a fraction of the linear scale of the plotting region. Defaults to 0.01.

uselen boolean; should we use edge.len to rescale edge lengths?

usecurve boolean; should we use edge.curve?

suppress.axes boolean; suppress plotting of axes?

vertices.last boolean; plot vertices after plotting edges?

new boolean; create a new plot? If new==FALSE, vertices and edges will be added to the existing plot.

layout.par parameters to the network.layout function specified in mode.

cex.main Character expansion for the plot title.

cex.sub Character expansion for the plot sub-title.

seed Integer for seeding random number generator. See set.seed.
latent.control A list of parameters to control the latent and latentPrior models. dyadsample determines the size above which to sample the latent dyads; see ergm and optim for details.

colornames A vector of color names that can be selected by index for the plot. By default it is colors().

verbose logical; if this is TRUE, we will print out more information as we run the function.

latent logical; use a two-dimensional latent space model based on the MLE fit. See documentation for ergmm() in latentnet.

... additional arguments to plot.

Details

plot.network is a version of the standard network visualization tool within the sna package. By means of clever selection of display parameters, a fair amount of display flexibility can be obtained. Network layout – if not specified directly using coord – is determined via one of the various available algorithms. These are (briefly) as follows:

1. latentPrior: Use a two-dimensional latent space model based on a Bayesian minimum Kullback-Leibler fit. See documentation for latent() in ergm.
2. random: Vertices are placed (uniformly) randomly within a square region about the origin.
3. circle: Vertices are placed evenly about the unit circle.
4. circrand: Vertices are placed in a “Gaussian donut,” with distance from the origin following a normal distribution and angle relative to the X axis chosen (uniformly) randomly.
5. eigen, princoord: Vertices are placed via (the real components of) the first two eigenvectors of:
 (a) eigen: the matrix of correlations among (concatenated) rows/columns of the adjacency matrix
 (b) princoord: the raw adjacency matrix.
6. mds, rmds, geodist, adj, seham: Vertices are placed by a metric MDS. The distance matrix used is given by:
 (a) mds: absolute row/column differences within the adjacency matrix
 (b) rmds: Euclidean distances between rows of the adjacency matrix
 (c) geodist: geodesic distances between vertices within the network
 (d) adj: \((\max A) - A\), where \(A\) is the raw adjacency matrix
 (e) seham: structural (dis)equivalence distances (i.e., as per sedist in the package sna) based on the Hamming metric
7. spring, springrepulse: Vertices are placed using a simple spring embedder. Parameters for the embedding model are given by embedder.params, in the following order: vertex mass; equilibrium extension; spring coefficient; repulsion equilibrium distance; and base coefficient of friction. Initial vertex positions are in random order around a circle, and simulation proceeds – increasing the coefficient of friction by the specified base value per unit time – until “motion” within the system ceases. If springrepulse is specified, then an inverse-cube repulsion force between vertices is also simulated; this force is calibrated so as to be exactly equal to the force of a unit spring extension at a distance specified by the repulsion equilibrium distance.
print.ergm

Value
None.

Requires
mva

Author(s)
Carter T. Butts <buttsc@uci.edu>

References

See Also
plot

Examples

data(florentine)
plot(fomarriage) #Plot the Florentine Marriage data
plot(network(10)) #Plot a random network
Not run: plot(fomarriage,interactive="points")

print.ergm

Description
print.ergm is the method used to print an ergm object created by the ergm function.

Usage
S3 method for class 'ergm'
print(x, digits = max(3,getOption("digits") - 3), ...)

Arguments
x An ergm object. See documentation for ergm.
digits Significant digits for coefficients
... Additional arguments, to be passed to lower-level functions in the future.
Details
Automatically called when an object of class ergm is printed. Currently, print.ergm summarizes the size of the MCMC sample, the theta vector governing the selection of the sample, and the Monte Carlo MLE.

Value
The value returned is the ergm object itself.

See Also
network, ergm

Examples
```r
data(florentine)
x <- ergm(flomarriage ~ density)
class(x)
x
```

samplk
Longitudinal networks of positive affection within a monastery as a “network” object

Description
Sampson (1969) recorded the social interactions among a group of monks while resident as an experimenter on vision, and collected numerous sociometric rankings. During his stay, a political “crisis in the cloister” resulted in the expulsion of four monks (Nos. 2, 3, 17, and 18) and the voluntary departure of several others - most immediately, Nos. 1, 7, 14, 15, and 16. (In the end, only 5, 6, 9, and 11 remained). Of particular interest is the data on positive affect relations (“liking”), in which each monk was asked if they had positive relations to each of the other monks.

The data were gathered at three times to capture changes in group sentiment over time: samplk1, samplk2, and samplk3. They represent three time points in the period during which a new cohort entered the monastery near the end of the study but before the major conflict began.

Each member ranked only his top three choices on “liking.” (Some subjects offered tied ranks for their top four choices). A tie from monk A to monk B exists if A nominated B as one of his three best friends at that that time point.

samplk3 is a data set of Hoff, Raftery and Handcock (2002).

See also the data set sampson containing the time-aggregated graph samplike.

It is the cumulative tie for “liking” over the three periods. For this, a tie from monk A to monk B exists if A nominated B as one of his three best friends at any of the three time points.

All graphs are stored as network objects. They have three vertex attributes:
group Groups of novices as classified by Sampson: "Loyal", "Outcasts", and "Turks". There is also an interstitial group not represented here.

cloisterville An indicator if attendance the minor seminary of "Cloisterville" before coming to the monastery.

vertex.names The given names of the novices.

This data set is standard in the social network analysis literature, having been modeled by Holland and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), and Fienberg, Meyer, and Wasserman (1981), Hoff, Raftery, and Handcock (2002), etc. This is only a small piece of the data collected by Sampson.

This dataset was updated for version 2.5 (March 2012) to add the `cloisterville` variable and refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8, Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17, Simp_18.

Usage

```r
data(samp1k)
```

Source

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

See Also

`sampson`, `florentine`, `network`, `plot.network`, `ergm`
Description

Sampson (1969) recorded the social interactions among a group of monks while resident as an experimenter on vision, and collected numerous sociometric rankings. During his stay, a political “crisis in the cloister” resulted in the expulsion of four monks (Nos. 2, 3, 17, and 18) and the voluntary departure of several others - most immediately, Nos. 1, 7, 14, 15, and 16. (In the end, only 5, 6, 9, and 11 remained). Of particular interest is the data on positive affect relations (“liking”), in which each monk was asked if they had positive relations to each of the other monks.

The data were gathered at three times to capture changes in group sentiment over time. They represent three time points in the period during which a new cohort entered the monastery near the end of the study but before the major conflict began.

Each member ranked only his top three choices on “liking.”

(Some subjects offered tied ranks for their top four choices). A tie from monk A to monk B exists if A nominated B as one of his three best friends at that that time point.

`samplike` is the time-aggregated graph.

It is the cumulative tie for “liking” over the three periods. For this, a tie from monk A to monk B exists if A nominated B as one of his three best friends at any of the three time points.

The graph is stored as an network objects. It has three vertex attributes:

- **group** Groups of novices as classified by Sampson: "Loyal", "Outcasts", and "Turks". There is also an interstitial group not represented here.
- **cloisterville** An indicator of attendance the minor seminary of “Cloisterville” before coming to the monastery.
- **vertex.names** The given names of the novices.

This data set is standard in the social network analysis literature, having been modeled by Holland and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), and Fienberg, Meyer, and Wasserman (1981), Hoff, Raftery, and Handcock (2002), etc. This is only a small piece of the data collected by Sampson.

This dataset was updated for version 2.5 (March 2012) to add the `cloisterville` variable and refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8, Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17, Simp_18.

Usage

```
data(sampson)
```

Source

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm
References

See Also

florentine, network, plot.network, ergm

san
Use Simulated Annealing to attempt to match a network to a vector of mean statistics

Description

This function attempts to find a network or networks whose statistics match those passed in via the target.stats vector.

Usage

S3 method for class 'formula'

```r
san(object,
    response=NULL,
    references=~Bernoulli,
    constraints=~.,
    target.stats=NULL,
    nsim=1,
    basis=NULL,
    sequential=TRUE,
    control=control.san(),
    verbose=FALSE,
    ...)  
```

S3 method for class 'ergm'

```r
san(object,
    formula=object$formula,
    constraints=object$constraints,
    target.stats=object$target.stats,
    nsim=1,
    basis=NULL,
    sequential=TRUE,
    control=object$control$SAN.control,
    verbose=FALSE,
    ...)  
```
Arguments

object Either a formula or an ergm object. The formula should be of the form \(y \sim <\text{model terms}> \), where \(y \) is a network object or a matrix that can be coerced to a network object. For the details on the possible <model terms>, see ergm-terms. To create a network object in R, use the network() function, then add nodal attributes to it using the %v% operator if necessary.

response EXPERIMENTAL. Name of the edge attribute whose value is to be modeled. Defaults to NULL for simple presence or absence.

reference EXPERIMENTAL. One-sided formula whose RHS gives the reference measure to be used. (Defaults to ~Bernoulli.)

formula (By default, the formula is taken from the ergm object. If a different formula object is wanted, specify it here.)

constraints A one-sided formula specifying one or more constraints on the support of the distribution of the networks being simulated. See the documentation for a similar argument for ergm and see list of implemented constraints for more information. For simulate.formula, defaults to no constraints. For simulate.ergm, defaults to using the same constraints as those with which object was fitted.

target.stats A vector of the same length as the number of terms implied by the formula, which is either object itself in the case of san.formula or object$formula in the case of san.ergm.

nsim Number of desired networks.

basis If not NULL, a network object used to start the Markov chain. If NULL, this is taken to be the network named in the formula.

sequential Logical: If TRUE, the returned draws always use the prior draw as the starting network; if FALSE, they always use the original network.

control A list of control parameters for algorithm tuning; see control.san.

verbose Logical: If TRUE, print out more detailed information as the simulation runs.

... Further arguments passed to other functions.

Value

A network or list of networks that hopefully have network statistics close to the target.stats vector.

search.ergmTerms Search the ergm-terms documentation for appropriate terms

Description

Searches through the ergm.terms help page and prints out a list of terms appropriate for the specified network’s structural constraints, optionally restricting by additional categories and keyword matches.
Usage

search.ergmTerms(keyword, net, categories, name)

Arguments

- keyword: optional character keyword to search for in the text of the term descriptions. Only matching terms will be returned. Matching is case insensitive.
- net: a network object that the term would be applied to, used as template to determine directedness, bipartite, etc.
- categories: optional character vector of category tags to use to restrict the results (i.e. 'curved', 'triad-related')
- name: optional character name of a specific term to return

Details

Uses grep internally to match keywords against the term description, so keywords is currently matched as a single phrase. Category tags will only return a match if all of the specified tags are included in the term.

Value

prints out the name and short description of matching terms, and invisibly returns them as a list. If name is specified, prints out the full definition for the named term.

Author(s)

skyebend@uw.edu

See Also

See also ergm.terms for the complete documentation

Examples

find all of the terms that mention triangles
search.ergmTerms('triangle')

two ways to search for bipartite terms:

search using a bipartite net as a template
myNet<-network.initialize(5,bipartite=3)
search.ergmTerms(net=myNet)

or request the bipartite category
search.ergmTerms(categories='bipartite')

search on multiple categories
search.ergmTerms(categories=c('bipartite','dyad-independent'))

print out the content for a specific term
simulate.ergm

Draw from the distribution of an Exponential Family Random Graph Model

Description

simulate is used to draw from exponential family random network models in their natural parameterizations. See ergm for more information on these models.

Usage

```r
## S3 method for class 'formula'
simulate(object, nsim=1, seed=NULL,
          coef=
          response=NULL, reference=~Bernoulli,
          constraints=~,,
          monitor=NULL,
          basis=NULL,
          statsonly=FALSE,
          esteq=FALSE,
          sequential=TRUE,
          control=control.simulate.formula(),
          verbose=FALSE,
          ...)

## S3 method for class 'ergm'
simulate(object, nsim=1, seed=NULL,
          coef=object$coef,
          response=object$response, reference=object$reference,
          constraints=object$constraints,
          monitor=NULL,
          statsonly=FALSE,
          esteq=FALSE,
          sequential=TRUE,
          control=control.simulate.ergm(),
          verbose=FALSE,
          ...)
```

Arguments

- **object**: an R object. Either a formula or an ergm object. The formula should be of the form `y ~ <model terms>`, where `y` is a network object or a matrix that can be coerced to a network object. For the details on the possible <model terms>, see ergm-terms. To create a network object in R, use the network() function, then add nodal attributes to it using the %v% operator if necessary.
nsim
Number of networks to be randomly drawn from the given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

seed
Random number integer seed. See set.seed.

coeff
Vector of parameter values for the model from which the sample is to be drawn.
If object is of class ergm, the default value is the vector of estimated coeffi-
cients.

response
EXPERIMENTAL. Name of the edge attribute whose value is to be modeled.
Defaults to NULL for simple presence or absence, modeled via binary ERGM
terms. Passing anything but NULL uses valued ERGM terms.

reference
EXPERIMENTAL. A one-sided formula specifying the reference measure (h(y))
to be used. (Defaults to ~Bernoulli.) See help for ERGM reference measures
implemented in the ergm package.

constraints
A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a simi-
lar argument for ergm and see list of implemented constraints for more informa-
tion. For simulate.formula, defaults to no constraints. For simulate.ergm,
defaults to using the same constraints as those with which object was fitted.

monitor
A one-sided formula specifying one or more terms whose value is to be moni-
tored. These terms are appended to the model, along with a coefficient of 0, so
their statistics are returned.

basis
An optional network object to start the Markov chain. If omitted, the default
is the left-hand-side of the formula. If neither a left-hand-side nor a basis is
present, an error results because the characteristics of the network (e.g., size and
directedness) must be specified.

statsonly
Logical: If TRUE, return only the network statistics, not the network(s) them-
selves.

esteq
Logical: If TRUE, compute the sample estimating equations of an ERGM. If
the model is linear, all non-offset statistics are passed. If the model is curved,
the score estimating equations (3.1) by Hunter and Handcock (2006) are given
instead.

sequential
Logical: If FALSE, each of the nsim simulated Markov chains begins at the
initial network. If TRUE, the end of one simulation is used as the start of the
next. Irrelevant when nsim=1.

control
A list of control parameters for algorithm tuning. Constructed using control.simulate.ergm
or control.simulate.formula, which have different defaults.

verbose
Logical: If TRUE, extra information is printed as the Markov chain progresses.

Details
A sample of networks is randomly drawn from the specified model. The model is specified by the
first argument of the function. If the first argument is a formula then this defines the model. If the
first argument is the output of a call to ergm then the model used for that call is the one fit - and
unless coef is specified, the sample is from the MLE of the parameters. If neither of those are given
simulate.ergm

as the first argument then a Bernoulli network is generated with the probability of ties defined by prob or coef.

Note that the first network is sampled after burnin + interval steps, and any subsequent networks are sampled each interval steps after the first.

More information can be found by looking at the documentation of ergm.

Value

If statsonly==TRUE a matrix containing the simulated network statistics. If control$parallel>0, the statistics from each Markov chain are stacked.

Otherwise, if nsim==1, an object of class network. If nsim>1, it returns an object of class network.list: a list of networks with the following attr-style attributes on the list:

- formula The formula used to generate the sample.
- stats The nsim × p matrix of network statistics, where p is the number of network statistics specified in the model.
- control Control parameters used to generate the sample.
- constraints Constraints used to generate the sample.
- reference The reference measure for the sample.
- monitor The monitoring formula.
- response The edge attribute used as a response.

If statsonly==FALSE & control$parallel>0 the returned networks are "interleaved", in the sense that for y[i,j] is the jth network from MCMC chain i, the sequence returned if control$parallel==2 is list(y[1,1], y[2,1], y[1,2], y[2,2], y[1,3], y[2,3], ...). This is different from the behavior when statsonly==TRUE. This detail may change in the future.

This object has summary and print methods.

See Also

ergm, network

Examples

```r
# Let's draw from a Bernoulli model with 16 nodes
# and density 0.5 (i.e., coef = c(0,0))
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0, 0))
#
# What are the statistics like?
#
summary(g.sim ~ edges + mutual)
#
# Now simulate a network with higher mutuality
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0,2))
#```
# How do the statistics look?
#
# Let's draw from a Bernoulli model with 16 nodes
# and tie probability 0.1
#
g.use <- network(16, density=0.1, directed=FALSE)
#
# Starting from this network let's draw 3 realizations
# of a edges and 2-star network
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8,0.03),
                   basis=g.use, control=control.simulate(  
                   MCMC.burnin=1000,  
                   MCMC.interval=100))

g.sim

summary(g.sim)
#
# attach the Florentine Marriage data
#
data(florentine)
#
# fit an edges and 2-star model using the ergm function
#
gest <- ergm(floremarriage ~ edges + kstar(2))

summary(gest)
#
# Draw from the fitted model (satatistics only), and observe the number
# of triangles as well.
#
g.sim <- simulate(gest, nsim=10,  
                   monitor=triangles, statsonly=TRUE,  
                   control=control.simulate.ergm(MCMC.burnin=1000, MCMC.interval=100))

g.sim

---

**summary.ergm**  
*Summarizing ERGM Model Fits*

**Description**

*summary* method for class "erm".

**Usage**

```r
S3 method for class 'ergm'
summary(object, ...,
 digits = max(3,getOption("digits") - 3),
 correlation = FALSE, covariance = FALSE,
 total.variation=TRUE,
   ```
eps = 1e-04)

Arguments

object an object of class "ergm", usually, a result of a call to ergm.
digits Significant digits for coefficients
correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned and printed.
covariance logical; if TRUE, the covariance matrix of the estimated parameters is returned and printed.
total.variation logical; if TRUE, the standard errors reported in the Std. Error column are based on the sum of the likelihood variation and the MCMC variation. If FALSE only the likelihood variation is used. The p-values are based on this source of variation.
es number; indicates the smallest p-value. See printCoefmat.
... Arguments to logLik.ergm

Details

summary.ergm tries to be smart about formatting the coefficients, standard errors, etc.

Value

The function summary.ergm computes and returns a list of summary statistics of the fitted ergm model given in object.

See Also

network, ergm, print.ergm. The model fitting function ergm, summary.

Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

data(florentine)

x <- ergm(flomarriage ~ density)
summary(x)
summary.gofobject  

**Summaries the Goodness-of-Fit Diagnostics on a Exponential Family Random Graph Model**

**Description**

`summary.gofobject` summaries the diagnostics such as the degree distribution, geodesic distances, shared partner distributions, and reachability for the goodness-of-fit of exponential family random graph models. See `ergm` for more information on these models.

**Usage**

```r
S3 method for class 'gofobject'
summary(object, ...)
```

**Arguments**

- `object`: an object of class `gofobject`, typically produced by the `gof.ergm` or `gof.formula` functions. See the documentation for these.
- `...`: Additional arguments, to be passed to the plot function.

**Details**

`gof.ergm` produces a sample of networks randomly drawn from the specified model. This function produces a print out the summary measures.

**Value**

none

**See Also**

`gof.ergm`, `gof.formula`, `ergm`, `network`, `simulate.ergm`

**Examples**

```r
Not run:
#
data(florentine)
#
test the gof.ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

#
Plot the probabilities first
```
### summary.network.list

*Summarizing network.list objects*

#### Description

`summary` and `print` methods for class `network.list`.

#### Usage

```r
S3 method for class 'network.list'
summary(object, stats.print=TRUE, net.print=FALSE, net.summary=FALSE, ...)

S3 method for class 'network.list'
print(x, stats.print=FALSE, ...)
```

#### Arguments

- `object, x`: an object of class `network.list`, such as the output from `simulate.ergm`
- `stats.print`: Logical: If TRUE, print network statistics.
- `net.print`: Logical: If TRUE, print network overviews.
- `net.summary`: Logical: If TRUE, print network summaries.
- `...`: Additional arguments to be passed to lower-level functions.

#### Value

The `summary.network.list` function returns a `summary.network` object. The `print.summary.list` function calls the `summary.network.list` function but returns the `network.list` object.

#### See Also

`simulate.ergm`
Examples

# Draw from a Bernoulli model with 16 nodes
# and tie probability 0.1
#
g.use <- network(16, density=0.1, directed=FALSE)
#
# Starting from this network let's draw 3 realizations
# of a model with edges and 2-star terms
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8, 0.03),
                 basis=g.use, control=control.simulate(
                 MCMC.burnin=100000,
                 MCMC.interval=1000))

print(g.sim)
summary(g.sim)

summary.statistics Calculation of network or graph statistics

Description

Used to calculate the specified statistics for an observed network if its argument is a formula for an
\texttt{ergm}. See \texttt{ergm-terms} for more information on the statistics that may be specified.

Usage

```r
Default S3 method:
summary.statistics(object, response=NULL, ..., basis=NULL)
S3 method for class 'matrix'
summary.statistics(object, response=NULL, ..., basis=NULL)
S3 method for class 'network'
summary.statistics(object, response=NULL, ..., basis=NULL)
S3 method for class 'network.list'
summary.statistics(object, response=NULL, ..., basis=NULL)
S3 method for class 'formula'
summary.statistics(object, ..., basis=NULL)
S3 method for class 'ergm'
summary.statistics(object, ..., basis=NULL)
```

Arguments

- \texttt{object} Either an \texttt{R formula} object (see above) or an \texttt{ergm} model object. In the latter case, \texttt{summary.statistics} is called for the \texttt{object$formula} object. In the former case, \texttt{object} is of the form \texttt{y ~ <model terms>}, where \texttt{y} is a \texttt{network} object or a matrix that can be coerced to a \texttt{network} object. For the details on the possible \texttt{<model terms>}, see \texttt{ergm-terms}. To create a \texttt{network} object in \texttt{R}, use the \texttt{network()} function, then add nodal attributes to it using the \%\% operator if necessary.
response

Name of the edge attribute whose value is to be modeled. Defaults to NULL for simple presence or absence, modeled via binary ERGM terms. Passing anything but NULL uses valued ERGM terms.

basis

An optional network object relative to which the global statistics should be calculated.

... further arguments passed to or used by methods.

Details

If object is of class formula, then summary may be used in lieu of summary.statistics because summary.formula calls the summary.statistics function.

The function actually cumulates the change statistics when removing edges from the observed network one by one until the empty network results. Since each model term has a prespecified value (zero by default) for the corresponding statistic(s) on an empty network, these change statistics give the absolute statistics on the original network.

summary.formula for networks understands the lasttoggle "API".

Value

A vector of statistics measured on the network.

See Also

ergm, network, ergm-terms

Examples

# # Lets look at the Florentine marriage data # data(florentine) # # test the summary.statistics function # summary(floremarriage ~ edges + kstar(2)) m <- as.matrix(floremarriage) summary(m ~ edges) # twice as large as it should be summary(m ~ edges, directed=FALSE) # Now it's correct

vcov.ergm

Extract Model Covariance Matrix

Description

vcov is a method which extracts the covariance matrix from the output object returned by the ergm estimation.
### Usage

```r
S3 method for class 'ergm'
v cov(object, sources=c("all","model","estimation"), ...)
```

### Arguments

- `object`: The `ergm` output object.
- `sources`: Specify whether to return the covariance matrix from the ERGM model, the estimation process, or both combined.
- `...`: other arguments.

### Value

Coefficients extracted from the model object `object`.

### See Also

- `coef.ergm`

### Examples

```r
data(florentine)
fit <- ergm(flomarriage ~ edges + concurrent)
v cov(fit)
```

---

### Description

Compute weighted median.

### Usage

```r
wtd.median (x, na.rm = FALSE, weight=FALSE)
```

### Arguments

- `x`: Vector of data, same length as `weight`
- `na.rm`: Logical: Should NAs be stripped before computation proceeds?
- `weight`: Vector of weights

### Details

Uses a simple algorithm based on sorting.

### Value

Returns an empirical .5 quantile from a weighted sample.
Index

*Topic **classes**
as.network.numeric, 7

*Topic **datasets**
ecoli, 26
faux.magnolia.high, 72
faux.mesa.high, 73
flobusiness, 76
flomarriage, 77
florentine, 78
g4, 79
kapferer, 86
molecule, 91
samplk, 103
sampson, 104

*Topic **graphs**
as.network.numeric, 7
plot.gofobject, 95
plot.network.ermg, 97
summary.gofobject, 114

*Topic **hplot**
plot.network.ermg, 97

*Topic **models**
anova.ermg, 5
coef.ermg, 8
control.ermg, 9
control.ermg.bridge, 17
control.gof, 18
control.loglik.ermg, 20
control.san, 22
control.simulate, 24
ermg, 28
ermg-constraints, 35
ermg-package, 3
ermg-references, 39
ermg-terms, 40
ermg.allstats, 60
ermg.exact, 65
ermg_MH_proposals, 68
ermgMPLE, 66

Getting.Started, 79
gof, 81
logLik.ermg, 87
mcmc.diagnostics, 89
network.update, 92
plot.ermg, 93
print.ermg, 102
san, 106
simulate.ermg, 109
summary.ermg, 112
summary.network.list, 115
summary.statistics, 116

*Topic **model**
enformulate.curved, 27
ermg.bridge.dindstart.llk, 62
ermg.bridge.llr, 64
fix.curved, 75
is.durational, 84
is.dyad.independent, 84

*Topic **package**
ermg-package, 3
Getting.Started, 79

*Topic **regression**
anova.ermg, 5
coef.ermg, 8
ermgMPLE, 66
summary.ermg, 112
summary.network.list, 115

*Topic **robust**
wtd.median, 118
\%\%\%, 60, 87
\%\%\%, 60

absdiff (ermg-terms), 40
absdiffcat (ermg-terms), 40
altkstar (ermg-terms), 40
anova, 6
anova.ermg, 5
anova.ermglist, 6
anova.ermglist (anova.ermg), 5
as.network.numeric, 7, 7
asymmetric (ergm-terms), 40
atleast (ergm-terms), 40
attr, 111
b1concurrent (ergm-terms), 40
b1degrange (ergm-terms), 40
b1degree (ergm-terms), 40
b1factor (ergm-terms), 40
b1mindegree (ergm-terms), 40
b1nodematch (ergm-terms), 40
b1star (ergm-terms), 40
b1starmix (ergm-terms), 40
b1twostar (ergm-terms), 40
b2concurrent (ergm-terms), 40
b2degrange (ergm-terms), 40
b2degree (ergm-terms), 40
b2factor (ergm-terms), 40
b2mindegree (ergm-terms), 40
b2nodematch (ergm-terms), 40
b2star (ergm-terms), 40
b2starmix (ergm-terms), 40
b2twostar (ergm-terms), 40
balance (ergm-terms), 40
Bernoulli (ergm-references), 39
coef, 113
coef.ermg, 8, 118
coefficients.ermg (coef.ermg), 8
coincidence (ergm-terms), 40
concurrent (ergm-terms), 40
concurrentties (ergm-terms), 40
ConstraintImplications
(ergm-constraints), 35
constraints-ermg (ergm-constraints), 35
consstraints.ermg (ergm-constraints), 35
control.ermg, 9, 20, 26, 29, 30, 32, 38, 67
control.ermg.bridge, 16, 17, 63, 64
control.gof, 17, 18, 26
control.gof.ermg, 82
control.gof.formula, 82
control.logLik.ermg, 20, 88
control.san, 13, 22, 107
control.simulate, 17, 20, 24
control.simulate.ermg, 110
control.simulate.formula, 110
control$drop, 31
control$init.method, 11, 12
catriad (ergm-terms), 40
cetiple (ergm-terms), 40
cycle (ergm-terms), 40
cylicalties (ergm-terms), 40
cylicalweights (ergm-terms), 40
degree, 111
degcor (ergm-terms), 40
degcrossprod (ergm-terms), 40
degrange (ergm-terms), 40
degrange (ergm-terms), 40
degree (ergm-terms), 40
degreepopularity (ergm-terms), 40
density (ergm-terms), 40
DiscUnif (ergm-references), 39
download.packages, 71
dsp (ergm-terms), 40
dyadcov (ergm-terms), 40
ecoli, 26
ecoli1 (ecoli), 26
ecoli2 (ecoli), 26
edgecov (ergm-terms), 40
deges (ergm-terms), 40
enformulate.curved, 12, 27
ERGM constraints, 29
ERGM reference measures, 29, 110
ergm-constraints, 35
ergm-package, 3
ergm-parallel, 38
ergm-references, 39
ergm-terms, 40
ergm.allstats, 60, 63, 66
ergm.bridge.dindstart.11k, 18, 62, 89
ergm.bridge.11r, 18, 62, 63, 64, 89
ergm.constraints (ergm-constraints), 35
ergm.count, 3
ergm.el.lasttoggle (lasttoggle), 87
ergm.exact, 60, 61, 65
ergm.parallel (ergm-parallel), 38
ergm.references (ergm-references), 39
ergm.terms, 107, 108
ergm.terms (ergm-terms), 40
ergm.userterms, 3, 40, 71
ergm_MH_proposals, 68
ergmMPL, 33, 66
esp, 75
InitErgmTerm.balance (ergm-terms), 40
InitErgmTerm.coincidence (ergm-terms), 40
InitErgmTerm.concurrent (ergm-terms), 40
InitErgmTerm.concurrententities (ergm-terms), 40
InitErgmTerm.ctriad (ergm-terms), 40
InitErgmTerm.ctriple (ergm-terms), 40
InitErgmTerm.cycle (ergm-terms), 40
InitErgmTerm.cyclicalties (ergm-terms), 40
InitErgmTerm.degcor (ergm-terms), 40
InitErgmTerm.degcrossprod (ergm-terms), 40
InitErgmTerm.degrange (ergm-terms), 40
InitErgmTerm.degree (ergm-terms), 40
InitErgmTerm.degreeepopularity (ergm-terms), 40
InitErgmTerm.density (ergm-terms), 40
InitErgmTerm.dsp (ergm-terms), 40
InitErgmTerm.dyadcov (ergm-terms), 40
InitErgmTerm.edgecov (ergm-terms), 40
InitErgmTerm.edges (ergm-terms), 40
InitErgmTerm.esp (ergm-terms), 40
InitErgmTerm.gwb1degree (ergm-terms), 40
InitErgmTerm.gwb2degree (ergm-terms), 40
InitErgmTerm.gwdegree (ergm-terms), 40
InitErgmTerm.gwdsp (ergm-terms), 40
InitErgmTerm.gwesp (ergm-terms), 40
InitErgmTerm.gwidegree (ergm-terms), 40
InitErgmTerm.gwnsp (ergm-terms), 40
InitErgmTerm.gwdegree (ergm-terms), 40
InitErgmTerm.hamming (ergm-terms), 40
InitErgmTerm.hammingmix (ergm-terms), 40
InitErgmTerm.idegrange (ergm-terms), 40
InitErgmTerm.idegree (ergm-terms), 40
InitErgmTerm.idegreeepopularity (ergm-terms), 40
InitErgmTerm.intransitive (ergm-terms), 40
InitErgmTerm.isolates (ergm-terms), 40
InitErgmTerm.istar (ergm-terms), 40
InitErgmTerm.kstar (ergm-terms), 40
InitErgmTerm.localtriangle (ergm-terms), 40
InitErgmTerm.m2star (ergm-terms), 40
InitErgmTerm.match (ergm-terms), 40
InitErgmTerm.meandeg (ergm-terms), 40
InitErgmTerm.mutual (ergm-terms), 40
InitErgmTerm.nearsimelian (ergm-terms), 40
InitErgmTerm.nodecov (ergm-terms), 40
InitErgmTerm.nodefactor (ergm-terms), 40
InitErgmTerm.nodeicov (ergm-terms), 40
InitErgmTerm.nodeifactor (ergm-terms), 40
InitErgmTerm.nodemain (ergm-terms), 40
InitErgmTerm.nodematch (ergm-terms), 40
InitErgmTerm.nodemix (ergm-terms), 40
InitErgmTerm.nodeocov (ergm-terms), 40
InitErgmTerm.nodeofactor (ergm-terms), 40
InitErgmTerm.nsp (ergm-terms), 40
InitErgmTerm.odegrange (ergm-terms), 40
InitErgmTerm.odegree (ergm-terms), 40
InitErgmTerm.odegreeepopularity (ergm-terms), 40
InitErgmTerm.opetriadi (ergm-terms), 40
InitErgmTerm.ostar (ergm-terms), 40
InitErgmTerm.receiver (ergm-terms), 40
InitErgmTerm.sender (ergm-terms), 40
InitErgmTerm.simmelian (ergm-terms), 40
InitErgmTerm.simmelianities (ergm-terms), 40
InitErgmTerm.smalldiff (ergm-terms), 40
InitErgmTerm.sociality (ergm-terms), 40
InitErgmTerm.threeapth (ergm-terms), 40
InitErgmTerm.transitive (ergm-terms), 40
InitErgmTerm.transitiveties (ergm-terms), 40
InitErgmTerm.triadcensus (ergm-terms), 40
InitErgmTerm.triangle (ergm-terms), 40
InitErgmTerm.triangles (ergm-terms), 40
InitErgmTerm.tripercent (ergm-terms), 40
InitErgmTerm.triup (ergm-terms), 40
InitErgmTerm.tritriple (ergm-terms), 40
InitErgmTerm.twopath (ergm-terms), 40
InitMHP.blockdiag (ergm_MH_proposals), 68
InitMHP.blockdiagNonObserved (ergm_MH_proposals), 68
InitMHP.blockdiagTNT (ergm_MH_proposals), 68
InitMHP.CondBDegree (ergm_MH_proposals), 68
InitMHP.Cond2Degree
  (ermg_MH_proposals), 68
InitMHP.CondDegree
  (ermg_MH_proposals), 68
InitMHP.CondDegreeDist
  (ermg_MH_proposals), 68
InitMHP.CondDegreeMix
  (ermg_MH_proposals), 68
InitMHP.CondInDegree
  (ermg_MH_proposals), 68
InitMHP.CondInDegreeDist
  (ermg_MH_proposals), 68
InitMHP.ConstantEdges
  (ermg_MH_proposals), 68
InitMHP.fixedas
  (ermg_MH_proposals), 68
InitMHP.randomtoggles
  (ermg_MH_proposals), 68
InitMHP.randomtogglesNonObserved
  (ermg_MH_proposals), 68
InitMHP.TNT
  (ermg_MH_proposals), 68
InitReference.Bernoulli
  (ermg_references), 39
InitReference.DiscUnif
  (ermg_references), 39
InitReference.StdNormal
  (ermg_references), 39
InitReference.Unif
  (ermg_references), 39
InitWtErgTerm.absdiff
  (ermg-terms), 40
InitWtErgTerm.absdifffcat
  (ermg-terms), 40
InitWtErgTerm.atleast
  (ermg-terms), 40
InitWtErgTerm.cyclicalties
  (ermg-terms), 40
InitWtErgTerm.cyclicalweights
  (ermg-terms), 40
InitWtErgTerm.edgecov
  (ermg-terms), 40
InitWtErgTerm.edges
  (ermg-terms), 40
InitWtErgTerm.greaterthan
  (ermg-terms), 40
InitWtErgTerm.ininterval
  (ermg-terms), 40
InitWtErgTerm.match
  (ermg-terms), 40
InitWtErgTerm.mutual
  (ermg-terms), 40
InitWtErgTerm.nodecov
  (ermg-terms), 40
InitWtErgTerm.nodecovar
  (ermg-terms), 40
InitWtErgTerm.nodefactor
  (ermg-terms), 40
InitWtErgTerm.nodeisqrtcovar
  (ermg-terms), 40
InitWtErgTerm.nodemain
  (ermg-terms), 40
InitWtErgTerm.nodematch
  (ermg-terms), 40
InitWtErgTerm.nodemix
  (ermg-terms), 40
InitWtErgTerm.nodecov
  (ermg-terms), 40
InitWtErgTerm.nodeicov
  (ermg-terms), 40
InitWtErgTerm.nodeicovar
  (ermg-terms), 40
InitWtErgTerm.nodeosqrtcovar
  (ermg-terms), 40
InitWtErgTerm.nodesqrtcovar
  (ermg-terms), 40
InitWtErgTerm.nonzero
  (ermg-terms), 40
InitWtErgTerm.transitiveties
  (ermg-terms), 40
InitWtErgTerm.transitiveweights
  (ermg-terms), 40
InitWtMHP.DiscUnif
  (ermg_identifiers), 39
InitWtMHP.DiscUnifNonObserved
  (ermg_identifiers), 39
InitWtMHP.StdNormal
  (ermg_identifiers), 39
InitWtMHP.Unif
  (ermg_identifiers), 39
InitWtMHP.UnifNonObserved
  (ermg_identifiers), 39
intransitive
  (ermg-terms), 40
is.durational
  84
is.dyad.independent
  84
is.inCH
  85
isolates
  (ermg-terms), 40
istar
  (ermg-terms), 40
istar(2)
  54
kapferer
  86
kapferer2 (kapferer), 86
kstar (ergm-terms), 40
kstar(2), 53, 55

last-toggle (lasttoggle), 87
last.toggle (lasttoggle), 87
lasttoggle, 87, 117
latnet, 97, 101
list of implemented constraints, 107, 110

lm, 9
localtriangle (ergm-terms), 40
logLik, 87–89
logLik.ergm, 6, 22, 87, 113
logLikNull (logLik.ergm), 87

m2star (ergm-terms), 40
match (ergm-terms), 40
mcmc.diagnostics, 3, 89, 93
mcmc.diagnostics.ergm, 90
meandeg (ergm-terms), 40
MH proposals (ergm_MH_proposals), 68
molecule, 91
mutual (ergm-terms), 40

nearsimelian (ergm-terms), 40
network, 3, 7, 8, 29, 40, 60, 61, 63–65, 72–74,
76–80, 87, 91, 92, 97, 99, 103, 105,
107, 109–111, 116, 117

network.dyadcount, 87
network.list, 111
network.list (summary.network.list), 115
network.update, 92, 92
network.vertex.names, 99
networkDynamic, 87
nodecov (ergm-terms), 40
nodecovar (ergm-terms), 40
nodefactor (ergm-terms), 40
nodeicov (ergm-terms), 40
nodeicovar (ergm-terms), 40
nodeifactor (ergm-terms), 40
nodesimelian (ergm-terms), 40
nodemain (ergm-terms), 40
nodematch (ergm-terms), 40
nodediff (ergm-terms), 40
nodeicov (ergm-terms), 40
nodeicovar (ergm-terms), 40
nodeifactor (ergm-terms), 40
nodesqrtcovar (ergm-terms), 40

odegrange (ergm-terms), 40
odegree (ergm-terms), 40
odegreepopularity (ergm-terms), 40
operator (ergm-terms), 40
optim, 101
ostar (ergm-terms), 40
ostar(2), 55

parallel (ergm-parallel), 38
parallel processing, 16, 20, 23, 26
parallel.ergm (ergm-parallel), 38
parallel.ergm (ergm-parallel), 38
plot, 101, 102
plot.ergm, 93, 93
plot.gofobject, 83, 95, 96
plot.network, 73, 74, 97, 101
plot.network.ergm, 97, 97
print, 115
print.ergm, 31, 33, 102, 102, 103
print.gofobject (summary.gofobject), 114
print.network.list
(summary.network.list), 115
print.summary.ergm (summary.ergm), 112
printCoefmat, 113

receiver (ergm-terms), 40
references (ergm-references), 39
references.ergm (ergm-references), 39
residuals, 9

samplike (sampson), 104
samplk, 103
samplk1 (samplk), 103
samplk2 (samplk), 103
samplk3 (samplk), 103
sampson, 103, 104
samplk, 13, 23, 24, 106
search.ergmTerms, 41, 60, 107
sender (ergm-terms), 40
set.seed, 16, 18, 20, 22, 23, 100, 110
simelian (ergm-terms), 40
simeliantsies (ergm-terms), 40
simulate, 26, 40, 87, 109
simulate.ergm, 3, 17, 20, 26, 28, 75, 109, 115
simulate.formula, 26
simulate.formula(simulate.ergm), 109
simulate.formula.ergm, 63–65
smalldiff (ergm-terms), 40
sna, 52, 58
sociality (ergm-terms), 40
stergm, 87
sum (ergm-terms), 40
summary, 87, 112, 113, 115, 117
summary (summary.statistics), 116
summary.ergm, 31, 33, 90, 112, 113
summary.gofobject, 114
summary.network, 115
summary.network.list, 115
summary.statistics, 116
tailor (kapferer), 86
tergm, 3, 87
terms.ergm (ergm-terms), 40
terms.ergm (ergm-terms), 40
threepath (ergm-terms), 40
to.lasttoggles.matrix (lasttoggles), 87
to.matrix.lasttoggles (lasttoggles), 87
transitive (ergm-terms), 40
transitiveties (ergm-terms), 40
transitiveweights (ergm-terms), 40
triad.classify, 52, 58
triadcensus (ergm-terms), 40
triangle (ergm-terms), 40
triangles (ergm-terms), 40
tripercent (ergm-terms), 40
ttriad (ergm-terms), 40
ttriple (ergm-terms), 40
twopath (ergm-terms), 40
Unif (ergm-references), 39
vcov.ergm, 117
which.matrix.type, 92
wtd.median, 118