Package ‘gRbase’

February 19, 2015

Version 1.7-0.1

Title A package for graphical modelling in R

Author Søren Højsgaard <sorenh@math.aau.dk> with contributions from Claus Dethlefsen <cld@rn.dk> and Clive Bowsher <C.Bowsher@statslab.cam.ac.uk>

Maintainer Søren Højsgaard <sorenh@math.aau.dk>

Description The gRbase package provides certain general constructs which are used by other graphical modelling packages, in particular by the packages gRain, gRim and gRc.

gRbase contains several datasets relevant for use in connection with graphical models. Almost all datasets used in the book Graphical Models with R (2012) are contained in gRbase.
gRbase implements several graph algorithms (based mainly on representing graphs as adjacency matrices - either in the form of a standard matrix or a sparse matrix). Some graph algorithms are:

(i) maximum cardinality search (for marked and unmarked graphs).
(ii) moralize.
(iii) triangulate.
(iv) junctionTree.

gRbase facilities for array operations,
gRbase implements functions for testing for conditional independence.
gRbase illustrates how hierarchical log-linear models (hllm) may be implemented and describes concept of gmData (graphical meta data). These features, however, are not maintained anymore and remains in gRbase only because there exists a paper describing these facilities: A Common Platform for Graphical Models in R: The gRbase Package, Journal of Statistical Software, Vol 14, No 17, 2005.

License GPL (>= 2)

URL http://people.math.aau.dk/~sorenh/software/gR/

ByteCompile Yes

Encoding latin1

Depends R (>= 3.0.2), methods
Imports Matrix, RBGL, igraph, graph, Rcpp (>= 0.11.1)
Suggests Rgraphviz, microbenchmark
LinkingTo Rcpp (>= 0.11.1), RcppArmadillo, RcppEigen
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-03-23 07:04:39

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrayCombine</td>
<td>3</td>
</tr>
<tr>
<td>astrees</td>
<td>4</td>
</tr>
<tr>
<td>BodyFat</td>
<td>5</td>
</tr>
<tr>
<td>breastcancer</td>
<td>6</td>
</tr>
<tr>
<td>cad</td>
<td>34</td>
</tr>
<tr>
<td>carcass</td>
<td>35</td>
</tr>
<tr>
<td>chestSim</td>
<td>36</td>
</tr>
<tr>
<td>combnPrim</td>
<td>37</td>
</tr>
<tr>
<td>compareModels</td>
<td>38</td>
</tr>
<tr>
<td>compile_propagate</td>
<td>38</td>
</tr>
<tr>
<td>cov2pcor</td>
<td>39</td>
</tr>
<tr>
<td>dietox</td>
<td>40</td>
</tr>
<tr>
<td>dumping</td>
<td>40</td>
</tr>
<tr>
<td>edgeList</td>
<td>41</td>
</tr>
<tr>
<td>getCliques</td>
<td>43</td>
</tr>
<tr>
<td>glist2adjMAT</td>
<td>44</td>
</tr>
<tr>
<td>graph-coercion</td>
<td>45</td>
</tr>
<tr>
<td>graph-operations</td>
<td>46</td>
</tr>
<tr>
<td>gRbase</td>
<td>47</td>
</tr>
<tr>
<td>gRbase-utilities</td>
<td>48</td>
</tr>
<tr>
<td>iplot</td>
<td>49</td>
</tr>
<tr>
<td>is.DAG</td>
<td>49</td>
</tr>
<tr>
<td>lizard</td>
<td>51</td>
</tr>
<tr>
<td>mathmark</td>
<td>52</td>
</tr>
<tr>
<td>mcs</td>
<td>53</td>
</tr>
<tr>
<td>mildew</td>
<td>55</td>
</tr>
<tr>
<td>milkcomp</td>
<td>55</td>
</tr>
<tr>
<td>minimalTriang</td>
<td>56</td>
</tr>
<tr>
<td>moralize</td>
<td>58</td>
</tr>
<tr>
<td>mpd</td>
<td>59</td>
</tr>
<tr>
<td>Nutrimouse</td>
<td>60</td>
</tr>
<tr>
<td>parray</td>
<td>65</td>
</tr>
<tr>
<td>querygraph</td>
<td>67</td>
</tr>
<tr>
<td>random_dag</td>
<td>68</td>
</tr>
<tr>
<td>rats</td>
<td>69</td>
</tr>
<tr>
<td>reinis</td>
<td>70</td>
</tr>
<tr>
<td>rip</td>
<td>70</td>
</tr>
</tbody>
</table>
arrayCombine

Description

Combine arrays into a new array with higher dimension.

Usage

arrayCombine(aa.list, aux)
arrayExtendDomain(aa, bb)

Arguments

aa.list List of arrays.
aux A list with one element. The element must be a vector and the element must be named, e.g. list(Z=c(1,2)).
aa An array
bb A list with additional dimensions to be added, e.g. list(Z=c(1,2), U=c("a","b"))

Value

An array

Note

For two arrays with a common variable, it is not checked that the levels of that variable match. They must match, but it is the users responsibility to check that they do.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>
Examples

```r
## Case 1: t1 and t2 are arrays defined over identical sets of variables:
t1 <- parray(c("y","x1"), c(2,2), 1:4)
t2 <- parray(c("y","x1"), c(2,2), c(-11,-12,-13,14))
tc <- arrayCombine(list(t1,t2), aux=list(Z=c(1,2)))
as.data.frame.table(tc)

## The "auxiliary" variable Z adds a new dimension to the table

## Case 2: t1 and t2 are arrays defined over non-identical sets of variables:
t1 <- parray(c("y","x1"), c(2,2), 1:4)
t2 <- parray(c("y","x2"), c(2,2), c(-11,-12,-13,14))
tc <- arrayCombine(list(t1,t2), aux=list(Z=c(1,2)))
as.data.frame.table(tc)

## The "auxiliary" variable Z adds a new dimension to the table
## When Z=Z1, tc is constant as a function of x2
## When Z=Z2, tc is constant as a function of x1

## Case 3: t1 and t2 are arrays defined over non-identical sets of variables,
## but the variables for t1 is a subset of the variables for t2:
t1 <- parray(c("y","x1"), c(2,2), 1:4)
t2 <- parray(c("y","x1","x2"), c(2,2,2), 11:18)
tc <- arrayCombine(list(t1,t2), aux=list(Z=c(1,2)))
as.data.frame.table(tc)

## The "auxiliary" variable Z adds a new dimension to the table
## When Z=Z1, tc is constant as a function of x2
```

Description

This dataset comes from a study of symptoms of crown dieback, cankers and symptoms caused by other pathogens and pests in ash trees (Fraxinus excelsior). In all 454 trees were observed in two plots. There are 8 categorical variables, 6 of which are binary and two are trichotomous with values representing increasing severity of symptoms, and one continuous variable, tree diameter at breast height (DBH).

Usage

`data(ashtrees)`

Format

A data frame with 454 observations on the following 9 variables.

- `plot` a factor with levels 2 6
- `dieback` a factor with levels 0 1 2
- `dead50` a factor with levels 0 .5 1
References

Examples

data(ashtrees)
maybe str(ashtrees) ; plot(ashtrees) ...
Ankle circumference in cm, a numeric vector
Biceps circumference in cm, a numeric vector
Forearm circumference in cm, a numeric vector
Wrist circumference in cm, a numeric vector

Source
For more information see http://lib.stat.cmu.edu/datasets/bodyfat

References

Examples
```
data(BodyFat)
head(BodyFat)
```

breastcancer

Gene expression signatures for p53 mutation status in 250 breast cancer samples

Description
Perturbations of the p53 pathway are associated with more aggressive and therapeutically refractory tumours. We preprocessed the data using Robust Multichip Analysis (RMA). Dataset has been truncated to the 1000 most informative genes (as selected by Wilcoxon test statistics) to simplify computation. The genes have been standardised to have zero mean and unit variance (i.e. z-scored).

Usage
```
data(breastcancer)
```
Format

A data frame with 250 observations on the following 1001 variables.

A.1053_at a numeric vector
A.200039_s_at a numeric vector
A.200053_at a numeric vector
A.200079_s_at a numeric vector
A.200628_s_at a numeric vector
A.200639_s_at a numeric vector
A.200670_at a numeric vector
A.200687_s_at a numeric vector
A.200710_at a numeric vector
A.200740_s_at a numeric vector
A.200773_x_at a numeric vector
A.200783_s_at a numeric vector
A.200795_at a numeric vector
A.200810_s_at a numeric vector
A.200811_at a numeric vector
A.200822_x_at a numeric vector
A.200840_at a numeric vector
A.200853_at a numeric vector
A.200854_at a numeric vector
A.200855_at a numeric vector
A.20096_at a numeric vector
A.201041_s_at a numeric vector
A.201077_s_at a numeric vector
A.201088_at a numeric vector
A.201104_x_at a numeric vector
A.201114_x_at a numeric vector
A.201115_at a numeric vector
A.201124_at a numeric vector
A.201140_s_at a numeric vector
A.201170_s_at a numeric vector
A.201195_s_at a numeric vector
A.201196_s_at a numeric vector
A.201197_at a numeric vector
A.201201_at a numeric vector
A.201202_at a numeric vector
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.201236_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201263_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201266_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201281_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201291_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201292_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201327_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201342_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201384_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201394_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201395_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201397_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201455_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201479_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201508_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201557_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201584_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201591_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201663_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201664_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201685_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201694_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201710_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201755_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201761_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201770_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201790_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201791_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201795_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201833_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201890_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201896_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201897_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201930_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201970_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201977_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>A.201978_s_at</td>
<td>numeric vector</td>
</tr>
</tbody>
</table>
A. 202011_at a numeric vector
A. 202088_at a numeric vector
A. 202095_s_at a numeric vector
A. 202105_at a numeric vector
A. 202107_s_at a numeric vector
A. 202109_at a numeric vector
A. 202117_at a numeric vector
A. 202174_s_at a numeric vector
A. 202188_at a numeric vector
A. 202200_s_at a numeric vector
A. 202233_s_at a numeric vector
A. 202240_at a numeric vector
A. 202270_at a numeric vector
A. 202276_at a numeric vector
A. 202307_s_at a numeric vector
A. 202338_at a numeric vector
A. 202370_s_at a numeric vector
A. 202371_at a numeric vector
A. 202409_at a numeric vector
A. 202487_s_at a numeric vector
A. 202503_s_at a numeric vector
A. 202580_x_at a numeric vector
A. 202589_at a numeric vector
A. 202590_s_at a numeric vector
A. 202613_at a numeric vector
A. 202666_s_at a numeric vector
A. 202690_s_at a numeric vector
A. 202705_at a numeric vector
A. 202725_at a numeric vector
A. 202754_at a numeric vector
A. 202779_s_at a numeric vector
A. 202808_at a numeric vector
A. 202815_s_at a numeric vector
A. 202854_at a numeric vector
A. 202858_at a numeric vector
A. 202870_s_at a numeric vector
A. 202954_at a numeric vector
A.202962_at a numeric vector
A.203022_at a numeric vector
A.203046_s_at a numeric vector
A.203066_at a numeric vector
A.203071_at a numeric vector
A.203126_at a numeric vector
A.203130_s_at a numeric vector
A.203139_at a numeric vector
A.203145_at a numeric vector
A.203187_at a numeric vector
A.203188_at a numeric vector
A.203208_s_at a numeric vector
A.203213_at a numeric vector
A.203214_x_at a numeric vector
A.203223_at a numeric vector
A.203249_at a numeric vector
A.203265_s_at a numeric vector
A.203266_s_at a numeric vector
A.203276_at a numeric vector
A.203287_at a numeric vector
A.203296_s_at a numeric vector
A.203345_s_at a numeric vector
A.203347_s_at a numeric vector
A.203358_s_at a numeric vector
A.203362_s_at a numeric vector
A.203380_x_at a numeric vector
A.203405_at a numeric vector
A.203418_at a numeric vector
A.203422_at a numeric vector
A.203428_s_at a numeric vector
A.203432_at a numeric vector
A.203438_at a numeric vector
A.203439_s_at a numeric vector
A.203463_s_at a numeric vector
A.203484_at a numeric vector
A.203554_x_at a numeric vector
A.203560_at a numeric vector
A. 203594._at a numeric vector
A. 203625._x_at a numeric vector
A. 203693._s_at a numeric vector
A. 203696._s_at a numeric vector
A. 203702._s_at a numeric vector
A. 203744._at a numeric vector
A. 203755._at a numeric vector
A. 203764._at a numeric vector
A. 203799._at a numeric vector
A. 203801._at a numeric vector
A. 203805._s_at a numeric vector
A. 203806._s_at a numeric vector
A. 203856._at a numeric vector
A. 203859._s_at a numeric vector
A. 203906._at a numeric vector
A. 203929._s_at a numeric vector
A. 203930._s_at a numeric vector
A. 203967._at a numeric vector
A. 203968._s_at a numeric vector
A. 204020._at a numeric vector
A. 204023._at a numeric vector
A. 204026._s_at a numeric vector
A. 204033._at a numeric vector
A. 204045._at a numeric vector
A. 204072._s_at a numeric vector
A. 204092._s_at a numeric vector
A. 204115._at a numeric vector
A. 204126._s_at a numeric vector
A. 204127._at a numeric vector
A. 204146._at a numeric vector
A. 204162._at a numeric vector
A. 204170._s_at a numeric vector
A. 204203._at a numeric vector
A. 204217._s_at a numeric vector
A. 204244._s_at a numeric vector
A. 204267._x_at a numeric vector
A. 204290._s_at a numeric vector
<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.204315_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204317_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204318_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204441_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204444_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204482_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204510_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204533_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204558_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204592_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204603_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204640_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204641_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204649_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204675_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204686_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204695_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204702_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204709_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204732_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204766_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204767_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204768_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204800_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204817_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204822_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204825_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204863_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204881_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.204962_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.205024_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.205034_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.205046_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.205074_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.205158_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.205167_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>A.205186_at</td>
<td>a numeric vector</td>
</tr>
</tbody>
</table>
A.205214_at a numeric vector
A.205225_at a numeric vector
A.205240_at a numeric vector
A.205279_s_at a numeric vector
A.205280_at a numeric vector
A.205282_at a numeric vector
A.205296_at a numeric vector
A.205339_at a numeric vector
A.205354_at a numeric vector
A.205392_s_at a numeric vector
A.205393_s_at a numeric vector
A.205394_at a numeric vector
A.205436_s_at a numeric vector
A.205440_s_at a numeric vector
A.205471_s_at a numeric vector
A.205472_s_at a numeric vector
A.205569_at a numeric vector
A.205611_at a numeric vector
A.205628_at a numeric vector
A.205644_s_at a numeric vector
A.205672_at a numeric vector
A.205710_at a numeric vector
A.205711_x_at a numeric vector
A.205733_at a numeric vector
A.205776_at a numeric vector
A.205779_at a numeric vector
A.205794_s_at a numeric vector
A.205883_at a numeric vector
A.205898_at a numeric vector
A.205933_at a numeric vector
A.205943_at a numeric vector
A.205967_at a numeric vector
A.206055_s_at a numeric vector
A.206074_s_at a numeric vector
A.206091_at a numeric vector
A.206102_at a numeric vector
A.206134_at a numeric vector
A.206197_at a numeric vector
A.206245_s_at a numeric vector
A.206364_at a numeric vector
A.206481_s_at a numeric vector
A.206499_s_at a numeric vector
A.206600_s_at a numeric vector
A.206632_s_at a numeric vector
A.206702_at a numeric vector
A.206794_at a numeric vector
A.206869_at a numeric vector
A.207165_at a numeric vector
A.207542_s_at a numeric vector
A.207783_x_at a numeric vector
A.207788_s_at a numeric vector
A.207828_s_at a numeric vector
A.208029_s_at a numeric vector
A.208079_s_at a numeric vector
A.208103_s_at a numeric vector
A.208140_s_at a numeric vector
A.208184_s_at a numeric vector
A.208190_s_at a numeric vector
A.208308_s_at a numeric vector
A.208374_s_at a numeric vector
A.208433_s_at a numeric vector
A.208503_s_at a numeric vector
A.208511_at a numeric vector
A.208517_x_at a numeric vector
A.208614_s_at a numeric vector
A.208627_s_at a numeric vector
A.208628_s_at a numeric vector
A.208682_s_at a numeric vector
A.208691_at a numeric vector
A.208693_s_at a numeric vector
A.208696_at a numeric vector
A.208709_s_at a numeric vector
A.208718_at a numeric vector
A.208767_s_at a numeric vector
breastcancer

<table>
<thead>
<tr>
<th>Genes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>208794_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>208804_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>208807_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>208870_x_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>208905_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>208952_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>208969_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209002_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209019_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209026_x_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209068_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209070_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209071_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209075_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209172_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209189_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209195_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209218_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209311_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209336_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209341_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209358_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209375_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209408_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209459_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209460_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209464_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209482_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209523_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209603_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209604_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209608_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209623_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209625_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209642_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209680_s_at</td>
<td>numeric vector</td>
</tr>
<tr>
<td>209709_s_at</td>
<td>numeric vector</td>
</tr>
</tbody>
</table>
A.209714_s_at a numeric vector
A.209737_at a numeric vector
A.209740_s_at a numeric vector
A.209747_at a numeric vector
A.209753_s_at a numeric vector
A.209773_s_at a numeric vector
A.209825_s_at a numeric vector
A.209832_s_at a numeric vector
A.209869_at a numeric vector
A.209891_at a numeric vector
A.209897_s_at a numeric vector
A.210052_s_at a numeric vector
A.210092_at a numeric vector
A.210093_s_at a numeric vector
A.210108_at a numeric vector
A.210137_s_at a numeric vector
A.210163_at a numeric vector
A.210346_s_at a numeric vector
A.210365_at a numeric vector
A.210416_s_at a numeric vector
A.210466_s_at a numeric vector
A.210559_s_at a numeric vector
A.210567_s_at a numeric vector
A.210766_s_at a numeric vector
A.210778_s_at a numeric vector
A.210821_x_at a numeric vector
A.210881_s_at a numeric vector
A.211000_s_at a numeric vector
A.211034_s_at a numeric vector
A.211042_x_at a numeric vector
A.211072_x_at a numeric vector
A.211080_s_at a numeric vector
A.211378_x_at a numeric vector
A.211519_s_at a numeric vector
A.211714_x_at a numeric vector
A.211725_s_at a numeric vector
A.211765_x_at a numeric vector
A. 211939_x_at a numeric vector
A. 211943_x_at a numeric vector
A. 211967_at a numeric vector
A. 211986_at a numeric vector
A. 212020_s_at a numeric vector
A. 212022_s_at a numeric vector
A. 212023_s_at a numeric vector
A. 212048_s_at a numeric vector
A. 212151_at a numeric vector
A. 212195_at a numeric vector
A. 212196_at a numeric vector
A. 212209_at a numeric vector
A. 212219_at a numeric vector
A. 212228_s_at a numeric vector
A. 212242_at a numeric vector
A. 212247_at a numeric vector
A. 212266_s_at a numeric vector
A. 212284_x_at a numeric vector
A. 212296_at a numeric vector
A. 212299_at a numeric vector
A. 212319_at a numeric vector
A. 212419_at a numeric vector
A. 212423_at a numeric vector
A. 212430_at a numeric vector
A. 212448_at a numeric vector
A. 212492_s_at a numeric vector
A. 212494_at a numeric vector
A. 212495_at a numeric vector
A. 212496_s_at a numeric vector
A. 212541_at a numeric vector
A. 212581_x_at a numeric vector
A. 212660_at a numeric vector
A. 212680_x_at a numeric vector
A. 212695_at a numeric vector
A. 212705_x_at a numeric vector
A. 212708_at a numeric vector
A. 212744_at a numeric vector
A.212745_s_at a numeric vector
A.212779_at a numeric vector
A.212815_at a numeric vector
A.212846_at a numeric vector
A.212865_s_at a numeric vector
A.212869_x_at a numeric vector
A.212914_at a numeric vector
A.212936_at a numeric vector
A.212948_at a numeric vector
A.212949_at a numeric vector
A.212956_at a numeric vector
A.212970_at a numeric vector
A.212978_at a numeric vector
A.212985_at a numeric vector
A.213007_at a numeric vector
A.213008_at a numeric vector
A.213011_s_at a numeric vector
A.213018_at a numeric vector
A.213058_at a numeric vector
A.213063_at a numeric vector
A.213088_s_at a numeric vector
A.213101_s_at a numeric vector
A.213102_at a numeric vector
A.213103_at a numeric vector
A.213137_s_at a numeric vector
A.213175_s_at a numeric vector
A.213195_at a numeric vector
A.213224_s_at a numeric vector
A.213226_at a numeric vector
A.213283_s_at a numeric vector
A.213285_at a numeric vector
A.213366_x_at a numeric vector
A.213397_x_at a numeric vector
A.213427_at a numeric vector
A.213451_x_at a numeric vector
A.213453_x_at a numeric vector
A.213464_at a numeric vector
A.213519_s_at a numeric vector
A.213520_at a numeric vector
A.213523_at a numeric vector
A.213541_s_at a numeric vector
A.213571_s_at a numeric vector
A.213577_at a numeric vector
A.213590_at a numeric vector
A.213599_at a numeric vector
A.213627_at a numeric vector
A.213671_s_at a numeric vector
A.213702_x_at a numeric vector
A.213720_s_at a numeric vector
A.213748_at a numeric vector
A.213832_at a numeric vector
A.213911_s_at a numeric vector
A.213933_at a numeric vector
A.214039_s_at a numeric vector
A.214053_at a numeric vector
A.214061_at a numeric vector
A.214062_x_at a numeric vector
A.214077_x_at a numeric vector
A.214095_at a numeric vector
A.214096_s_at a numeric vector
A.214101_s_at a numeric vector
A.214144_at a numeric vector
A.214164_x_at a numeric vector
A.214188_at a numeric vector
A.214269_at a numeric vector
A.214431_at a numeric vector
A.214435_x_at a numeric vector
A.214437_s_at a numeric vector
A.214440_at a numeric vector
A.214552_s_at a numeric vector
A.214581_x_at a numeric vector
A.214657_s_at a numeric vector
A.214710_s_at a numeric vector
A.214728_x_at a numeric vector
A.214745_at a numeric vector
A.214919_s_at a numeric vector
A.215014_at a numeric vector
A.215146_s_at a numeric vector
A.215223_s_at a numeric vector
A.215300_s_at a numeric vector
A.215303_at a numeric vector
A.215304_at a numeric vector
A.215616_s_at a numeric vector
A.215722_s_at a numeric vector
A.215867_x_at a numeric vector
A.215942_s_at a numeric vector
A.216000_at a numeric vector
A.216088_s_at a numeric vector
A.216109_at a numeric vector
A.216237_s_at a numeric vector
A.216264_s_at a numeric vector
A.216465_at a numeric vector
A.216515_x_at a numeric vector
A.216520_s_at a numeric vector
A.216841_s_at a numeric vector
A.216885_s_at a numeric vector
A.216952_s_at a numeric vector
A.216977_x_at a numeric vector
A.217297_s_at a numeric vector
A.217346_at a numeric vector
A.217398_x_at a numeric vector
A.217427_s_at a numeric vector
A.217499_x_at a numeric vector
A.217714_x_at a numeric vector
A.217733_s_at a numeric vector
A.217755_at a numeric vector
A.217834_s_at a numeric vector
A.217838_s_at a numeric vector
A.217844_at a numeric vector
A.217889_s_at a numeric vector
A.217906_at a numeric vector
| A.217925_s_at | a numeric vector |
| A.217938_s_at | a numeric vector |
| A.217990_at | a numeric vector |
| A.218007_s_at | a numeric vector |
| A.218009_s_at | a numeric vector |
| A.218039_at | a numeric vector |
| A.218065_s_at | a numeric vector |
| A.218074_at | a numeric vector |
| A.218080_x_at | a numeric vector |
| A.218115_at | a numeric vector |
| A.218131_s_at | a numeric vector |
| A.218146_at | a numeric vector |
| A.218193_s_at | a numeric vector |
| A.218211_s_at | a numeric vector |
| A.218213_s_at | a numeric vector |
| A.218219_s_at | a numeric vector |
| A.218239_s_at | a numeric vector |
| A.218259_at | a numeric vector |
| A.218260_at | a numeric vector |
| A.218295_s_at | a numeric vector |
| A.218308_at | a numeric vector |
| A.218349_s_at | a numeric vector |
| A.218350_s_at | a numeric vector |
| A.218353_at | a numeric vector |
| A.218355_at | a numeric vector |
| A.218374_s_at | a numeric vector |
| A.218384_at | a numeric vector |
| A.218418_s_at | a numeric vector |
| A.218437_s_at | a numeric vector |
| A.218447_at | a numeric vector |
| A.218471_s_at | a numeric vector |
| A.218474_s_at | a numeric vector |
| A.218483_s_at | a numeric vector |
| A.218497_s_at | a numeric vector |
| A.218499_at | a numeric vector |
| A.218512_at | a numeric vector |
| A.218538_s_at | a numeric vector |
A.218542_at a numeric vector
A.218552_at a numeric vector
A.218584_at a numeric vector
A.218585_s_at a numeric vector
A.218588_s_at a numeric vector
A.218662_s_at a numeric vector
A.218663_at a numeric vector
A.218684_at a numeric vector
A.218726_at a numeric vector
A.218728_s_at a numeric vector
A.218741_at a numeric vector
A.218755_at a numeric vector
A.218769_s_at a numeric vector
A.218795_at a numeric vector
A.218834_s_at a numeric vector
A.218844_at a numeric vector
A.218856_at a numeric vector
A.218875_s_at a numeric vector
A.218877_s_at a numeric vector
A.218883_s_at a numeric vector
A.218894_s_at a numeric vector
A.218936_s_at a numeric vector
A.218966_at a numeric vector
A.218976_at a numeric vector
A.218982_s_at a numeric vector
A.218987_at a numeric vector
A.219000_s_at a numeric vector
A.219004_s_at a numeric vector
A.219010_at a numeric vector
A.219031_s_at a numeric vector
A.219061_s_at a numeric vector
A.219065_s_at a numeric vector
A.219091_s_at a numeric vector
A.219105_x_at a numeric vector
A.219132_at a numeric vector
A.219148_at a numeric vector
A.219197_s_at a numeric vector
A.219252_s_at a numeric vector
A.219286_s_at a numeric vector
A.219304_s_at a numeric vector
A.219306_at a numeric vector
A.219396_s_at a numeric vector
A.219413_at a numeric vector
A.219417_s_at a numeric vector
A.219436_s_at a numeric vector
A.219440_at a numeric vector
A.219455_at a numeric vector
A.219463_at a numeric vector
A.219469_at a numeric vector
A.219490_s_at a numeric vector
A.219493_at a numeric vector
A.219494_at a numeric vector
A.219510_at a numeric vector
A.219555_s_at a numeric vector
A.219588_s_at a numeric vector
A.219646_at a numeric vector
A.219650_at a numeric vector
A.219686_at a numeric vector
A.219687_at a numeric vector
A.219689_at a numeric vector
A.219713_at a numeric vector
A.219787_s_at a numeric vector
A.219833_s_at a numeric vector
A.219918_s_at a numeric vector
A.219922_s_at a numeric vector
A.219978_s_at a numeric vector
A.219990_at a numeric vector
A.220011_at a numeric vector
A.220060_s_at a numeric vector
A.220094_s_at a numeric vector
A.220173_at a numeric vector
A.220239_at a numeric vector
A.220276_at a numeric vector
A.220324_at a numeric vector
A.220540_at a numeric vector
A.220651_s_at a numeric vector
A.220789_s_at a numeric vector
A.220865_s_at a numeric vector
A.220917_s_at a numeric vector
A.221203_s_at a numeric vector
A.221207_s_at a numeric vector
A.221221_s_at a numeric vector
A.221258_s_at a numeric vector
A.221272_s_at a numeric vector
A.221275_s_at a numeric vector
A.221276_s_at a numeric vector
A.221436_s_at a numeric vector
A.221505_at a numeric vector
A.221520_s_at a numeric vector
A.221521_s_at a numeric vector
A.221562_s_at a numeric vector
A.221588_x_at a numeric vector
A.221590_s_at a numeric vector
A.221676_s_at a numeric vector
A.221677_s_at a numeric vector
A.221685_s_at a numeric vector
A.221740_x_at a numeric vector
A.221856_s_at a numeric vector
A.221913_at a numeric vector
A.221922_at a numeric vector
A.221951_at a numeric vector
A.222010_at a numeric vector
A.222011_s_at a numeric vector
A.222039_at a numeric vector
A.222043_at a numeric vector
A.222077_s_at a numeric vector
A.222118_at a numeric vector
A.222195_s_at a numeric vector
A.36129_at a numeric vector
A.37152_at a numeric vector
A.38158_at a numeric vector
A. 39854_r_at a numeric vector
A. 40016_g_at a numeric vector
A. 40093_at a numeric vector
A. 45297_at a numeric vector
A. 45633_at a numeric vector
A. 57703_at a numeric vector
A. AFFX.HUMGAPDH.M33197.3_at a numeric vector
A. AFFX.HUMGAPDH.M33197_M_at a numeric vector
B. 200039_s_at a numeric vector
B. 200076_s_at a numeric vector
B. 200079_s_at a numeric vector
B. 200086_s_at a numeric vector
B. 222396_at a numeric vector
B. 222423_at a numeric vector
B. 222453_at a numeric vector
B. 222602_at a numeric vector
B. 222606_at a numeric vector
B. 222608_s_at a numeric vector
B. 222640_at a numeric vector
B. 222680_s_at a numeric vector
B. 222740_at a numeric vector
B. 222752_s_at a numeric vector
B. 222767_s_at a numeric vector
B. 222820_at a numeric vector
B. 222835_at a numeric vector
B. 222843_at a numeric vector
B. 222848_at a numeric vector
B. 222889_at a numeric vector
B. 222958_s_at a numeric vector
B. 222962_s_at a numeric vector
B. 223054_at a numeric vector
B. 223056_s_at a numeric vector
B. 223062_s_at a numeric vector
B. 223068_at a numeric vector
B. 223096_at a numeric vector
B. 223100_s_at a numeric vector
B. 223119_s_at a numeric vector
B. 223126_s_at a numeric vector
B. 223186_at a numeric vector
B. 223204_at a numeric vector
B. 223225_s_at a numeric vector
B. 223229_at a numeric vector
B. 223234_at a numeric vector
B. 223274_at a numeric vector
B. 223307_at a numeric vector
B. 223315_at a numeric vector
B. 223348_x_at a numeric vector
B. 223361_at a numeric vector
B. 223381_at a numeric vector
B. 223387_at a numeric vector
B. 223452_s_at a numeric vector
B. 223480_s_at a numeric vector
B. 223491_at a numeric vector
B. 223515_s_at a numeric vector
B. 223556_at a numeric vector
B. 223570_at a numeric vector
B. 223666_at a numeric vector
B. 223700_at a numeric vector
B. 223864_at a numeric vector
B. 224217_s_at a numeric vector
B. 224320_s_at a numeric vector
B. 224333_s_at a numeric vector
B. 224428_s_at a numeric vector
B. 224468_s_at a numeric vector
B. 224471_s_at a numeric vector
B. 224521_s_at a numeric vector
B. 224523_s_at a numeric vector
B. 224566_at a numeric vector
B. 224578_at a numeric vector
B. 224610_at a numeric vector
B. 224674_at a numeric vector
B. 224686_x_at a numeric vector
B. 224699_s_at a numeric vector
B. 224752_at a numeric vector
B. 224753_at a numeric vector
B. 224903_at a numeric vector
B. 224944_at a numeric vector
B. 225004_at a numeric vector
B. 225064_at a numeric vector
B. 225071_at a numeric vector
B. 225083_at a numeric vector
B. 225092_at a numeric vector
B. 225099_at a numeric vector
B. 225100_at a numeric vector
B. 225142_at a numeric vector
B. 225162_at a numeric vector
B. 225191_at a numeric vector
B. 225268_at a numeric vector
B. 225291_at a numeric vector
B. 225300_at a numeric vector
B. 225309_at a numeric vector
B. 225327_at a numeric vector
B. 225365_at a numeric vector
B. 225379_at a numeric vector
B. 225402_at a numeric vector
B. 225454_at a numeric vector
B. 225468_at a numeric vector
B. 225501_at a numeric vector
B. 225592_at a numeric vector
B. 225611_at a numeric vector
B. 225613_at a numeric vector
B. 225629_s_at a numeric vector
B. 225655_at a numeric vector
B. 225656_at a numeric vector
B. 225676_s_at a numeric vector
B. 225686_at a numeric vector
B. 225687_at a numeric vector
B. 225723_at a numeric vector
B. 225748_at a numeric vector
B. 225777_at a numeric vector
B. 225804_at a numeric vector
<table>
<thead>
<tr>
<th>gene_name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.225834_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.225841_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.225866_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226030_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226108_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226118_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226198_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226274_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226298_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226303_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226308_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226344_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226346_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226349_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226358_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226410_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226437_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226439_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226456_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226466_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226473_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226506_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226519_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226522_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226582_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226661_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226831_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226833_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226846_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226914_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226915_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226936_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226974_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226977_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226980_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.226992_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227021_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>B.227047_x_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227068_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227081_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227103_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227165_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227182_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227198_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227211_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227212_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227227_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227232_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227279_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227350_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227363_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227419_x_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227423_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227436_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227478_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227512_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227533_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227651_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227700_x_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227703_s_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227718_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227762_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227809_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227811_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227873_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227874_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227920_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227928_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.227982_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.228044_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.228069_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.228081_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.228252_at</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>B.228273_at</td>
<td>a numeric vector</td>
</tr>
</tbody>
</table>
B. 228281_at a numeric vector
B. 228318_s_at a numeric vector
B. 228323_at a numeric vector
B. 228327_x_at a numeric vector
B. 228361_at a numeric vector
B. 228468_at a numeric vector
B. 228469_at a numeric vector
B. 228476_at a numeric vector
B. 228504_at a numeric vector
B. 228505_s_at a numeric vector
B. 228528_at a numeric vector
B. 228550_at a numeric vector
B. 228554_at a numeric vector
B. 228559_at a numeric vector
B. 228560_at a numeric vector
B. 228597_at a numeric vector
B. 228692_at a numeric vector
B. 228718_at a numeric vector
B. 228729_at a numeric vector
B. 228730_s_at a numeric vector
B. 228750_at a numeric vector
B. 228799_at a numeric vector
B. 228811_at a numeric vector
B. 228854_at a numeric vector
B. 228868_s_at a numeric vector
B. 228915_at a numeric vector
B. 228931_at a numeric vector
B. 228955_at a numeric vector
B. 229030_at a numeric vector
B. 229062_at a numeric vector
B. 229097_at a numeric vector
B. 229127_at a numeric vector
B. 229150_at a numeric vector
B. 229169_at a numeric vector
B. 229170_s_at a numeric vector
B. 229181_s_at a numeric vector
B. 229342_at a numeric vector
B.229381_at a numeric vector
B.229437_at a numeric vector
B.229466_at a numeric vector
B.229490_s_at a numeric vector
B.229538_s_at a numeric vector
B.229551_x_at a numeric vector
B.229610_at a numeric vector
B.229764_at a numeric vector
B.229886_at a numeric vector
B.230021_at a numeric vector
B.230123_at a numeric vector
B.230142_s_at a numeric vector
B.230165_at a numeric vector
B.230250_at a numeric vector
B.230451_at a numeric vector
B.230469_at a numeric vector
B.230863_at a numeric vector
B.230966_at a numeric vector
B.231002_s_at a numeric vector
B.231034_s_at a numeric vector
B.231049_at a numeric vector
B.231577_s_at a numeric vector
B.232065_x_at a numeric vector
B.232210_at a numeric vector
B.232238_at a numeric vector
B.232278_s_at a numeric vector
B.232286_at a numeric vector
B.232307_at a numeric vector
B.232398_at a numeric vector
B.232459_at a numeric vector
B.232596_at a numeric vector
B.232855_at a numeric vector
B.232944_at a numeric vector
B.232968_at a numeric vector
B.233110_s_at a numeric vector
B.233388_at a numeric vector
B.233413_at a numeric vector
B.233520_s_at a numeric vector
B.234222_at a numeric vector
B.234294_x_at a numeric vector
B.234749_s_at a numeric vector
B.234863_x_at a numeric vector
B.234944_s_at a numeric vector
B.234954_at a numeric vector
B.234992_x_at a numeric vector
B.235040_at a numeric vector
B.235046_at a numeric vector
B.235117_at a numeric vector
B.235124_at a numeric vector
B.235181_at a numeric vector
B.235193_at a numeric vector
B.235363_at a numeric vector
B.235369_at a numeric vector
B.235425_at a numeric vector
B.235542_at a numeric vector
B.235545_at a numeric vector
B.235547_at a numeric vector
B.235570_at a numeric vector
B.235572_at a numeric vector
B.235609_at a numeric vector
B.235662_at a numeric vector
B.235709_at a numeric vector
B.235771_at a numeric vector
B.235786_at a numeric vector
B.235789_at a numeric vector
B.235800_at a numeric vector
B.236050_at a numeric vector
B.236064_at a numeric vector
B.236312_at a numeric vector
B.236641_at a numeric vector
B.236787_at a numeric vector
B.236953_s_at a numeric vector
B.237086_at a numeric vector
B.237168_at a numeric vector
B. 237301_at a numeric vector
B. 237339_at a numeric vector
B. 238001_at a numeric vector
B. 238045_at a numeric vector
B. 238075_at a numeric vector
B. 238077_at a numeric vector
B. 238116_at a numeric vector
B. 238425_at a numeric vector
B. 238447_at a numeric vector
B. 238656_at a numeric vector
B. 238756_at a numeric vector
B. 238781_at a numeric vector
B. 238898_at a numeric vector
B. 239002_at a numeric vector
B. 239349_at a numeric vector
B. 239432_at a numeric vector
B. 239758_at a numeric vector
B. 239890_s_at a numeric vector
B. 240099_at a numeric vector
B. 240422_at a numeric vector
B. 241310_at a numeric vector
B. 241408_at a numeric vector
B. 241577_at a numeric vector
B. 241789_at a numeric vector
B. 241937_s_at a numeric vector
B. 242218_at a numeric vector
B. 242255_at a numeric vector
B. 242323_at a numeric vector
B. 242560_at a numeric vector
B. 242657_at a numeric vector
B. 242890_at a numeric vector
B. 243754_at a numeric vector
B. 243806_at a numeric vector
B. 244116_at a numeric vector
B. 244375_at a numeric vector
B. 244571_s_at a numeric vector
B. 244677_at a numeric vector
B. 244696_at a numeric vector
B. AFFX.HUMGAPDH.M33197.3_at a numeric vector
B. AFFX.HUMGAPDH.M33197_M_at a numeric vector

code a factor with levels case control
Details

The factor code defines whether there was a mutation in the p53 sequence (code=case) or not (code=control).

Source

Dr. Chris Holmes, c.holmes at stats dot ox . ac . uk

References

Examples

data(breastcancer)

maybe str(breastcancer) ; plot(breastcancer) ...

cad	Coronary artery disease data

Description

A cross classified table with observational data from a Danish heart clinic. The response variable is CAD.

Usage

data(cad)

Format

A data frame with 236 observations on the following 14 variables.

Sex	a factor with levels Female Male
AngPec	a factor with levels Atypical None Typical
AMI	a factor with levels Definite NotCertain
QWave	a factor with levels No Yes
QWavecode	a factor with levels Nonusable Usable
STcode	a factor with levels Nonusable Usable
STchange	a factor with levels No Yes
SuffHeartF	a factor with levels No Yes
Hypertrophi	a factor with levels No Yes
Hyperchol	a factor with levels No Yes
Smoker	a factor with levels No Yes
Inherit	a factor with levels No Yes
Heartfail	a factor with levels No Yes
CAD	a factor with levels No Yes
Details

cad1: Complete dataset, 236 cases. cad2: Incomplete dataset, 67 cases. Information on (some of) the variables Hyperchol, Smoker, Inherit is missing.

References

Examples

data(cad1)
maybe str(cad1); plot(cad1) ...

carcass

Lean meat contents of 344 pig carcasses

Description

Measurement of lean meat percentage of 344 pig carcasses together with auxiliary information collected at three Danish slaughter houses

Usage

data(carcass)
data(carcassall)

Format

carcassall: A data frame with 344 observations on the following 17 variables.

weight Weight of carcass
lengthc Length of carcass from back toe to head (when the carcass hangs in the back legs)
lengthf Length of carcass from back toe to front leg (that is, to the shoulder)
lengthp Length of carcass from back toe to the pelvic bone
Fat02, Fat03, Fat11, Fat12, Fat13, Fat14, Fat16 Thickness of fat layer at different locations on the back of the carcass (FatXX refers to thickness at (or rather next to) rib no. XX. Notice that 02 is closest to the head
Meat11, Meat12, Meat13 Thickness of meat layer at different locations on the back of the carcass, see description above
LeanMeat Lean meat percentage determined by dissection
slhouse Slaughter house; a factor with levels a b c
sex Sex of the pig; a factor with a b c. Notice that it is no an error to have three levels; the third level refers to castrates

carcass: Contains only the variables Fat11, Fat12, Fat13, Meat11, Meat12, Meat13, LeanMeat

Source

Description

Simulated data from the Chest Clinic example (also known as the Asia example) from Lauritzen and Spiegelhalter, 1988.

Usage

data(chestSim500)

Format

A data frame with 500 observations on the following 8 variables.

asia a factor with levels yes no
 tub a factor with levels yes no
 smoke a factor with levels yes no
 lung a factor with levels yes no
 bronc a factor with levels yes no
 either a factor with levels yes no
 xray a factor with levels yes no
 dysp a factor with levels yes no

References

Examples

data(chestSim500)
 ## maybe str(chestSim500) ; plot(chestSim500) ...
combnPrim

Generate All Combinations of n Elements Taken m at a Time

Description
Generate all combinations of the elements of x taken m at a time. If x is a positive integer, returns all combinations of the elements of seq(x) taken m at a time.

Usage
```r
combnPrim(x, m, simplify = TRUE)
```

Arguments
- **x**: vector source for combinations, or integer n for x <- seq(n).
- **m**: number of elements to choose.
- **simplify**: logical indicating if the result should be simplified to a matrix; if FALSE, the function returns a list.

Value
A matrix or a list.

Note
The combnPrim function is a simplified version of the combn function. However, combnPrim is implemented in C and is considerably faster than combn.

Author(s)
P.T. Wallace and Søren Højsgaard

See Also
- combn

Examples
```r
x <- letters[1:20]
m <- 3

combn(x, m)
combnPrim(x, m)

combn(m, m)
combnPrim(m, m)
```
compile,propagate

```
combn(x,m, simplify=FALSE)
combnPrim(x,m, simplify=FALSE)

system.time({ for (ii in 1:100) { combnPrim(x,m) } })
system.time({ for (ii in 1:100) { combn(x,m) } })

system.time({ for (ii in 1:100) { combnPrim(x,m, simplify=FALSE) } })
system.time({ for (ii in 1:100) { combn(x,m, simplify=FALSE) } })
```

compareModels Generic function for model comparison

Description

compareModels is a generic functions which invoke particular methods which depend on the class of the first argument.

Usage

```
compareModels(object, object2, ...)
```

Arguments

- object, object2
 - Model objects
- ... Additional arguments

Value

The value returned depends on the class of the first argument.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

compile,propagate Compile and propagate functions

Description

compile and propagate are generic functions which invoke particular methods which depend on the class of the first argument.
cov2pcor

Usage

compile(object, ...)
propagate(object, ...)

Arguments

object An object to be compiled or propagated
... Additional arguments which depends on the class of the object

Value

The value returned depends on the class of the first argument.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

compile.grain, propagate.grain

cov2pcor \hspace{1cm} Partial correlation (matrix)

Description

cov2pcor calculates the partial correlation matrix from an (empirical) covariance matrix while conc2pcor calculates the partial correlation matrix from a concentration matrix (inverse covariance matrix).

Usage

cov2pcor(V)
conc2pcor(K)

Arguments

V Covariance matrix
K Concentration matrix

Value

A matrix with the same dimension as V.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>
Examples

data(math)
S <- cov.wt(math)$cov
cov2pcor(S)

dietox

Growth curves of pigs in a 3x3 factorial experiment

Description

The dietox data frame has 861 rows and 7 columns.

Usage

data(dietox)

Format

This data frame contains the following columns: Weight, Feed, Time, Pig, Evit, Cu, Litter.

Source

Examples

data(dietox)

dumping

Gastric Dumping

Description

A contingency table relating surgical operation, centre and severity of gastric dumping, a syndrome associated with gastric surgery.

Usage

data(dumping)

Format

A 3x4x4 table of counts cross-classified by Symptom (none/slight/moderate), Operation (Vd/Va/Vh/Gr) and Centre (1:4).
Details

Gastric dumping syndrome is a condition where ingested foods bypass the stomach too rapidly and enter the small intestine largely undigested. It is an undesirable side-effect of gastric surgery. The table summarizes the results of a study comparing four different surgical operations on patients with duodenal ulcer, carried out in four centres, as described in Grizzle et al (1969). The four operations were: vagotomy and drainage, vagotomy and antrectomy (removal of 25% of gastric tissue), vagotomy and hemigastrectomy (removal of 50% of gastric tissue), and gastric restriction (removal of 75% of gastric tissue).

Source

Examples

data(dumping)
plot(dumping)

edgelist

Find edges in a graph and edges not in a graph.

Description

Returns the edges of a graph (or edges not in a graph) where the graph can be either a graphNEL object or an adjacency matrix.

Usage

edgelist(object, matrix = FALSE)
Default S3 method:
edgelist(object, matrix = FALSE)

nonEdgeList(object, matrix = FALSE)
Default S3 method:
nonEdgeList(object, matrix = FALSE)

edgeListMAT(adjmat, matrix = FALSE)
nonEdgeListMAT(adjmat, matrix = FALSE)
Arguments

- **object**: A graphNEL object or an adjacency matrix.
- **adjmat**: An adjacency matrix.
- **matrix**: If TRUE the result is a matrix; otherwise the result is a list.

Details

If object is a matrix, then edgeList() checks if object is symmetrical. If so it is assumed that the graph is undirected; otherwise the graph is assumed to be directed.

The workhorse is edgeListMAT.

Value

A list or a matrix with edges.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

- `as.adjMAT`
- `mcs`
- `rip`
- `moralize`
- `jTree`

Examples

```r
## A graph with edges

# Create a graph with edges

g <- ug(~a:b+b:c+c:d)

# Convert to adjacency matrix

gm <- as.adjMAT(g)

dgl <- edgeList(g)
dgl <- edgeList(gm)
dglMAT <- edgeListMAT(gm)

dgl <- edgeList(g, matrix=TRUE)
dgl <- edgeList(gm, matrix=TRUE)
dglMAT <- edgeListMAT(gm, matrix=TRUE)

dgl <- nonEdgeList(g)
dgl <- nonEdgeList(gm)
dglMAT <- nonEdgeListMAT(gm)

dgl <- edgeList(g)
dgl <- edgeList(gm)
dglMAT <- edgeListMAT(gm)

dgl <- edgeList(g, matrix=TRUE)
```
getCliques

Return a list of (maximal) cliques of an undirected graph.

Usage

```r
getCliques(object)
maxCliqueMAT(amat)
```

Arguments

- `object`: An undirected graph represented either as a `graphNEL` object, a (dense) matrix, a (sparse) `dgCMatrix`
- `amat`: An adjacency matrix

Details

In graph theory, a clique is often a complete subset of a graph. A maximal clique is a clique which can not be enlarged. In statistics (and that is the convention we follow here) a clique is usually understood to be a maximal clique.

Finding the cliques of a general graph is an NP complete problem. Finding the cliques of triangulated graph is linear in the number of cliques.

The workhorse is the `maxCliqueMAT` function which calls the `maxClique` function in the RBGL package.

Value

A list

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

`ug dag mcs, mcsMAT rip, ripMAT, moralize, moralizeMAT`
Examples

```r
# graphNEL
uG1 <- ug(~a:b+c+d+e+f+g)
getClique(uG1)

# adjacency matrix
uG2 <- ug(~a:b+c+d+e+f+g, result="matrix")
getClique(uG2)

# adjacency matrix (sparse)
uG3 <- ug(~a:b+c+d+e+f+g, result="Matrix")
getClique(uG3)
```

glist2adjMAT | Creates adjacency matrix for a graph from a list of generators

Description

Creates adjacency matrix for a graph from a list of generators. The graph is assumed to be undirected.

Usage

```r
glist2adjMAT(glist, vn = unique(unlist(glist)), result="matrix")
vpalist2adjMAT(glist, vn = unique(unlist(glist)), result="matrix")
```

Arguments

- `glist`: A list of generators where a generator is a vector of nodes. For `glist2adjMAT`, a vector \((v_1, \ldots, v_n)\) means that there are undirected edges between all nodes. For `vpalist2adjMAT`, \((v_1, \ldots, v_n)\) means that there will be arrows from \(v_2, \ldots, v_n\) to \(v_1\).
- `vn`: The names of the vertices in the graphs. These will be the row and column names of the matrix.
- `result`: Either "matrix" or "Matrix" (for a sparse matrix representation).

Value

An adjacency matrix (or NULL if `glist` has length 0).

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

- `ug dag`
Examples

```r
glist <- list(1:3, 2:4, 4:5)
am1 <- glist2adjMAT(glist)
am2 <- vpalist2adjMAT(glist)
if (interactive()){
  plot(as(am1, "graphNEL"))
  plot(as(am2, "graphNEL"))
}
```

Description

Coercion of graphs from graphNEL format to adjacency matrix format and to other formats

Usage

```r
as.adjMAT(object, result="matrix")
graphNEL2adjMAT(object, result="matrix")
graphNEL2ftM(object)
graphNEL2matrix(object)
graphNEL2dgCMatrix(object)
```

Arguments

- **object**: A graphNEL object
- **result**: Either "matrix" or "Matrix" (for a sparse matrix representation).

Details

Notice: `graphNEL2adjMAT(g, result="matrix")` and `graphNEL2adjMAT(g, result="Matrix")` do the same as `as(g, "matrix")` and `as(g, "Matrix")` but considerably faster.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

`edgeList getClique nonEdgeList mcs rip moralize jTree`
Examples

```r
ug <- ug(me:me,me:al,ve:al,al:an,al:st,an:st)
getClique(ug)

amat1 <- as.adjMAT(ug)
getClique amat1

amat1 <- as.adjMAT(ug, result="Matrix")
getClique amat1
```

graph-operations

Simple operations on undirected and directed acyclic graphs.

Description

Make operations on undirected and directed acyclic graphs (which are represented as graphNEL objects).

Usage

```r
ancestors(set, object)
ancestralGraph(set, object)
ancestralSet(set, object)
children(set, object)
closure(set, object)
is.complete(object, set)
is.decomposition(set, set2, set3, object)
is.simplicial(set, object)
parents(set, object)
simplicialNodes(object)
```

Arguments

- `set, set2, set3`
 Vectors of sets
- `object`
 A graphNEL object

Details

Notice: `graphNEL2adjMAT(g, result="matrix")` and `graphNEL2adjMAT(g, result="Matrix")` do the same as `as(g, "matrix")` and `as(g, "Matrix")` but considerably faster.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>
The package `gRbase`: summary information

Description

This package provides a basis for graphical modelling in R and in particular for other graphical modelling packages, most notably `gRim` and `gRain`. The package is a contribution to the gR-project described by Lauritzen (2002).

Details

`gRbase` provides the following:

- Implementation of various graph algorithms, including maximum cardinality search, maximal prime subgraph decomposition, triangulation. See the vignette `graphs`.
- Implementation of various "high level" array operations, including multiplication/division, marginalization, slicing, permutation. See the vignette `ArrayOps`.
- Implementation of various "low level" array operations. See the vignette `ArrayOpsPrim`.
- A collection of datasets
- A general framework for setting up data and model structures and provide examples for fitting hierarchical log linear models for contingency tables and graphical Gaussian models for the multivariate normal distribution.
 Notice: This last part is not maintained / developed further.

Authors

Søren Højsgaard, Aarhus University, DK-8830 Tjele, Denmark

Claus Dethlefsen, Center for Cardiovascular Research, Aalborg Hospital, Århus University Hospital, DK-9000 Aalborg, Denmark

Code for maximal prime subgraph decomposition has been provided by Clive Bowsher.
Acknowledgements

Thanks to the other members of the gR initiative, in particular to David Edwards for providing functions for formula-manipulation.

References

gRbase-utilities

Utility functions for gRbase

Description

Utility functions for gRbase package. Includes ‘faster versions’ of certain standard R functions.

Details

colwiseProd multiplies a vector and a matrix columnwise (as opposed to rowwise which is achieved by *v*M). Hence colwiseProd does the same as t(v*t(M)) - but it does so faster for numeric values.

Value

A vector or a logical.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

Examples

```r
## colwiseProd
M <- matrix(1:16, nrow=4)
v <- 1:4
t(v*t(M))
colwiseProd(v,M)

system.time(for (ii in 1:100000) t(v*t(M)))
system.time(for (ii in 1:100000) colwiseProd(v,M))
```
iplot

Function for plotting graphs using the ‘igraph’ package.

Description

Generic function for plotting graphs using the ‘igraph’ package and a plot method for graphNEL objects.

Usage

```r
iplot(x, ...)  
## S3 method for class 'graphNEL'

iplot(x,...)
```

Arguments

- `x` A graph object to be plotted.
- `...` Additional arguments

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

Examples

```r
UG <- ug(~a:b+b:c:d)
iplot(UG)
```

is.DAG

Check properties of graphs.

Description

Check if a graph is 1) a directed acyclic graph (DAG), 2) a directed graph (DG), 3) an undirected graph (UG), 4) a triangulated (chordal) undirected graph (TUG). This is done for graphs represented as 1) graphNEL (from the graph package), 2) an adjacency matrix, 3) a sparse adjacency matrix (a dgCMatrix from the Matrix package).

Usage

```r
is.DAG(object)
is.DG(object)
is.UG(object)
is.TUG(object)
is.adjMAT(x)
```
Arguments

object A graph represented as 1) graphNEL (from the graph package), 2) an adjacency matrix, 3) a sparse adjacency matrix (a dgCMatrix from the Matrix package).

x Any object. If the object is a quadratic matrix with 0’s on the diagonal then it is an adjacency matrix.

Details

A non-zero value at entry (i,j) in an adjacency matrix A for a graph means that there is an edge from i to j. If also (j,i) is non-zero there is also an edge from j to i. In this case we may think of a bidirected edge between i and j or we may think of the edge as being undirected. We do not distinguish between undirected and bidirected edges in the gRbase package. On the other hand, graphNEL objects from the graph package makes such a distinction (the function edgemode() will tell if edges are “directed” or “undirected” in a graphNEL object).

The function is.UG() checks if the adjacency matrix is symmetric (If applied to a graphNEL, the adjacency matrix is created and checked for symmetry.)

The function is.TUG() checks if the graph is undirected and triangulated (also called chordal) by checking if the adjacency matrix is symmetric and the vertices can be given a perfect ordering using maximum cardinality seach.

The function is.DG() checks if a graph is directed, i.e., that there are no undirected edges. This is done by computing the elementwise product of A and the transpose of A; if there are no non–zero entries in this product then the graph is directed.

The function is.DAG() will return TRUE if all edges are directed and if there are no cycles in the graph. (This is checked by checking if the vertices in the graph can be given a topological ordering which is based on identifying an undirected edge with a bidrected edge).

There is a special case, namely if the graph has no edges at all (such that the adjacency matrix consists only of zeros). Such a graph is both undirected, triangulated, directed and directed acyclic.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

dag, ug

Examples

DAGs
dagNEL <- dag(~a:b+c:d:e, result="NEL")
dagMAT <- dag(~a:b+c:d:e, result="matrix")
dagMATS <- dag(~a:b+c:d:e, result="Matrix")

Undirected graphs
ugNEL <- ug(~a:b+c:d:e, result="NEL")
ugMAT <- ug(~a:b+c:d:e, result="matrix")
ugMATS <- ug(~a:b+c:d:e, result="Matrix")
```r
## Is it a DAG?
is.DAG(dagNEL)
is.DAG(dagMAT)
is.DAG(dagMATS)

is.DAG(ugNEL)
is.DAG(ugMAT)
is.DAG(ugMATS)

## Is it an undirected graph
is.UG(dagNEL)
is.UG(dagMAT)
is.UG(dagMATS)

is.UG(ugNEL)
is.UG(ugMAT)
is.UG(ugMATS)

## Is it a triangulated (i.e. chordal) undirected graph
is.TUG(dagNEL)
is.TUG(dagMAT)
is.TUG(dagMATS)

is.TUG(ugNEL)
is.TUG(ugMAT)
is.TUG(ugMATS)

## Example where the graph is not triangulated
ug2NEL <- ug(~a:b+b:c+c:d+d:a, result="NEL")
ug2MAT <- ug(~a:b+b:c+c:d+d:a, result="matrix")
ug2MATS <- ug(~a:b+b:c+c:d+d:a, result="Matrix")

is.TUG(ug2NEL)
is.TUG(ug2MAT)
is.TUG(ug2MATS)

## Bidirected graphs
graph::edgemode(ugNEL)
graph::edgemode(ugNEL) <- "directed"
graph::edgemode(ugNEL)
is.DAG(ugNEL)
is.UG(ugNEL)
```

lizard
Lizard behaviour
Description

In a study of lizard behaviour, characteristics of 409 lizards were recorded, namely species (S), perch diameter (D) and perch height (H). The focus of interest is in how the propensities of the lizards to choose perch height and diameter are related, and whether and how these depend on species.

Usage
data(lizard)

Format

A 3–dimensional array with factors diam: "<=4" ">4" height: ">4.75" "<=4.75" species: "anoli" "dist"

References

Examples
data(lizard)

Datasets lizardRAW and lizardDF are generated with the following code
#lizardAGG <- as.data.frame(lizard)
#f <- lizardAGG$Freq
#idx <- unlist(mapply(function(i,n) rep(i,n),1:8,f))
#set.seed(0805)
#idx <- sample(idx)
#lizardRAW <- as.data.frame(lizardAGG[idx,1:3])
#rownames(lizardRAW) <- 1:NROW(lizardRAW)

mathmark

Mathematics marks for students

Description

The mathmark data frame has 88 rows and 5 columns.

Usage
data(mathmark)

Format

This data frame contains the following columns: mechanics, vectors, algebra, analysis, statistics.
Author(s)
Søren Højsgaard, <sorenh@math.aau.dk>

References

Examples
data(mathmark)

mcs
Maximum cardinality search on undirected graph.

Description
Returns (if it exists) a perfect ordering of the vertices in an undirected graph.

Usage
mcs(object, root = NULL, index = FALSE)
Default S3 method:
mcs(object, root = NULL, index = FALSE)

mcsMAT(amat, vn = colnames(amat), root = NULL, index = FALSE)
mcsmarked(object, discrete = NULL, index = FALSE)
Default S3 method:
mcsmarked(object, discrete = NULL, index = FALSE)

mcsmarkedMAT(amat, vn = colnames(amat), discrete = NULL, index = FALSE)

Arguments
object An undirected graph represented either as a graphNEL object, an igraph, a (dense) matrix, a (sparse) dgCMatrix.
root A vector of variables. The first variable in the perfect ordering will be the first variable on 'root'. The ordering of the variables given in 'root' will be followed as far as possible.
discrete A vector indicating which of the nodes are discrete. See 'details' for more information.
index If TRUE, then a permutation is returned
amat Adjacency matrix
vn Nodes in the graph given by adjacency matrix
Details

An undirected graph is decomposable iff there exists a perfect ordering of the vertices. The maximum cardinality search algorithm returns a perfect ordering of the vertices if it exists and hence this algorithm provides a check for decomposability. The mcs() functions finds such an ordering if it exists.

The notion of strong decomposability is used in connection with e.g. mixed interaction models where some vertices represent discrete variables and some represent continuous variables. Such graphs are said to be marked. The mcsmarked() function will return a perfect ordering iff the graph is strongly decomposable. As graphs do not know about whether vertices represent discrete or continuous variables, this information is supplied in the discrete argument.

Value

A vector with a linear ordering (obtained by maximum cardinality search) of the variables or character(0) if such an ordering can not be created.

Note

The workhorse is the mcsmat function.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

moralize jTree rip ug, dag

Examples

```r
uG <- ug(~me+ve,-me+al,-ve+al,-al+an,-al+st,-an+st)
mcs(uG)
mcsMAT(as.adjMAT(uG))
## Same as
uG <- ug(~me+ve,-me+al,-ve+al,-al+an,-al+st,-an+st,result="matrix")
mcsMAT(uG)

## Marked graphs
uG1 <- ug(~a:b+b:c+c:d)
uG2 <- ug(~a:b+a:d+c:d)
## Not strongly decomposable:
mcsmarked(uG1, discrete=c("a","d"))
## Strongly decomposable:
mcsmarked(uG2, discrete=c("a","d"))
```
mildew

Mildew fungus

Description

The data stem from a cross between two isolates of the barley powdery mildew fungus. For each offspring 6 binary characteristics, each corresponding to a single locus, were recorded. The object of the analysis is to determine the order of the loci along the chromosome.

Usage

data(mildew)

Format

The format is: table [1:2, 1:2, 1:2, 1:2, 1:2, 1:2] 0 0 0 0 1 0 0 1 0 1 0 0 1 ... - attr(*, "dimnames")=List of 6 ..$ la10: chr [1:2] "1" "2" ..$ locc: chr [1:2] "1" "2" ..$ mp58: chr [1:2] "1" "2" ..$ c365: chr [1:2] "1" "2" ..$ p53a: chr [1:2] "1" "2" ..$ a367: chr [1:2] "1" "2"

References

Examples

data(mildew)
maybe str(mildew) ; plot(mildew) ...

milkcomp

Milk composition data

Description

Data from an experiment on composition of sow milk. Milk composition is measured on four occasions during lactation on a number of sows. The treatments are different types of fat added to the sows feed.

Usage

data(milkcomp)
Format

A data frame with 214 observations on the following 7 variables.

- **sow** a numeric vector
- **lactime** a numeric vector
- **treat** a factor with levels a b c d e f g
- **fat** a numeric vector
- **protein** a numeric vector
- **dm** (dry matter) a numeric vector
- **lactose** a numeric vector

Details

- **a** is the control, i.e. no fat has been added.
- **fat + protein + lactose** almost add up to **dm** (dry matter)

References

Examples

```r
data(milkcomp)
## maybe str(milk); plot(milk) ...
```

minimalTriang

Minimal triangulation of an undirected graph

Description

An undirected graph **uG** is triangulated (or chordal) if it has no cycles of length ≥ 4 without a chord which is equivalent to that the vertices can be given a perfect ordering. Any undirected graph can be triangulated by adding edges to the graph, so called fill-ins which gives the graph **TuG**. A triangulation **TuG** is minimal if no fill-ins can be removed without breaking the property that **TuG** is triangulated.

Usage

```r
minimalTriang(object, tobject = triangulate(object), result=NULL, details=0)
minimalTriangMAT amat, tamat = triangulateMAT(amat), details = 0)
```
Arguments

object An undirected graph represented either as a graphNEL object, a (dense) matrix, a (sparse) dgCMatrix.
tobject Any triangulation of object; must be of the same representation.
result The type (representation) of the result. Possible values are "graphNEL", "matrix", "dgCMatrix". Default is the same as the type of object.
amat The undirected graph which is to be triangulated; a symmetric adjacency matrix
tamat Any triangulation of object; a symmetric adjacency matrix
details The amount of details to be printed.

Details

For a given triangulation tobject it may be so that some of the fill-ins are superflous in the sense that they can be removed from tobject without breaking the property that tobject is triangulated. The graph obtained by doing so is a minimal triangulation.

Notice: A related concept is the minimum triangulation, which is the the graph with the smallest number of fill-ins. The minimum triangulation is unique. Finding the minimum triangulation is NP-hard.

Value

minimalTriang() returns a graphNEL object while minimalTriangMAT() returns an adjacency matrix.

Author(s)

Clive Bowsher <C.Bowsher@statslab.cam.ac.uk> with modifications by Søren Højsgaard. <sorenh@math.aau.dk>

References

See Also

mpd, rip, triangulate

Examples

A graphNEL object
g1 <- ug(~a:b+b:c+c:d+d:e+e:f+a:f+b:e)
x <- minimalTriang(g1)

g2 is a triangulation of g1 but it is not minimal
g2 <- ug(~a:b:e+f+b:c+d:e)
x<-minimalTriang(g1, tobject=g2)
moralize

Moralize a directed acyclic graph

Description

Moralize a directed acyclic graph which means marrying parents and dropping directions

Usage

moralize(object, ...)
Default S3 method:
moralize(object, result=NULL, ...)

Arguments

object A directed acyclic graph represented either as a graphNEL object, an igraph, a (dense) matrix, a (sparse) dgCMatrix.
result The representation of the moralized graph. When NULL the representation will be the same as the input object.
... Additional arguments, currently not used

Value

A moralized graph represented either as a 'graphNEL', a 'matrix' or a sparse 'dgCMatrix'.

Note

The workhorse is the moralizeMAT function.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

mcs jTree rip ug dag
Examples

dag <- dag(~me+ve,-me+al,-ve+al,-al+an,-al+st,-an+st)
moralize(dag)

dag <- dag(~me+ve,-me+al,-ve+al,-al+an,-al+st,-an+st, result="matrix")
moralizeMAT(dag)

Description

Finding a junction tree representation of the MPD (maximal prime subgraph decomposition) of an undirected graph

Usage

mpd(object, tobject = minimalTriang(object), details = 0)
mpdMAT(amat, tamat = minimalTriangMAT(amat), details = 0)

Arguments

object
An undirected graph; a graphNEL object
tobject
Any minimal triangulation of object; a graphNEL object
amat
An undirected graph; a symmetric adjacency matrix	amat
Any minimal triangulation of object; a symmetric adjacency matrix
details
The amount of details to be printed.

Details

The maximal prime subgraph decomposition of a graph is the smallest subgraphs into which the graph can be decomposed.

Value

A list with components "nodes", "cliques", "separators", "parents", "children", "nLevels". The component "cliques" defines the subgraphs.

Author(s)

Clive Bowsher <C.Bowsher@statslab.cam.ac.uk> with modifications by Søren Højsgaard, <sorenh@math.aau.dk>

References

See Also

mcs, mcsMAT, minimalTriang, minimalTriangMAT, rip, ripMAT, triangulate, triangulateMAT

Examples

```r
## Maximal prime subgraph decomposition - a graphNEL object
g1 <- ug(~a:b+b:c+c:d+d:e+e:f+a:f+b:e)
if (interactive()) plot(g1)
x <- mpd(g1)

## Maximal prime subgraph decomposition - an adjacency matrix
g1m <- ug(~a:b+b:c+c:d+d:e+e:f+a:f+b:e, result="matrix")
if (interactive()) plot(as(g1m, "graphNEL"))
x <- mpdMAT(g1m)
```

Nutrimouse

The Nutrimouse Dataset

Description

The data come from a study of the effects of five dietary regimens with different fatty acid compositions on liver lipids and hepatic gene expression in 40 mice.

Usage

```r
data(Nutrimouse)
```

Format

A data frame with 40 observations on the following 143 variables.

- **genotype** a factor with levels wt ppar
- **diet** a factor with levels coc fish lin ref sun
- **X36b4** a numeric vector
- **ACAT1** a numeric vector
- **ACAT2** a numeric vector
- **ACBP** a numeric vector
- **ACC1** a numeric vector
- **ACC2** a numeric vector
- **ACOTH** a numeric vector
- **ADISP** a numeric vector
- **ADSS1** a numeric vector
- **ALDH3** a numeric vector
AM2R a numeric vector
A0X a numeric vector
BACT a numeric vector
BIEN a numeric vector
BSEP a numeric vector
Bc1.3 a numeric vector
C16SR a numeric vector
CACP a numeric vector
CAR1 a numeric vector
CBS a numeric vector
CDEA a numeric vector
COX1 a numeric vector
COX2 a numeric vector
CPT2 a numeric vector
CYP24 a numeric vector
CYP26 a numeric vector
CYP27a1 a numeric vector
CYP27b1 a numeric vector
CYP2b10 a numeric vector
CYP2b13 a numeric vector
CYP2c29 a numeric vector
CYP3A11 a numeric vector
CYP4A10 a numeric vector
CYP4A14 a numeric vector
CYP7a a numeric vector
CYP8b1 a numeric vector
FAS a numeric vector
FAT a numeric vector
FDFT a numeric vector
FXR a numeric vector
G6PDH a numeric vector
G6Pase a numeric vector
GK a numeric vector
GS a numeric vector
GSTa a numeric vector
GSTmu a numeric vector
GSTpi2 a numeric vector
<table>
<thead>
<tr>
<th>Gene</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>hmgcoared</td>
<td>numeric vector</td>
</tr>
<tr>
<td>HPNCL</td>
<td>numeric vector</td>
</tr>
<tr>
<td>IL-2</td>
<td>numeric vector</td>
</tr>
<tr>
<td>L.FABP</td>
<td>numeric vector</td>
</tr>
<tr>
<td>LCE</td>
<td>numeric vector</td>
</tr>
<tr>
<td>LDLr</td>
<td>numeric vector</td>
</tr>
<tr>
<td>LPK</td>
<td>numeric vector</td>
</tr>
<tr>
<td>LPL</td>
<td>numeric vector</td>
</tr>
<tr>
<td>LXRa</td>
<td>numeric vector</td>
</tr>
<tr>
<td>LXRb</td>
<td>numeric vector</td>
</tr>
<tr>
<td>Lpin</td>
<td>numeric vector</td>
</tr>
<tr>
<td>Lpin1</td>
<td>numeric vector</td>
</tr>
<tr>
<td>Lpin2</td>
<td>numeric vector</td>
</tr>
<tr>
<td>Lpin3</td>
<td>numeric vector</td>
</tr>
<tr>
<td>M.CPT1</td>
<td>numeric vector</td>
</tr>
<tr>
<td>MCAD</td>
<td>numeric vector</td>
</tr>
<tr>
<td>MDR1</td>
<td>numeric vector</td>
</tr>
<tr>
<td>MDR2</td>
<td>numeric vector</td>
</tr>
<tr>
<td>MRP6</td>
<td>numeric vector</td>
</tr>
<tr>
<td>MS</td>
<td>numeric vector</td>
</tr>
<tr>
<td>MTHFR</td>
<td>numeric vector</td>
</tr>
<tr>
<td>NGFIb</td>
<td>numeric vector</td>
</tr>
<tr>
<td>NURR1</td>
<td>numeric vector</td>
</tr>
<tr>
<td>Ntcp</td>
<td>numeric vector</td>
</tr>
<tr>
<td>OCTN2</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PAL</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PDK4</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PECI</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PLTP</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PMDCI</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PON</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PPARa</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PPARd</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PPARg</td>
<td>numeric vector</td>
</tr>
<tr>
<td>PXR</td>
<td>numeric vector</td>
</tr>
<tr>
<td>Pex11a</td>
<td>numeric vector</td>
</tr>
<tr>
<td>RARa</td>
<td>numeric vector</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>RARb2</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>RXRa</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>RXRb2</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>RXRg1</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>S14</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>SHP1</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>SIAT4c</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>SPI1.1</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>SR.BI</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>THB</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>THIOL</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>TRa</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>TRb</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>Tpalpα</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>Tpbeta</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>UCP2</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>UCP3</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>VDR</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>VLDLR</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>Waf1</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>ap2</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>apoAI</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>apoB</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>apoC3</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>apoE</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>c.fos</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>cHMGCoA5</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>cMOAT</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>eIF2g</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>hABC1</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>i.BABP</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>i.BAT</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>i.FABP</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>i.NOS</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>mABC1</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>mHMGCoA5</td>
<td>a numeric vector</td>
</tr>
<tr>
<td>C14.0</td>
<td>a numeric vector</td>
</tr>
</tbody>
</table>
C16.0 a numeric vector
C18.0 a numeric vector
C16.1n.9 a numeric vector
C16.1n.7 a numeric vector
C18.1n.9 a numeric vector
C18.1n.7 a numeric vector
C20.1n.9 a numeric vector
C20.3n.9 a numeric vector
C18.2n.6 a numeric vector
C18.3n.6 a numeric vector
C20.2n.6 a numeric vector
C20.3n.6 a numeric vector
C20.4n.6 a numeric vector
C22.4n.6 a numeric vector
C22.5n.6 a numeric vector
C18.3n.3 a numeric vector
C20.3n.3 a numeric vector
C20.5n.3 a numeric vector
C22.5n.3 a numeric vector
C22.6n.3 a numeric vector

Details

The data come from a study of the effects of five dietary regimens with different fatty acid compositions on liver lipids and hepatic gene expression in wild-type and PPAR-alpha-deficient mice (Martin et al., 2007). There were 5 replicates per genotype and diet combination.

There are two design variables: (i) genotype, a factor with two levels: wild-type (wt) and PPAR-alpha-deficient (ppar), and (ii) diet, a factor with five levels. The oils used for experimental diet preparation were: corn and colza oils (50/50) for a reference diet (ref); hydrogenated coconut oil for a saturated fatty acid diet (coc); sunflower oil for an Omega6 fatty acid-rich diet (sun); linseed oil for an Omega3-rich diet (lin); and corn/colza/enriched (43/43/14) fish oils (fish).

There are 141 response variables: (i) the log-expression levels of 120 genes measured in liver cells, and (ii) the concentrations (in percentages) of 21 hepatic fatty acids measured by gas chromatography.

Source

The data were provided by Pascal Martin from the Toxicology and Pharmacology Laboratory, National Institute for Agronomic Research, French.
References

Examples

data(Nutrimouse)

parray Representation of and operations on multidimensional tables

Description

General representation of multidimensional tables (by parray objects).

Usage

parray(varNames, levels, values = 1, normalize = "none", smooth = 0)
as.parray(values, normalize="none", smooth=0)
data2parray(data, varNames=NULL, normalize="none", smooth=0)

Arguments

varNames Names of variables defining table; can be a right hand sided formula.
levels Either 1) a vector with number of levels of the factors in varNames or 2) a list with specification of the levels of the factors in varNames. See 'examples' below.
values Values to go into the parray
normalize Either "none", "first" or "all". Should result be normalized, see 'Details' below.
smooth Should values be smoothed, see 'Details' below.
data A dataframe, a table, an xtabs (a cross classified contingency table) a matrix (with dimnames) or a vector (with dimnames).

Details

A parray object represents a table defined by a set of variables and their levels, together with the values of the table. E.g. f(a,b,c) can be a table with a,b,c representing levels of binary variable

If normalize="first" then for each configuration of all other variables than the first, the probabilities are normalized to sum to one. Thus f(a,b,c) becomes a conditional probability table of the form p(a|b,c). If normalize="all" then the sum over all entries of f(a,b,c) is one.

If smooth is positive then smooth is added to values before normalization takes place.

as.parray can be used for coercing an array or an xtabs to a parray object.
Value

An object of class parray.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

tableOp, tableMargin

Examples

t1 <- parray(c("gender","answer"), list(c('male','female'),c('yes','no'))), values=1:4)
t1 <- parray(~gender:answer, list(c('male','female'),c('yes','no'))), values=1:4)
t1 <- parray(~gender:answer, c(2,2), values=1:4)

t2 <- parray(c("answer","category"), list(c('yes','no'),c(1,2)), values=1:4+10)
t3 <- parray(c("category","foo"), c(2,2), values=1:4+100)

varNames(t1)
nLevels(t1)
valueLabels(t1)

Create 1-dimensional vector with dim and dimnames
x1 <- 1:5
as.parray(x1)
x2 <- parray("x", levels=length(x1), values=x1)
dim(x2)
dimnames(x2)

Matrix
x1 <- matrix(1:6, nrow=2)
as.parray(x1)
parray(~a:b, levels=dim(x1), values=x1)

Extract parrays from data
1) a dataframe
data(cad1)
data2parray(cad1, ~Sex:AngPec:AMI)
data2parray(cad1, c("Sex","AngPec","AMI"))
data2parray(cad1, c(1,2,3))
2) a table
data2parray(UCBAAdmissions,c(1,2), normalize="first")
querygraph

Description

querygraph is a general function for querying a graph object, specifically graphs as created with newug and newdag.

Usage

querygraph(object, op, set = NULL, set2 = NULL, set3 = NULL)

Arguments

object
A graph object; i.e. either an undirected graph (ugsh) or a directed acyclic graph (dagsh)

op
The query operation, see 'details' below.

set, set2, set3
Possible arguments to a graph query of type type

Details

The op can be:

• adj: Nodes adjacent to set
• an: Ancestors of set
• ancestralGraph: Ancestral graph induced by set
• ancestralSet: Ancestral set of set
• cl: Closure of set
• ch: Children of set
• maxClique: The cliques
• connectedComp The connected components
• edges: Edges of graph
• ne: Neighbours of set
• nodes: Nodes of graph
• is.complete:
• edgeList
• vpar
• is.simplicial:
• is.triangulated:
• pa: Parents of set
• separates: Is set and set2 separated by set3
• simplicialNodes: The simplicial nodes of graph
• subgraph: Subgraph induced by set
Value

Depending on the type, the output will be either a new graph or a vector or a list.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

`ug, dag`

Examples

```r
ug0 <- ug(~a:b, ~b:c:d, ~e)
querygraph(ug0, "nodes")
querygraph(ug0, "edges")
querygraph(ug0, "subgraph", c("b", "c", "d", "e"))
querygraph(ug0, "adj", "c")
querygraph(ug0, "closure", "c")
querygraph(ug0, "is.simplicial", "b")
querygraph(ug0, "simplicialNodes")
querygraph(ug0, "is.complete")
querygraph(ug0, "is.complete", c("b", "c", "d"))
querygraph(ug0, "maxClique")
querygraph(ug0, "is.triangulated")
querygraph(ug0, "is.decomposition", "a","d",c("b","c"))
```

random_dag

Random directed acyclic graph

Description

Generate a random directed acyclic graph (DAG)

Usage

```r
random_dag(V, maxpar = 3, wgt = 0.1)
```
Arguments

v The set of vertices.
maxpar The maximum number of parents each node can have
wgt A parameter controlling how likely it is for a node to have a certain number of parents; see 'Details'

Details

If the maximum number of parents for a node is, say 3 and wgt=0.1, then the probability of the node ending up with 0,1,2,3 parents is proportional to 0.1^0, 0.1^1, 0.1^2, 0.1^3.

Value

A graphNEL object.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

Examples

dg <- random_dag(1:1000, maxpar=5, wgt=.9)
table(sapply(vpar(dg),length))

dg <- random_dag(1:1000, maxpar=5, wgt=.5)
table(sapply(vpar(dg),length))

dg <- random_dag(1:1000, maxpar=5, wgt=.1)
table(sapply(vpar(dg),length))

r

Description

An artificial dataset. 24 rats (12 female, 12 male) have been randomized to use one of three drugs (products for loosing weight). The weightloss for each rat is noted after one and two weeks.

Usage

data(rats)

Format

A dataframe with 4 variables. Sex: "M" (male), "F" (female). Drug: "D1", "D2", "D3" (three types). W1 weightloss, week one. W2 weightloss, week 2.
References

reinis

Risk factors for coronary heart disease.

Description

Data collected at the beginning of a 15 year follow-up study of probable risk factors for coronary thrombosis. Data are from all men employed in a car factory.

Usage

data(reinis)

Format

References

rip

Create RIP ordering of the cliques of an undirected graph; create junction tree.

Description

A RIP (running intersection property) ordering of the cliques is also called a perfect ordering. If the graph is not chordal, then no such ordering exists.
Usage

```r
rip(object, root = NULL, nLevels = NULL)
## Default S3 method:
rip(object, root = NULL, nLevels = NULL)
```

```r
dropMat(amat, root = NULL, nLevels = rep(2, ncol(amat)))
```

```r
jTree(object, ...)
## Default S3 method:
jTree(object, nLevels=NULL, ...)
```

```r
jTreeMat(amat, nLevels=rep(2,ncol(amat)), ...)
```

Arguments

- **object**: An undirected graph represented either as a graphNEL object, an igraph, a (dense) matrix, a (sparse) dgCMatrix.
- **root**: A vector of variables. The first variable in the perfect ordering will be the first variable on 'root'. The ordering of the variables given in 'root' will be followed as far as possible.
- **nLevels**: Typically, the number of levels of the variables (nodes) when these are discrete. Used in determining the triangulation using a "minimum clique weight heuristic". See section 'details'.
- **amat**: Adjacency matrix
- **...**: Additional arguments; currently not used

Details

The RIP ordering of the cliques of a decomposable (i.e. chordal) graph is obtained by first ordering the variables linearly with maximum cardinality search (by mcs). The root argument is transferred to mcs as a way of controlling which clique will be the first in the RIP ordering.

The jTree() (and jTree()) (for "junction tree") is just a wrapper for a call of triangulate() followed by a call of rip().

Value

rip returns a list (an object of class ripOrder. A print method exists for such objects.)

Note

The workhorse is the ripMAT() function.

The nLevels argument to the rip functions has no meaning.
Set operations

Description

Miscellaneous set operations.

Usage

is.subsetof(x, set)
is.insetlist(x, setlist, index=FALSE)
removeRedundant(setlist, maximal = TRUE, index = FALSE)
maximalSets(setlist, index = FALSE)
minimalSets(setlist, index = FALSE)
simulateArray

Arguments

- **x, set**: Vectors representing sets
- **setlist**: List of vectors (representing a set of subsets)
- **maximal**: Logical; see section 'Details' for a description.
- **index**: Logical; should indices (in setlist) be returned or a set of subsets.

Details

'setlist' is a list of vectors representing a set of subsets; i.e. V1,...,VQ where Vk is a subset of some base set V.

- **isINsetlist**: Checks if the set x is in one of the Vk’s.
- **removeRedundant**: Returns those Vk which are not contained in other subsets; i.e. gives the maximal sets. If maximal is FALSE then returns the minimal sets; i.e. Vk is returned if Vk is contained in one of the other sets Vl and there are no set Vn contained in Vk.

Notice that the comparisons are made by turning the elements into characters and then comparing these. Hence 1 is identical to "1".

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

Examples

```r
is.subsetof(c(1,2), c(1,2,3))
is.subsetof(c(1,2,3), c(1,2))
l <- list(c(1,2), c(1,2,3), c(2,4), c(5,6), 5)
#subsetofList(c(1,2), l)
#subsetofList(c(1,2,3,4), l)
removeRedundant(l)
removeRedundant(l, maximal=FALSE)
is.INsetlist(c(2,4), l)
is.INsetlist(c(2,8), l)
```

Description

Simulate data (slice of) an array.
Usage

simulateArray(x, nsim = 1, margin, value.margin)

Arguments

x
An array

nsim
Number of cases to simulate

margin, value.margin
Specification of slice of array to simulate from

Value

A matrix

Note

The current implementation is fragile in the sense that it is not checked that the input argument x is an array.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

Examples

```r
## 2x2 array
x <- pararray(c("a","b"), levels=c(2,2), values=1:4)

## Simulate from entire array
s <- simulateArray(x,1000)
xtabs(~., as.data.frame(s))

## Simulate from slice defined by that dimension 1 is fixed at level 2
s <- simulateArray(x, 0000, 1, 2)
xtabs(~., as.data.frame(s))

## 2x2x2 array
x <- pararray(c("a","b","c"), levels=c(2,2,2), values=1:8)

## Simulate from entire array
s <- simulateArray(x, 36000)
xtabs(~., as.data.frame(s))

## Simulate from slice defined by that dimension 3 is fixed at level 1
s <- simulateArray(x, 10000, 3, 1)
xtabs(~., as.data.frame(s))
```
Compute table margin or table slice

Description

For a contingency table in array form, compute the sum of table entries for a given index (i.e. a marginal table) or find the slice of the table defined by specific margins being at a specific level.

Usage

```r
tableOp(t1, t2, op = "x")
tableMult(t1, t2)
tableDiv(t1, t2)
tableMargin(x, margin, keep.class=FALSE)
tableSlice(x, margin, level, impose)
tablePerm(a, perm, resize = TRUE, keep.class=FALSE)
```

Arguments

- `x, t1, t2, a`: An array
- `margin`: An index, either numerical or character
- `keep.class`: If TRUE the result will be forced to have the same class as the input; otherwise the result will be an array.
- `level`: A value, either numerical or character
- `impose`: Possible value used to fill up a slice to give it full dimension
- `op`: Either "*" or "/"
- `perm`: The subscript permutation vector, which must be a permutation of the integers 1:n, where n is the number of dimensions of a OR a permutation of the dimension names of a. The default is to reverse the order of the dimensions. A permutation of the dimensions of a.
- `resize`: A flag indicating whether the vector should be resized as well as having its elements reordered.

Details

- **tableMargin**: `tableMargin` is analogous to `margin.table` except that `margin` can be given both as array indices or as variable names.
- **tableSlice**: If the table `x` has dimensions Z,U,V where V has levels 1 and 2 then `tableSlice` can extract the slice of `x` (in this case a 2-way table) defined by e.g. U=2. Setting `impose=1000` implies that a 3-way table is returned with the U=2 slice in the right place and the U=1-slice consisting of 1000 in each cell.
- **tableOp**: If `tl` has dimnames A and B and `t2` has dimnames B and C then `tableOp(t1,t2)` will return a table (an array) with dimnames A, B and C containing the product.
tableMult(t1,t2) is a wrapper for tableOp(t1,t2, op="*") and tableMult(t1,t2) is a wrapper for tableDiv(t1,t2, op="/").

tablePerm: A wrapper for aperm, but tablePerm accepts dimnames in addition to indices.
See examples below.

Value
An array.

Author(s)
Søren Højsgaard

See Also
margin.table

Examples

data(HairEyeColor)

 tableMargin(HairEyeColor, "Hair")
 tableMargin(HairEyeColor, 1)
 tableMargin(HairEyeColor, c("Hair","Eye"))
 tableMargin(HairEyeColor, c(1,2))

tableSlicedt(HairEyeColor, "Sex","Male")
 tableSlicedt(HairEyeColor, 3,1)
 tableSlicedt(HairEyeColor, "Sex","Male", impose=1000)
 tableSlicedt(HairEyeColor, 3,1, impose=1000)

t1 <- array(1:4, dim=c(2,2), dimnames=list(gender=c('male','female'),answer=c('yes','no')))
t2 <- array(1:4+10, dim=c(2,2), dimnames=list(answer=c('yes','no'),category=c(1,2)))

 tableOp(t1,t2, "*")
 tableOp(t1,t2, "/")

data(reinis)

 t1 <- tableMargin(reinis, c(6,5,2,1))
 t2 <- tableMargin(reinis, c(6,5,3,4))
 tt1 <- tableOp(t1,t2)

 t1 <- tableMargin(reinis, c(6,5,2,4,1))
 t2 <- tableMargin(reinis, c(6,5,4))
 tt1 <- tableOp2(t1,t2)
Topological sort of vertices in directed acyclic graph

Description

A topological ordering of a directed graph is a linear ordering of its vertices such that, for every edge \(u \rightarrow v \), \(u \) comes before \(v \) in the ordering. A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least one topological ordering. Can hence be used for checking if a graph is a DAG.

Usage

toposort(object, index = FALSE)

Arguments

- **object**: An graph represented either as a graphNEL object, an igraph, a (dense) matrix, a (sparse) dgCMatrix.
- **index**: If FALSE, an ordering is returned if it exists and character(0) otherwise. If TRUE, the index of the variables in an adjacency matrix is returned and -1 otherwise.

Value

If FALSE, an ordering is returned if it exists and character(0) otherwise. If TRUE, the index of the variables in an adjacency matrix is returned and -1 otherwise.

Note

The workhorse is the toposortMAT function which takes an adjacency matrix as input.

Warning

Do not use index=TRUE when the input is a graphNEL object; the result is unpredictable.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

dag, ug
Examples

```r
dagMAT <- dag(~a:b:c+d:e, result="matrix")
dagMATS <- as(dagMAT, "dgCMatrix")
dagNEL <- as(dagMAT, "graphNEL")

topoSort(dagMAT)
topoSort(dagMATS)
topoSort(dagNEL)
```

triangulate

Triangulation of an undirected graph

Description

This function will triangulate an undirected graph by adding fill-ins.

Usage

```r
triangulate(object, ...)  
```

```
## Default S3 method:
triangulate(object, nLevels = NULL, result=NULL, ...)  
triangulateMAT amat, nLevels=rep(2, ncol(amat)), ...)  
```

Arguments

- **object**: An undirected graph represented either as a graphNEL object, an igraph, a (dense) matrix, a (sparse) dgCMatrix.
- **nLevels**: The number of levels of the variables (nodes) when these are discrete. Used in determining the triangulation using a "minimum clique weight heuristic". See section 'details'.
- **result**: The type (representation) of the result. Possible values are "graphNEL", "igraph", "matrix", "dgCMatrix". Default is the same as the type of object.
- **amat**: Adjacency matrix; a (dense) matrix, or a (sparse) dgCMatrix.
- **...**: Additional arguments, currently not used.

Details

The workhorse is the triangulateMAT function.

The triangulation is made so as the total state space is kept low by applying a minimum clique weight heuristic: When a fill-in is necessary, the algorithm will search for an edge to add such that the complete set to be formed will have as small a state-space as possible. It is in this connection that the nLevels values are used.

Default (when nLevels=NULL) is to take nLevels=2 for all nodes. If nLevels is the same for all nodes then the heuristic aims at keeping the clique sizes small.
Value

A triangulated graph represented either as a graphNEL, a (dense) matrix or a (sparse) dgCMatrix.

Note

Care should be taken when specifying nLevels for other representations than adjacency matrices: Since the triangulateMAT function is the workhorse, any other representation is transformed to an adjacency matrix and the order of values in nLevels must come in the order of the nodes in the adjacency matrix representation.

Currently there is no check for that the graph is undirected.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

ug dag mcsmcs, mcsMAT rip, ripMAT, moralize, moralizemat

Examples

```r
## graphNEL
ugG1 <- ug(~a:b+c+d:e+f:a)
tuG1 <- triangulate(uG1)

## adjacency matrix
ugG2 <- ug(~a:b+b:c+d:e+e+f+f:a, result="matrix")
tuG2 <- triangulate(uG2)

## adjacency matrix (sparse)
ugG2 <- ug(~a:b+b:c+d:e+e+f+f:a, result="Matrix")
tuG2 <- triangulate(uG2)
```

Description

These functions are wrappers for creation of graphs as implemented by graphNEL objects in the graph package.

Usage

```r
ug(..., result="NEL")
dag(..., result="NEL", forceCheck=FALSE)
ugList(x, result="NEL")
dagList(x, result="NEL", forceCheck=FALSE)
```
Arguments

\[\ldots\]

- \(x\) A list containing a generating class for a graph, see examples below
- \(\text{forceCheck}\) Logical determining if it should be checked if the graph is acyclical
- \(\text{result}\) The format of the graph. The possible choices are "NEL" (for a graphNEL object), "matrix" (for an adjacency matrix), "igraph" (for an igraph object), "Matrix" (for a sparse matrix).

Value

Functions \(ug()\), \(dag()\), \(ugList()\) and \(dagList()\) return a 'graphNEL' object, an adjacency matrix or an 'igraph' object.

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

Examples

\begin{verbatim}
ugr <- ug(~me:ve:al,~al:an:st)
ugr <- ug(c("me","ve"),c("me","al"),c("ve","al"),c("al","an"),c("al","st"),c("an","st"))
ugr <- ug(~me:ve:al, c("me","ve"),c("me","al"),c("ve","al"),c("al","an"),c("al","st"),c("an","st"))
dagr <- dag(c("me","ve"),c("me","al"),c("ve","al"),c("al","an"),c("al","st"),c("an","st"))
dagr <- dag(~me:ve:al,~al:an)

graph::edges(ugr)
graph::nodes(ugr)

graph::edges(dagr)
graph::nodes(dagr)

ugList(list(~me:ve:al,~al:an:st))
dagList(list(~me:ve:al,~ve:al:an))
\end{verbatim}
List of vertices and their parents for graph.

Description

Get list of vertices and their parents for graph.

Usage

vpar(object, getv = TRUE, forceCheck = TRUE)
S3 method for class 'graphNEL'

vpar(object, getv = TRUE, forceCheck = TRUE)
S3 method for class 'matrix'

vpar(object, getv = TRUE, forceCheck = TRUE)

Arguments

object An object representing a graph. Valid objects are an adjacency matrix or as a graphNEL.

getv The result is by default a list of vectors of the form \((v, pa_1, pa_2, \ldots, pa_N)\) where \(pa_1, pa_2, \ldots, pa_N\) are the parents of \(v\). If getv is FALSE then the vectors will have the form \((pa_1, pa_2, \ldots, pa_N)\).

forceCheck Logical indicating if it should be checked that the object is a DAG.

Value

A list of vectors where each vector will have the form \((v, pa_1, pa_2, \ldots, pa_N)\) where \(pa_1, pa_2, \ldots, pa_N\) are the parents of \(v\).

Author(s)

Søren Højsgaard, <sorenh@math.aau.dk>

See Also

dag ug

Examples

DAGs
dagMAT <- dag(~a:b:c+d:e, result="matrix")
dagNEL <- dag(~a:b:c+d:e, result="NEL")

vpar(dagMAT)
vpar(dagNEL)
vpar(dagMAT, getv=FALSE)
vpar(dagNEL, getv=FALSE)
Undirected graphs

ugMAT <- ug(~a:b+c:d:e, result="matrix")
ugNEL <- ug(~a:b+c:d:e, result="NEL")

Not run:
This will fail because the adjacency matrix is symmetric and the
graphNEL has undirected edges
vpar(ugMAT)
vpar(ugNEL)

End(Not run)

When forceCheck is FALSE, it will not be detected that the graphs are undirected.
vpar(ugMAT, forceCheck=FALSE)
vpar(ugNEL, forceCheck=FALSE)

Bidirected graphs
This is, for graphNEL's, the same as working with bidirected edges:
if (require(graph)){
 graph::edgemode(ugNEL)
 graph::edgemode(ugNEL) <- "directed"
 graph::edgemode(ugNEL)
 vpar(ugNEL, FALSE)
}

wine

Description

Using chemical analysis determine the origin of wines

Usage

data(wine)

Format

A data frame with 178 observations on the following 14 variables.

- **Cult** a factor with levels v1 v2 v3: 3 different graph varieties
- **Alch** Alcohol
- **Mlca** Malic acid
- **Ash** Ash
- **Aloa** Alcalinity of ash
- **Mgs** Magnesium
- **Ttlp** Total phenols
Flvn Flavanoids

Nnfp Nonflavanoid phenols

Prnt Proanthocyanins

Clri Color intensity

Hue Hue

OODw OD280/OD315 of diluted wines

Prln Proline

Details

Data comes from the UCI Machine Learning Repository. The grape variety `Cult` is the class identifier.

Source

References

Examples

```r
data(wine)
## maybe str(wine); plot(wine) ...
```
Index

*Topic datasets
 ashtrees, 4
 BodyFat, 5
 breastcancer, 6
 cad, 34
 carcass, 35
 chestSim, 36
 dietox, 40
 dumping, 40
 lizard, 51
 mathmark, 52
 mildew, 55
 milkcomp, 55
 Nutrimouse, 60
 rats, 69
 reinis, 70
 wine, 82
*Topic graphics
 iplot, 49
*Topic graphs
 grBase, 47
*Topic models
 grBase, 47
*Topic multivariate
 grBase, 47
*Topic utilities
 arrayCombine, 3
 combnPrim, 37
 compareModels, 38
 compile, propagate, 38
 cov2pcor, 39
 edgelist, 41
 getClques, 43
 glist2adjMAT, 44
 graph-coercion, 45
 graph-operations, 46
 gRBase-utilities, 48
 is.DAG, 49
 mcs, 53
 minimalTriang, 56
 moralize, 58
 mpd, 59
 parray, 65
 querygraph, 67
 random_dag, 68
 rip, 70
 SetOperations, 72
 simulateArray, 73
 table-operations, 75
 topoSort, 77
 triangulate, 78
 ug, 79
 vpar, 81
ancestors (graph-operations), 46
ancestralGraph (graph-operations), 46
ancestralSet (graph-operations), 46
arrayCombine, 3
arrayExtendDomain (arrayCombine), 3
as.adjMAT, 42
as.adjMAT (graph-coercion), 45
as.parray (parray), 65
ashtrees, 4
BodyFat, 5
breastcancer, 6
cad, 34
cad1 (cad), 34
cad2 (cad), 34
carcass, 35
carcassall (carcass), 35
chestSim, 36
chestSim1000 (chestSim), 36
chestSim10000 (chestSim), 36
chestSim100000 (chestSim), 36
chestSim500 (chestSim), 36
chestSim5000 (chestSim), 36
children (graph-operations), 46
closure (graph-operations), 46
colwiseProd (gRbase-utilities), 48
combn, 37
combnPrim, 37
compareModels, 38
compile (compile,propagate), 38
compile,propagate, 38
compile.grain, 39
conc2pcor (cov2pcor), 39
cov2pcor, 39
dag, 43, 44, 50, 54, 58, 68, 72, 77, 79, 81
dag (ug), 79
dagList (ug), 79
dagList2dgCMatrix (ug), 79
dagList2matrix (ug), 79
data2parray (parray), 65
dietox, 40
dumping, 40
edgeList, 41, 45, 47
edgeListMAT (edgeList), 41
getCliques, 43, 45
glist2adjMAT, 44
graph-coercion, 45
graph-operations, 46
graphNEL2adjMAT (graph-coercion), 45
graphNEL2dgCMatrix (graph-coercion), 45
graphNEL2ftM (graph-coercion), 45
graphNEL2matrix (graph-coercion), 45
graphNEL2tfM (graph-coercion), 45
gRbase, 47
gRbase-utilities, 48
iplot, 49
is.adjMAT (is.DAG), 49
is.complete (graph-operations), 46
is.DAG, 49
is.DAGMAT (is.DAG), 49
is.decomposition (graph-operations), 46
is.DG (is.DAG), 49
is.DGMAT (is.DAG), 49
is.insetlist (Setoperations), 72
is.simplicial (graph-operations), 46
is.subsetof (Setoperations), 72
is.TUG (is.DAG), 49
is.TUGMAT (is.DAG), 49
is.UG (is.DAG), 49
is.UGMAT (is.DAG), 49
isin (Setoperations), 72
jTree, 42, 45, 47, 54, 58
jTree (rip), 70
jTreeMAT (rip), 70
junctionTree (rip), 70
junctionTreeMAT (rip), 70
lizard, 51
lizardAGG (lizard), 51
lizardRAW (lizard), 51
margin.table, 76
math (mathmark), 52
mathmark, 52
maxCliqueMAT (getCliques), 43
maximalSets (Setoperations), 72
mcs, 42, 43, 45, 47, 53, 58, 60, 72, 79
mcsmarked (mcs), 53
mcsmarkedMAT (mcs), 53
mcsMAT, 43, 60, 79
mcsMAT (mcs), 53
mildew, 55
milkcomp, 55
milkcomp1 (milkcomp), 55
minimalSets (Setoperations), 72
minimalTriang, 56, 60
minimalTriangMAT, 60
minimalTriangMAT (minimalTriang), 56
moralize, 42, 43, 45, 47, 54, 58, 72, 79
moralizeMAT, 43, 79
moralizeMAT (moralize), 58
mpd, 57, 59
mpdMAT (mpd), 59
nonEdgeList, 45, 47
nonEdgeList (edgeList), 41
nonEdgeListMAT (edgeList), 41
Nutrimouse, 60
parents (graph-operations), 46
parray, 65
propagate (compile,propagate), 38
propagate.grain, 39
querygraph, 67
random_dag, 68
rats, 69
reinis, 70
removeRedundant (Setoperations), 72
rip, 42, 43, 45, 47, 54, 57, 58, 60, 70, 79
ripMAT, 43, 60, 79
ripMAT (rip), 70
Setoperations, 72
simplicialNodes (graph-operations), 46
simulateArray, 73
subsetof (Setoperations), 72
table-operations, 75
tableDiv (table-operations), 75
tableMargin, 66
tableMargin (table-operations), 75
tableMult (table-operations), 75
tableOp, 66
tableOp (table-operations), 75
tableOp2 (table-operations), 75
tablePerm (table-operations), 75
tableSlice (table-operations), 75
tableSlicePrim (table-operations), 75
topoSort, 77
topoSort_vparList (topoSort), 77
topoSortMAT (topoSort), 77
triangulate, 57, 60, 72, 78
triangulateMAT, 60
triangulateMAT (triangulate), 78
ug, 43, 44, 50, 54, 58, 68, 72, 77, 79, 79, 81
uglist (ug), 79
ugList2dgCMatix (ug), 79
ugList2matrix (ug), 79
vpaL2tfM (glist2adjMAT), 44
vpaList2adjMAT (glist2adjMAT), 44
vpar, 81
vparMAT (vpar), 81
wine, 82