1 Introduction

This note describes some operations on arrays in R. These operations have been implemented to facilitate implementation of graphical models and Bayesian networks in R.

1.1 Arrays in R

The documentation of R states the following about arrays:

An array in R can have one, two or more dimensions. It is simply a vector which is stored with additional attributes giving the dimensions (attribute "dim") and optionally names for those dimensions (attribute "dimnames").

A two-dimensional array is the same thing as a matrix.

One-dimensional arrays often look like vectors, but may be handled differently by some functions.

Hence the defining characteristic of an array is that it is a vector with a dim attribute. For example

R> ## 1-dimensional array
R> ##
R> x1 <- 1:8
R> dim(x1) <- 8
R> x1
[1] 1 2 3 4 5 6 7 8
R> c(is.array(x1), is.matrix(x1))
2-dimensional array (matrix)

```r
x2 <- 1:8
dim(x2) <- c(2,4)
x2
```

```
[1,] 1  3  5  7
[2,] 2  4  6  8
```

```r
c(is.array(x2), is.matrix(x2))
```

```
[1] TRUE TRUE
```

3-dimensional array

```r
x3 <- array(1:8, dim=c(2,2,2))
x3
```

```
, , 1
  [,1] [,2]
[1,] 1  3
[2,] 2  4

, , 2
  [,1] [,2]
[1,] 5  7
[2,] 6  8
```

```r
c(is.array(x3), is.matrix(x3))
```

```
[1] TRUE FALSE
```

1.2 Terminology

Consider a set \(\Delta = \{ \delta_1, \ldots, \delta_K \} \) of \(|\Delta| = K \) factors where the factor \(\delta_k \) has levels \(I_k = \{1, \ldots, L_k\} \).

The cross product \(I = I_1 \times \ldots \times I_K \) defines an array where \(i = (i_1, \ldots, i_K) \in I \) is a cell. It is the convention here that the first factor varies fastest. To each cell \(i \in I \) there is often a value \(f(i) \).

As shown above, an array is implemented as a vector \(x \) of length \(L = |I| \), that is \(x \equiv (f(i), i \in I) \). In practice \(x \) is indexed by an entry \(e \) as \(x[e] \) for \(e = 1, \ldots, L \).

The factor levels \((I_1, \ldots, I_K) \) are denoted \texttt{adim} in the code below. As an example we take the following:

```r
adim2222 <- c(2,2,2,2)
adim2323 <- c(2,3,2,3)
```

2 cell2entry() and entry2cell()

The map from a cell to the corresponding entry is provided by \texttt{cell2entry()}. The reverse operation, going from an entry to a cell (which is much less needed) is provided by \texttt{entry2cell()}.

```r
cell2entry(c(1,1,1,1), adim2222)
```

```
[1] 1
```

```r
tenry2cell(1, adim2222)
```

```
[1] 1 1 1 1
```
R> cell2entry(c(2,1,2,1), adim2222)
[1] 6
R> entry2cell(6, adim2222)
[1] 2 1 2 1

3 nextCell() and nextCellSlice()

Given a cell, say $i = (1,1,2,1)$ we often want to find the next cell in the table following the convention that the first factor varies fastest, that is $(2,1,2,1)$. This is provided by nextCell().

R> nextCell(c(1,1,2,1), adim2222)
[1] 2 1 2 1
R> nextCell(c(2,2,2,1), adim2222)
[1] 1 1 2 1

Given $A \subset \Delta$ and a cell $i_A \in I_A$ consider the cells $I(i_A) = \{j \in I | j_A = i_A\}$. For example, the cells satisfying that factor 2 is at level 1. Given such a cell, say $(2,1,1,2)$ we often want to find the next cell also satisfying this constraint following the convention that the first factor varies fastest, that is $(1,1,2,2)$. This is provided by nextCellSlice().

R> nextCellSlice(c(2,1,1,2), sliceset=c(2), adim2323)
[1] 1 1 2 2
R> nextCellSlice(c(1,3,2,1), sliceset=c(2,3), adim2323)
[1] 2 3 2 1

4 slice2entry()

Given $A \subset \Delta$ and a cell $i_A \in I_A$. This cell defines a slice of the original array, namely the cells $I(i_A) = \{j \in I | j_A = i_A\}$. We often want to find the entries in x for the cells $I(i_A)$. This is provided by slice2entry(). For example, we may want the entries for the cells $(\ast,1,2,\ast)$ or $(2,\ast,\ast,\ast)$:

R> (r1<-slice2entry(slicecell=c(1,2), sliceset=c(2,3), adim2222))
[1] 5 6 13 14

To verify that we indeed get the right cells:

R> do.call(rbind, lapply(r1, entry2cell, adim2222))

[1,] 1 1 2 1
[2,] 2 1 2 1
[3,] 1 1 2 2
[4,] 2 1 2 2

5 permuteCellEntries()

In a 2×3 table, entries 1,...,6 correspond to combinations $(1,1),(2,1),(1,2),(2,2),(1,3),(2,3)$. If we permute the table to a 3×2 table the entries become as follows:

R> (p<-permuteCellEntries(perm=c(2,1), adim=c(2,3)))
[1] 1 3 5 2 4 6

So for example,
(A <- array(11:16, dim=c(2,3)))

[,1] [,2] [,3]
[1,] 11 13 15
[2,] 12 14 16

Ap <- A[p]
dim(Ap) <- c(3,2)
Ap

[,1] [,2]
[1,] 11 12
[2,] 13 14
[3,] 15 16

This corresponds to
aperm(A, c(2,1))

[,1] [,2]
[1,] 11 12
[2,] 13 14
[3,] 15 16

6 factGrid() – Factorial grid

Using the operations above we can obtain the combinations of the factors as a matrix:

ff <- factGrid(adim2222)
head(ff)

[1,] 1 1 1 1
[2,] 2 1 1 1
[3,] 1 2 1 1
[4,] 2 2 1 1
[5,] 1 1 2 1
[6,] 2 1 2 1

tail(ff)

[11,] 1 2 1 2
[12,] 2 2 1 2
[13,] 1 1 2 2
[14,] 2 1 2 2
[15,] 1 2 2 2
[16,] 2 2 2 2

This is the same as (but faster)

aa <- expand.grid(list(1:2,1:2,1:2,1:2))
head(aa)

 Var1 Var2 Var3 Var4
1 1 1 1 1
2 2 1 1 1
3 1 2 1 1
4 2 2 1 1
5 1 1 2 1
6 2 1 2 1

There is a slice version as well:
factGrid(adim2222, slicecell=c(1,2), sliceset=c(2,3))
<table>
<thead>
<tr>
<th></th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>[2,]</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>[3,]</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>[4,]</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>