genetic.algo.optimizeR: Genetic Algorithm Optimization

Genetic algorithm are a class of optimization algorithms inspired by the process of natural selection and genetics. This package is for learning purposes and allows users to optimize various functions or parameters by mimicking biological evolution processes such as selection, crossover, and mutation. Ideal for tasks like machine learning parameter tuning, mathematical function optimization, and solving combinatorial problems.

Version: 0.2.6
Imports: dplyr, ggplot2, magrittr, rsconnect, stats, stringr, tinytex, biocViews
Suggests: BiocStyle, knitr, learnr, rmarkdown, spelling, testthat (≥ 3.0.0)
Published: 2024-02-15
Author: Dany Mukesha ORCID iD [aut, cre]
Maintainer: Dany Mukesha <danymukesha at>
License: MIT + file LICENSE
NeedsCompilation: no
Language: en-US
Materials: README NEWS
CRAN checks: genetic.algo.optimizeR results


Reference manual: genetic.algo.optimizeR.pdf
Vignettes: Explaining Graph


Package source: genetic.algo.optimizeR_0.2.6.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): genetic.algo.optimizeR_0.2.6.tgz
Old sources: genetic.algo.optimizeR archive


Please use the canonical form to link to this page.