Package ‘glmm’

March 20, 2015

Type Package
Title Generalized Linear Mixed Models via Monte Carlo Likelihood Approximation
Version 1.0.2
Date 2015-02-11
Author Christina Knudson
Maintainer Christina Knudson <christina@stat.umn.edu>
Description Approximates the likelihood of a generalized linear mixed model using Monte Carlo likelihood approximation. Then maximizes the likelihood approximation to return maximum likelihood estimates, observed Fisher information, and other model information.
License GPL-2
Depends R (>= 3.1.1), trust, mvtnorm, Matrix
ByteCompile TRUE
NeedsCompilation yes
VignetteBuilder knitr
Suggests knitr
Repository CRAN
Date/Publication 2015-03-20 00:59:31

R topics documented:

bacteria ... 2
bernoulli.glmm .. 3
Booth2 ... 4
BoothHobert ... 5
cbpp2 ... 5
coef.glmm ... 6
confint.glmm ... 7
glmm ... 8
murder .. 12
poisson.glmm ... 13
Description

Tests of the presence of the bacteria H. influenzae in children with otitis media in the Northern Territory of Australia.

Usage

```r
data(bacteria)
```

Format

A data frame with the following columns:

- `y` Presence or absence: a factor with levels `n` and `y`.
- `ap` active/placebo: a factor with levels `a` and `p`.
- `hilo` hi/low compliance: a factor with levels `hi` and `lo`.
- `week` Numeric: week of test.
- `ID` Subject ID: a factor.
- `trt` A factor with levels `placebo`, `drug`, `drug+`, a re-coding of `ap` and `hilo`.
- `y2` y reformatted as 0/1 rather than n/y.

Details

Dr. A. Leach tested the effects of a drug on 50 children with a history of otitis media in the Northern Territory of Australia. The children were randomized to the drug or the a placebo, and also to receive active encouragement to comply with taking the drug.

The presence of H. influenzae was checked at weeks 0, 2, 4, 6 and 11: 30 of the checks were missing and are not included in this data frame.

References

Examples

```r
data(bacteria)
```
Description

Given a scalar \(\eta \), this calculates the cumulant and two derivatives for the Bernoulli family. Also checks that the data are entered correctly.

Usage

bernoulli.glmm()

Value

- **family.glmm**: The family name, as a string.
- **link**: The link function (canonical link is required), as a string.
- **cum**: The cumulant function.
- **cp**: The first derivative of the cumulant function.
- **cpp**: The second derivative of the cumulant function.
- **checkData**: A function to check that all data are either 0 or 1.

Note

This function is to be used by the glmm command.

Author(s)

Christina Knudson

See Also

- glmm

Examples

```r
eta<-3:3
bernoulli.glmm()$family.glmm
bernoulli.glmm()$cum(eta)
bernoulli.glmm()$cp(1)
bernoulli.glmm()$cpp(2)
```
Booth2
A Logit-Normal GLMM Dataset

Description

This data set contains simulated data from the paper of Booth and Hobert (referenced below) as well as another vector.

Usage

`data(Booth2)`

Format

A data frame with 3 columns:

- **y** Response vector.
- **x1** Fixed effect model matrix. The matrix has just one column vector.
- **z1** A categorical vector to be used for part of the random effect model matrix.
- **z2** A categorical vector to be used for part of the random effect model matrix.

Details

The original data set was generated by Booth and Hobert using a single variance component, a single fixed effect, no intercept, and a logit link. This data set has the z2 vector added purely to illustrate an example with multiple variance components.

References

Examples

`data(Booth2)`
BoothHobert

A Logit-Normal GLMM Dataset from Booth and Hobert

Description
This data set contains simulated data from the paper of Booth and Hobert referenced below.

Usage
data(BoothHobert)

Format
A data frame with 3 columns:

- y Response vector.
- x1 Fixed effect model matrix. The matrix has just one column vector.
- z1 Random effect model matrix. The matrix has just one column vector.

Details
This data set was generated by Booth and Hobert using a single variance component, a single fixed effect, no intercept, and a logit link.

References

Examples
data(BoothHobert)

cbpp2 Contagious bovine pleuropneumonia

Description
This data set is a reformatted version of cbpp from the lme4 package. Contagious bovine pleuropneumonia (CBPP) is a major disease of cattle in Africa, caused by a mycoplasma. This dataset describes the serological incidence of CBPP in zebu cattle during a follow-up survey implemented in 15 commercial herds located in the Boji district of Ethiopia. The goal of the survey was to study the within-herd spread of CBPP in newly infected herds. Blood samples were quarterly collected from all animals of these herds to determine their CBPP status. These data were used to compute the serological incidence of CBPP (new cases occurring during a given time period). Some data are missing (lost to follow-up).
Usage
data(cbp2)

Format
A data frame with 3 columns:

Y Response vector. 1 if CBPP is observed, 0 otherwise.
period A factor with levels 1 to 4.
herd A factor identifying the herd (1 through 15).

Details
Serological status was determined using a competitive enzyme-linked immuno-sorbent assay (cELISA).

References

Examples
data(cbp2)

coefficients

Extract Model Coefficients

Description
A function that extracts the fixed effect coefficients returned from \texttt{glmm}.

Usage
S3 method for class 'glmm'
coef(object,...)

Arguments
object An object of class \texttt{glmm} usually created using \texttt{glmm}.
... further arguments passed to or from other methods.

Value
coefficients A vector of coefficients (fixed effects only)
Author(s)

Christina Knudson

See Also

`glmm` for model fitting.

Examples

```r
library(glmm)
set.seed(1234)
data(salamander)
#To get more accurate answers for this model, use m=10^4 or 10^5
# and doPQL=TRUE.
m<-10
sal<glmm(Mate~0+Cross,random=list(~0+Female,-0+Male),varcomps.names=c("F","M"),
  data=salamander,family.glmm=bernoulli.glmm,m=m,debug=TRUE,doPQL=FALSE)
coef(sal)
```

Description

A function that calculates asymptotic confidence intervals for one or more parameters in a model fitted by `glmm`. Confidence intervals can be calculated for fixed effect parameters and variance components using models.

Usage

```r
# S3 method for class 'glmm'
confint(object, parm, level, ...)
```

Arguments

- **object**: An object of class `glmm` usually created using `glmm`.
- **parm**: A specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
- **level**: The confidence level required.
- **...**: Additional arguments passed to or from other methods.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as $(1-level)/2$ and $1-(1-level)/2$ in percent. By default, 2.5
Author(s)

Christina Knudson

See Also

`glmm` for model fitting.

Examples

```r
library(glmm)
data(BoothHobert)set.seed(123)mod.mcm1<-glmm(y~x1,list(y~z1),varcomps.names=c("z1"),
data=BoothHobert,family.glmm=bernoulli.glmm,m=10,doPQL=TRUE)confint(mod.mcm1)
```

glmm

Fitting Generalized Linear Mixed Models using MCML

Description

This function fits generalized linear mixed models (GLMMs) by approximating the likelihood with ordinary Monte Carlo, then maximizing the approximated likelihood.

Usage

```r
glmm(fixed, random, varcomps.names, data, family.glmm, m, varcomps.equal, doPQL = TRUE, debug = FALSE, p1 = 1/3, p2 = 1/3, p3 = 1/3, rmax = 1000, iterlim = 1000, par.init, zeta = 5)
```

Arguments

- `fixed` an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under "Details."

- `random` an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under "Details."

- `varcomps.names` The names of the distinct variance components in order of varcomps.equal.

- `data` an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which `glmm` is called.

- `family.glmm` The name of the family. Must be class `glmm.family`. Current options are either `bernoulli.glmm` or `poisson.glmm`.
m

The desired Monte Carlo sample size. See a note in under "Details."

varcomps.equal

An optional vector with elements 1 through the number of distinct variance components. Denotes variance components are to be set equal by assigning them the same integer. The length of varcomps.equal must be equal to the length of the list of random effects formulas. If omitted, varcomps.equal assumes no variance component should be set equal.

doPQL

logical. If TRUE, PQL estimates are used in the importance sampling distribution. If FALSE, the importance sampling distribution will use 0 for the fixed effects and 1 for the variance components. For advanced users, since glmm is generally more efficient when doPQL=TRUE.

debug

logical. If TRUE, extra output useful for testing will be provided. For advanced users.

p1

A probability for mixing the random effects generated from three distributions. p1 is the proportion of random effects from the first distribution specified in "Details." For advanced users.

p2

A probability for mixing the random effects generated from three distributions. p2 is the proportion of random effects from the second distribution specified in "Details." For advanced users.

p3

A probability for mixing the random effects generated from three distributions. p3 is the proportion of random effects from the third distribution specified in "Details." For advanced users.

rmax

The maximum allowed trust region radius. This may be set very large. If set small, the algorithm traces a steepest ascent path. This is an argument for trust.

iterlim

A positive integer specifying the maximum number of trust iterations to be performed before the trust program is terminated. This is an argument for trust.

par.Ninit

An optional argument. A single vector that specifies the initial values of the fixed effects and variance components. The parameters should be inputted in the order that summary.glmm outputs them, with fixed effects followed by variance components.

zeta

A scalar that specifies the degrees of freedom for the t-distribution from which random effects are generated.

Details

Let β be a vector of fixed effects and let u be a vector of random effects. Let X and Z be design matrices for the fixed and random effects, respectively. The random effects are assumed to be normally distributed with mean 0 and variance matrix D, where D is diagonal with entries from the unknown vector ν. Letting g be the link function, $g(\mu) = X\beta + ZU$. For example, if the response is Bernoulli, then the logit function is the link.

Models for glmm are specified symbolically. A typical fixed effects model has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with duplicates removed.

A specification of the form first:second indicates the set of terms obtained by taking the interactions of all terms in first with all terms in second. The specification first*second indicates the cross of first and second. This is the same as first + second + first:second.
The terms in the formula will be re-ordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on: to avoid this, pass a `terms` object as the formula.

The random effects for `glmm` are also specified symbolically. The random effects model specification is typically a list. Each element of the `random` list has the form `response ~ 0 + term`. The 0 centers the random effects at 0. If you want your random effects to have a nonzero mean, then include that term in the fixed effects. Each variance component must have its own formula in the list.

To set some variance components equal to one another, use the `varcomps.equal` argument. The argument `varcomps.equal` should be a vector whose length is equal to the length of the random effects list. The vector should contain positive integers, and the first element of the `varcomps.equal` should be 1. To set variance components equal to one another, assign the same integer to the corresponding elements of `varcomps.equal`. For example, to set the first and second variance components equal to each other, the first two elements of `varcomps.equal` should be 1. If `varcomps.equal` is omitted, then the variance components are assumed to be distinct.

Each distinct variance component should have a name. The length of `varcomps.names` should be equal to the number of distinct variance components. If `varcomps.equal` is omitted, then the length of `varcomps.names` should be equal to the length of `random`.

Monte Carlo likelihood approximation relies on an importance sampling distribution. Though infinitely many importance sampling distributions should yield the correct MCMLEs eventually, the importance sampling distribution used in this package was chosen to reduce the computation cost. When `dopql` is TRUE, the importance sampling distribution relies on PQL estimates (as calculated in this package). When `dopql` is FALSE, the random effect estimates in the distribution are taken to be 0, the fixed effect estimates are taken to be 0, and the variance component estimates are taken to be 1.

This package’s importance sampling distribution is a mixture of three distributions: a t centered at 0 with scale matrix determined by the PQL estimates of the variance components and with `zeta` degrees of freedom, a normal distribution centered at the PQL estimates of the random effects and with a variance matrix containing the PQL estimates of the variance components, and a normal distribution centered at the PQL estimates of the random effects and with a variance matrix based on the Hessian of the penalized log likelihood. The first component is included to guarantee the gradient of the MCLA has a central limit theorem. The second component is included to mirror our best guess of the distribution of the random effects. The third component is included so that the numerator and the denominator are similar when calculating the MCLA value.

The Monte Carlo sample size `m` should be chosen as large as possible. You may want to run the model a couple times to begin to understand the variability inherent to Monte Carlo. There are no hard and fast rules for choosing `m`, and more research is needed on this area. For a general idea, I believe the BoothHobert model produces stable enough estimates at `m = 10^3` and the salamander model produces stable enough estimates at `m = 10^5`, as long as `dopql` is TRUE.

To see the summary of the model, use `summary()`.

Value

`glmm` returns an object of class `glmm` is a list containing at least the following components:

- `beta` A vector of the Monte Carlo maximum likelihood estimates (MCMLEs) for the fixed effects.
nu A vector of the Monte Carlo maximum likelihood estimates for the variance components.

likelihood.value
 The Monte Carlo maximum likelihood evaluated at the MCMLEs beta and nu.

likelihood.gradient
 The Monte Carlo maximum likelihood gradient vector at the MCMLEs beta and nu.

likelihood.hessian
 The Monte Carlo maximum likelihood Hessian matrix at the MCMLEs beta and nu.

mod.mcml
 A list containing the fixed effect design matrix, the list of random effect design matrices, and the response.

call
 The call.

fixedcall
 The fixed effects call.

randcall
 The random effects call.

x
 The design matrix for the fixed effects.

y
 The response vector.

z
 The design matrix for the random effects.

family.glmm
 The name of the family. Must be class glmm.family.

varcomps.names
 The vector of names for the distinct variance components.

varcomps.equal
 The vector denoting equal variance components.

debug
 If TRUE extra output useful for testing.

The function summary (i.e., summary.glmm) can be used to obtain or print a summary of the results. The generic accessor function coef (i.e., coef.glmm) can be used to extract the coefficients.

Author(s)

Christina Knudson

References

Examples

#First, using the basic Booth and Hobert dataset
#to fit a glmm with a logistic link, one variance component,
#one fixed effect, and an intercept of 0. The Monte Carlo
#sample size is 100 to save time.
library(glmm)
Description

Subjects responded to the question 'Within the past 12 months, how many people have you known personally that were victims of homicide?'

Usage

```r
data(murder)
```

Format

A data frame with the following columns:

- **y** The number of homicide victims known personally by the subject.
- **race** a factor with levels black and white.
- **black** a dummy variable to indicate whether the subject was black.
- **white** a dummy variable to indicate whether the subject was white.
References

Examples
data(murder)

Description
Given a scalar \(\eta \), this calculates the cumulant and two derivatives for the Poisson family. Also checks that the data are entered correctly.

Usage
poisson.glmm()

Value
- family.glmm: The family name, as a string.
- link: The link function (canonical link is required).
- cum: The cumulant function.
- cp: The first derivative of the cumulant function.
- cpp: The second derivative of the cumulant function.
- checkData: A function to check that all data are either 0 or 1.

Note
This function is to be used by the \texttt{glmm} command.

Author(s)
Christina Knudson

See Also
\texttt{glmm}

Examples
poisson.glmm()$family.glmm
poisson.glmm()$cum(2)
poisson.glmm()$cp(2)
poisson.glmm()$cpp(2)
salamander
Salamander mating data set from McCullagh and Nelder (1989)

Description

This data set presents the outcome of an experiment conducted at the University of Chicago in 1986 to study interbreeding between populations of mountain dusky salamanders.

Usage

data(salamander)

Format

A data frame with the following columns:

- **Mate** Whether the salamanders mated (1) or did not mate (0).
- **Cross** Cross between female and male type. A factor with four levels: R/R, R/W, W/R, and W/W. The type of the female salamander is listed first and the male is listed second. Rough Butt is represented by R and White Side is represented by W. For example, Cross=W/R indicates a White Side female was crossed with a Rough Butt male.
- **Male** Identification number of the male salamander. A factor.
- **Female** Identification number of the female salamander. A factor.

References

Examples

data(salamander)

summary.glmm
Summarizing GLMM Fits

Description

"summary" method for class glmm objects.
Usage

```r
## S3 method for class 'glmm'
summary(object, ...)

## S3 method for class 'summary.glmm'
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
```

Arguments

- `object` an object of class `glmm`, usually, resulting from a call to `glmm`.
- `x` an object of class `summary.glmm`, usually, a result of a call to `summary.glmm`.
- `digits` the number of significant digits to use when printing.
- `signif.stars` logical. If TRUE, “significance stars” are printed for each coefficient.
- `...` further arguments passed to or from other methods.

Value

The function `summary.glmm` computes and returns a list of summary statistics of the fitted generalized linear mixed model given in `object`, using the components (list elements) "call" and "terms" from its argument, plus

- `coefficients` a matrix for the fixed effects. The matrix has columns for the estimated coefficient, its standard error, t-statistic and corresponding (two-sided) p-value.
- `nucoefmat` a matrix with columns for the variance components. The matrix has columns for the estimated variance component, its standard error, t-statistic and corresponding (one-sided) p-value.
- `x` the design matrix for the fixed effects.
- `z` the design matrix for the random effects.
- `y` the response vector.
- `fixedcall` the call for the fixed effects.
- `randcall` the call for the random effects.
- `family.mcmcl` the family used to fit the model.
- `call` the call to `glmm`.
- `link` the canonical link function.

Author(s)

Christina Knudson

See Also

The model fitting function `glmm`, the generic `summary`, and the function `coef` that extracts the fixed effect coefficients.
Description

A function that extracts the variance components returned from `glmm`.

Usage

`varcomps(object,...)`

Arguments

- `object`: An object of class `glmm` usually created using `glmm`.
- `...`: Further arguments passed to or from other methods.

Value

- `varcomps`: A vector of variance component estimates

Author(s)

Christina Knudson

See Also

- `glmm` for model fitting. `coef.glmm` for fixed effects coefficients.

Examples

```r
library(glmm)
set.seed(1234)
data(salamander)
#To get more accurate answers for this model, use m=10^4 or 10^5
#and doPQL=TRUE.
m<-10
sal<-glmm(Mate~0+Cross,random=list(~0+Female,~0+Male),varcomps.names=c("F","M"),
data=salamander,family.glmm=bernoulli.glmm,m=m,debug=TRUE,doPQL=FALSE)
varcomps(sal)
```
Index

*Topic Monte Carlo likelihood approximation
 bernoulli.glm, 3
 poisson.glm, 13

*Topic Monte Carlo
 glmm, 8
 summary.glm, 14

*Topic generalized linear mixed models
 bacteria, 2
 Booth2, 4
 BoothHobert, 5
 cbpp2, 5
 murder, 12
 salamander, 14
 summary.glm, 14

*Topic generalized linear mixed model
 bernoulli.glm, 3
 coef.glm, 6
 confint.glm, 7
 glmm, 3, 6–8, 8, 13, 15, 16
 murder, 12
 poisson.glm, 8, 13
 print.summary.glm (summary.glm), 14
 salamander, 14
 summary, 11, 15
 summary.glm, 9, 11, 14
 varcomps, 16

*Topic likelihood approximation
 glmm, 8

*Topic maximum likelihood
 glmm, 8
 summary.glm, 14

*Topic models
 summary.glm, 14

 bacteria, 2
 bernoulli.glm, 3, 8
 Booth2, 4
 BoothHobert, 5

 cbpp2, 5
 coef, 11, 15
 coef.glm, 6, 11, 16