
Package ‘marginaleffects’
May 20, 2023

Title Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis
Tests

Version 0.12.0

Description Compute and plot predictions, slopes, marginal means, and comparisons (con-
trasts, risk ratios, odds, etc.) for over 80 classes of statistical models in R. Conduct lin-
ear and non-linear hypothesis tests, or equivalence tests. Calculate uncertainty estimates us-
ing the delta method, bootstrapping, or simulation-based inference.

License GPL (>= 3)

Copyright inst/COPYRIGHTS

Encoding UTF-8

URL https://vincentarelbundock.github.io/marginaleffects/

BugReports https://github.com/vincentarelbundock/marginaleffects/issues

RoxygenNote 7.2.3.9000

Depends R (>= 3.6.0)

Imports checkmate, data.table, generics, insight (>= 0.19.1), methods,
Rcpp (>= 1.0.10)

LinkingTo Rcpp, RcppEigen

Suggests AER, Amelia, afex, aod, bench, betareg, BH, bife, biglm,
blme, boot, brglm2, brms, brmsmargins, broom, car, collapse,
conflicted, covr, crch, distributional, dplyr, emmeans,
equivalence, estimatr, fixest, future, fwb, gam, gamlss,
gamlss.dist, geepack, ggdag, ggdist, ggokabeito, ggplot2,
ggrepel, glmmTMB, glmx, haven, here, itsadug, ivreg,
kableExtra, knitr, lme4, lmerTest, magrittr, margins, MatchIt,
MASS, mclogit, MCMCglmm, missRanger, mgcv, mhurdle, mice,
miceadds, mlogit, modelbased, modelsummary, nlme, nnet,
numDeriv, optmatch, ordinal, parameters, patchwork, pkgdown,
phylolm, plm, polspline, poorman, posterior, prediction, pscl,
purrr, quantreg, Rchoice, remotes, rmarkdown, rms, robust,
robustbase, rsample, rstanarm, rstantools, rsvg,
sampleSelection, sandwich, scam, spelling, speedglm, survey,
survival, svglite, systemfonts, tibble, tidymodels, tidyr,

1

https://vincentarelbundock.github.io/marginaleffects/
https://github.com/vincentarelbundock/marginaleffects/issues

2

tidyverse, tinysnapshot, tinytest, titanic, truncreg, tsModel,
withr

Collate 'RcppExports.R' 'backtransform.R' 'bootstrap_boot.R'
'bootstrap_fwb.R' 'bootstrap_rsample.R' 'broom.R' 'by.R' 'ci.R'
'comparisons.R' 'complete_levels.R' 'datagrid.R'
'equivalence.R' 'get_averages.R' 'get_coef.R'
'get_contrast_data.R' 'get_contrast_data_character.R'
'get_contrast_data_factor.R' 'get_contrast_data_logical.R'
'get_contrast_data_numeric.R' 'get_contrasts.R'
'get_group_names.R' 'get_hypothesis.R' 'get_jacobian.R'
'get_model_matrix.R' 'get_model_matrix_attribute.R'
'get_modeldata.R' 'get_predict.R' 'get_se_delta.R'
'get_term_labels.R' 'get_vcov.R' 'github_issue.R' 'hush.R'
'hypotheses.R' 'hypotheses_joint.R' 'imputation.R'
'inferences.R' 'marginal_means.R' 'mean_or_mode.R' 'methods.R'
'set_coef.R' 'methods_MASS.R' 'methods_MCMCglmm.R'
'methods_Rchoice.R' 'methods_afex.R' 'methods_aod.R'
'methods_betareg.R' 'methods_bife.R' 'methods_biglm.R'
'methods_nnet.R' 'methods_brglm2.R' 'sanity_model.R'
'methods_brms.R' 'methods_crch.R' 'methods_fixest.R'
'methods_gamlss.R' 'methods_glmmTMB.R' 'methods_glmx.R'
'methods_inferences_simulation.R' 'methods_lme4.R'
'methods_mclogit.R' 'methods_mgcv.R' 'methods_mhurdle.R'
'methods_mlm.R' 'methods_mlogit.R' 'methods_nlme.R'
'methods_ordinal.R' 'methods_plm.R' 'methods_pscl.R'
'methods_quantreg.R' 'methods_rms.R' 'methods_robustlmm.R'
'methods_rstanarm.R' 'methods_sampleSelection.R'
'methods_scam.R' 'methods_stats.R' 'methods_survival.R'
'methods_tobit1.R' 'modelarchive.R' 'myTryCatch.R' 'package.R'
'plot.R' 'plot_build.R' 'plot_comparisons.R'
'plot_predictions.R' 'plot_slopes.R' 'posterior_draws.R'
'predictions.R' 'print.R' 'recall.R' 'sanitize_comparison.R'
'sanitize_condition.R' 'sanitize_conf_level.R'
'sanitize_hypothesis.R' 'sanitize_interaction.R'
'sanitize_newdata.R' 'sanitize_type.R' 'sanitize_variables.R'
'sanitize_vcov.R' 'sanity.R' 'sanity_by.R' 'sanity_dots.R'
'settings.R' 'slopes.R' 'summary.R' 'tinytest.R'
'type_dictionary.R' 'unpack_matrix_cols.R' 'utils.R'

Language en-US

NeedsCompilation yes

Author Vincent Arel-Bundock [aut, cre, cph]
(<https://orcid.org/0000-0003-2042-7063>),

Marcio Augusto Diniz [ctb] (<https://orcid.org/0000-0002-2427-7843>),
Noah Greifer [ctb] (<https://orcid.org/0000-0003-3067-7154>),
Etienne Bacher [ctb] (<https://orcid.org/0000-0002-9271-5075>)

Maintainer Vincent Arel-Bundock <vincent.arel-bundock@umontreal.ca>

Repository CRAN

https://orcid.org/0000-0003-2042-7063
https://orcid.org/0000-0002-2427-7843
https://orcid.org/0000-0003-3067-7154
https://orcid.org/0000-0002-9271-5075

R topics documented: 3

Date/Publication 2023-05-20 11:50:02 UTC

R topics documented:

comparisons . 3
datagrid . 13
hypotheses . 16
inferences . 21
marginal_means . 23
plot_comparisons . 29
plot_predictions . 33
plot_slopes . 37
posterior_draws . 40
predictions . 41
print.marginaleffects . 50
slopes . 51

Index 59

comparisons Comparisons Between Predictions Made With Different Regressor Val-
ues

Description

Predict the outcome variable at different regressor values (e.g., college graduates vs. others), and
compare those predictions by computing a difference, ratio, or some other function. comparisons()
can return many quantities of interest, such as contrasts, differences, risk ratios, changes in log odds,
slopes, elasticities, etc.

• comparisons(): unit-level (conditional) estimates.

• avg_comparisons(): average (marginal) estimates.

variables identifies the focal regressors whose "effect" we are interested in. comparison deter-
mines how predictions with different regressor values are compared (difference, ratio, odds, etc.).
The newdata argument and the datagrid() function control where statistics are evaluated in the
predictor space: "at observed values", "at the mean", "at representative values", etc.

See the comparisons vignette and package website for worked examples and case studies:

• https://vincentarelbundock.github.io/marginaleffects/articles/comparisons.html

• https://vincentarelbundock.github.io/marginaleffects/

https://vincentarelbundock.github.io/marginaleffects/articles/comparisons.html
https://vincentarelbundock.github.io/marginaleffects/

4 comparisons

Usage

comparisons(
model,
newdata = NULL,
variables = NULL,
comparison = "difference",
type = NULL,
vcov = TRUE,
by = FALSE,
conf_level = 0.95,
transform = NULL,
cross = FALSE,
wts = NULL,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
eps = NULL,
...

)

avg_comparisons(
model,
newdata = NULL,
variables = NULL,
type = NULL,
vcov = TRUE,
by = TRUE,
conf_level = 0.95,
comparison = "difference",
transform = NULL,
cross = FALSE,
wts = NULL,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
eps = NULL,
...

)

Arguments

model Model object
newdata Grid of predictor values at which we evaluate the comparisons.

• NULL (default): Unit-level contrasts for each observed value in the original
dataset (empirical distribution). See insight::get_data()

• data frame: Unit-level contrasts for each row of the newdata data frame.

comparisons 5

• string:
– "mean": Contrasts at the Mean. Contrasts when each predictor is held

at its mean or mode.
– "median": Contrasts at the Median. Contrasts when each predictor is

held at its median or mode.
– "marginalmeans": Contrasts at Marginal Means.
– "tukey": Contrasts at Tukey’s 5 numbers.
– "grid": Contrasts on a grid of representative numbers (Tukey’s 5 num-

bers and unique values of categorical predictors).
• datagrid() call to specify a custom grid of regressors. For example:

– newdata = datagrid(cyl = c(4, 6)): cyl variable equal to 4 and 6
and other regressors fixed at their means or modes.

– newdata = datagrid(mpg = fivenum): mpg variable held at Tukey’s
five numbers (using the fivenum function), and other regressors fixed
at their means or modes.

– See the Examples section and the datagrid documentation.

variables Focal variables

• NULL: compute comparisons for all the variables in the model object (can
be slow).

• Character vector: subset of variables (usually faster).
• Named list: names identify the subset of variables of interest, and values

define the type of contrast to compute. Acceptable values depend on the
variable type:

– Factor or character variables:

* "reference": Each factor level is compared to the factor reference
(base) level

* "all": All combinations of observed levels

* "sequential": Each factor level is compared to the previous factor
level

* "pairwise": Each factor level is compared to all other levels

* "minmax": The highest and lowest levels of a factor.

* Vector of length 2 with the two values to compare.
– Logical variables:

* NULL: contrast between TRUE and FALSE
– Numeric variables:

* Numeric of length 1: Contrast for a gap of x, computed at the ob-
served value plus and minus x / 2. For example, estimating a +1
contrast compares adjusted predictions when the regressor is equal
to its observed value minus 0.5 and its observed value plus 0.5.

* Numeric vector of length 2: Contrast between the 2nd element and
the 1st element of the x vector.

* Data frame with the same number of rows as newdata, with two
columns of "low" and "high" values to compare.

6 comparisons

* Function which accepts a numeric vector and returns a data frame
with two columns of "low" and "high" values to compare. See ex-
amples below.

* "iqr": Contrast across the interquartile range of the regressor.

* "sd": Contrast across one standard deviation around the regressor
mean.

* "2sd": Contrast across two standard deviations around the regressor
mean.

* "minmax": Contrast between the maximum and the minimum values
of the regressor.

– Examples:

* variables = list(gear = "pairwise", hp = 10)

* variables = list(gear = "sequential", hp = c(100, 120))

* See the Examples section below for more.

comparison How should pairs of predictions be compared? Difference, ratio, odds ratio, or
user-defined functions.

• string: shortcuts to common contrast functions.
– Supported shortcuts strings: difference, differenceavg, differenceavgwts,

dydx, eyex, eydx, dyex, dydxavg, eyexavg, eydxavg, dyexavg, dy-
dxavgwts, eyexavgwts, eydxavgwts, dyexavgwts, ratio, ratioavg, ra-
tioavgwts, lnratio, lnratioavg, lnratioavgwts, lnor, lnoravg, lnoravgwts,
expdydx, expdydxavg, expdydxavgwts

– See the Comparisons section below for definitions of each transforma-
tion.

• function: accept two equal-length numeric vectors of adjusted predictions
(hi and lo) and returns a vector of contrasts of the same length, or a unique
numeric value.

– See the Transformations section below for examples of valid functions.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the default value is used. This default is the first
model-related row in the marginaleffects:::type_dictionary dataframe.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"

comparisons 7

– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

transform string or function. Transformation applied to unit-level estimates and confidence
intervals just before the function returns results. Functions must accept a vector
and return a vector of the same length. Support string shortcuts: "exp", "ln"

cross • FALSE: Contrasts represent the change in adjusted predictions when one
predictor changes and all other variables are held constant.

• TRUE: Contrasts represent the changes in adjusted predictions when all the
predictors specified in the variables argument are manipulated simulta-
neously (a "cross-contrast").

wts string or numeric: weights to use when computing average contrasts or slopes.
These weights only affect the averaging in avg_*() or with the by argument,
and not the unit-level estimates themselves.

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix, a string, or a string formula.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

8 comparisons

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String formula to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• See the Examples section below and the vignette: https://vincentarelbundock.github.io/marginaleffects/articles/hypothesis.html

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

p_adjust Adjust p-values for multiple comparisons: "holm", "hochberg", "hommel", "bon-
ferroni", "BH", "BY", or "fdr". See stats::p.adjust

df Degrees of freedom used to compute p values and confidence intervals. A single
numeric value between 1 and Inf. When df is Inf, the normal distribution is
used. When df is finite, the t distribution is used. See insight::get_df for a
convenient function to extract degrees of freedom. Ex: slopes(model, df =
insight::get_df(model))

eps NULL or numeric value which determines the step size to use when calculating
numerical derivatives: (f(x+eps)-f(x))/eps. When eps is NULL, the step size is
0.0001 multiplied by the difference between the maximum and minimum values
of the variable with respect to which we are taking the derivative. Changing eps
may be necessary to avoid numerical problems in certain models.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range of
supported arguments by each modeling package. See the "Model-Specific Argu-
ments" section of the ?marginaleffects documentation for a non-exhaustive
list of available arguments.

Value

A data.frame with one row per observation (per term/group) and several columns:

• rowid: row number of the newdata data frame

comparisons 9

• type: prediction type, as defined by the type argument

• group: (optional) value of the grouped outcome (e.g., categorical outcome models)

• term: the variable whose marginal effect is computed

• dydx: slope of the outcome with respect to the term, for a given combination of predictor
values

• std.error: standard errors computed by via the delta method.

• p.value: p value associated to the estimate column. The null is determined by the hypothesis
argument (0 by default), and p values are computed before applying the transform argument.

See ?print.marginaleffects for printing options.

Functions

• avg_comparisons(): Average comparisons

Standard errors using the delta method

Standard errors for all quantities estimated by marginaleffects can be obtained via the delta
method. This requires differentiating a function with respect to the coefficients in the model using
a finite difference approach. In some models, the delta method standard errors can be sensitive to
various aspects of the numeric differentiation strategy, including the step size. By default, the step
size is set to 1e-8, or to 1e-4 times the smallest absolute model coefficient, whichever is largest.

marginaleffects can delegate numeric differentiation to the numDeriv package, which allows
more flexibility. To do this, users can pass arguments to the numDeriv::jacobian function through
a global option. For example:

• options(marginaleffects_numDeriv = list(method = "simple", method.args = list(eps
= 1e-6)))

• options(marginaleffects_numDeriv = list(method = "Richardson", method.args = list(eps
= 1e-5)))

• options(marginaleffects_numDeriv = NULL)

See the "Standard Errors and Confidence Intervals" vignette on the marginaleffects website for
more details on the computation of standard errors:

https://vincentarelbundock.github.io/marginaleffects/articles/uncertainty.html

Note that the inferences() function can be used to compute uncertainty estimates using a boot-
strap or simulation-based inference. See the vignette:

https://vincentarelbundock.github.io/marginaleffects/articles/bootstrap.html

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation

10 comparisons

brms brmsfit ndraws brms::posterior_predict
re_formula brms::posterior_predict

lme4 merMod re.form lme4::predict.merMod
allow.new.levels lme4::predict.merMod

glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB
allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

comparison argument functions

The following transformations can be applied by supplying one of the shortcut strings to the comparison
argument. hi is a vector of adjusted predictions for the "high" side of the contrast. lo is a vector of
adjusted predictions for the "low" side of the contrast. y is a vector of adjusted predictions for the
original data. x is the predictor in the original data. eps is the step size to use to compute derivatives
and elasticities.

Shortcut Function
difference \(hi, lo) hi - lo
differenceavg \(hi, lo) mean(hi) - mean(lo)
dydx \(hi, lo, eps) (hi - lo)/eps
eyex \(hi, lo, eps, y, x) (hi - lo)/eps * (x/y)
eydx \(hi, lo, eps, y, x) ((hi - lo)/eps)/y
dyex \(hi, lo, eps, x) ((hi - lo)/eps) * x
dydxavg \(hi, lo, eps) mean((hi - lo)/eps)
eyexavg \(hi, lo, eps, y, x) mean((hi - lo)/eps * (x/y))
eydxavg \(hi, lo, eps, y, x) mean(((hi - lo)/eps)/y)
dyexavg \(hi, lo, eps, x) mean(((hi - lo)/eps) * x)
ratio \(hi, lo) hi/lo
ratioavg \(hi, lo) mean(hi)/mean(lo)
lnratio \(hi, lo) log(hi/lo)
lnratioavg \(hi, lo) log(mean(hi)/mean(lo))
lnor \(hi, lo) log((hi/(1 - hi))/(lo/(1 - lo)))
lnoravg \(hi, lo) log((mean(hi)/(1 - mean(hi)))/(mean(lo)/(1 - mean(lo))))
expdydx \(hi, lo, eps) ((exp(hi) - exp(lo))/exp(eps))/eps
expdydxavg \(hi, lo, eps) mean(((exp(hi) - exp(lo))/exp(eps))/eps)

Bayesian posterior summaries

By default, credible intervals in bayesian models are built as equal-tailed intervals. This can be
changed to a highest density interval by setting a global option:

options("marginaleffects_posterior_interval" = "eti")

options("marginaleffects_posterior_interval" = "hdi")

comparisons 11

By default, the center of the posterior distribution in bayesian models is identified by the median.
Users can use a different summary function by setting a global option:

options("marginaleffects_posterior_center" = "mean")

options("marginaleffects_posterior_center" = "median")

When estimates are averaged using the by argument, the tidy() function, or the summary() func-
tion, the posterior distribution is marginalized twice over. First, we take the average across units
but within each iteration of the MCMC chain, according to what the user requested in by argument
or tidy()/summary() functions. Then, we identify the center of the resulting posterior using the
function supplied to the "marginaleffects_posterior_center" option (the median by default).

Equivalence, Inferiority, Superiority

θ is an estimate, σθ its estimated standard error, and [a, b] are the bounds of the interval supplied to
the equivalence argument.

Non-inferiority:

• H0: θ ≤ a

• H1: θ > a

• t = (θ − a)/σθ

• p: Upper-tail probability

Non-superiority:

• H0: θ ≥ b

• H1: θ < b

• t = (θ − b)/σθ

• p: Lower-tail probability

Equivalence: Two One-Sided Tests (TOST)

• p: Maximum of the non-inferiority and non-superiority p values.

Thanks to Russell V. Lenth for the excellent emmeans package and documentation which inspired
this feature.

Examples

Not run:
library(marginaleffects)

Linear model
tmp <- mtcars
tmp$am <- as.logical(tmp$am)
mod <- lm(mpg ~ am + factor(cyl), tmp)
avg_comparisons(mod, variables = list(cyl = "reference"))
avg_comparisons(mod, variables = list(cyl = "sequential"))
avg_comparisons(mod, variables = list(cyl = "pairwise"))

GLM with different scale types

12 comparisons

mod <- glm(am ~ factor(gear), data = mtcars)
avg_comparisons(mod, type = "response")
avg_comparisons(mod, type = "link")

Contrasts at the mean
comparisons(mod, newdata = "mean")

Contrasts between marginal means
comparisons(mod, newdata = "marginalmeans")

Contrasts at user-specified values
comparisons(mod, newdata = datagrid(am = 0, gear = tmp$gear))
comparisons(mod, newdata = datagrid(am = unique, gear = max))

m <- lm(mpg ~ hp + drat + factor(cyl) + factor(am), data = mtcars)
comparisons(m, variables = "hp", newdata = datagrid(FUN_factor = unique, FUN_numeric = median))

Numeric contrasts
mod <- lm(mpg ~ hp, data = mtcars)
avg_comparisons(mod, variables = list(hp = 1))
avg_comparisons(mod, variables = list(hp = 5))
avg_comparisons(mod, variables = list(hp = c(90, 100)))
avg_comparisons(mod, variables = list(hp = "iqr"))
avg_comparisons(mod, variables = list(hp = "sd"))
avg_comparisons(mod, variables = list(hp = "minmax"))

using a function to specify a custom difference in one regressor
dat <- mtcars
dat$new_hp <- 49 * (dat$hp - min(dat$hp)) / (max(dat$hp) - min(dat$hp)) + 1
modlog <- lm(mpg ~ log(new_hp) + factor(cyl), data = dat)
fdiff <- \(x) data.frame(x, x + 10)
avg_comparisons(modlog, variables = list(new_hp = fdiff))

Adjusted Risk Ratio: see the contrasts vignette
mod <- glm(vs ~ mpg, data = mtcars, family = binomial)
avg_comparisons(mod, comparison = "lnratioavg", transform = exp)

Adjusted Risk Ratio: Manual specification of the `comparison`
avg_comparisons(

mod,
comparison = function(hi, lo) log(mean(hi) / mean(lo)),
transform = exp)

cross contrasts
mod <- lm(mpg ~ factor(cyl) * factor(gear) + hp, data = mtcars)
avg_comparisons(mod, variables = c("cyl", "gear"), cross = TRUE)

variable-specific contrasts
avg_comparisons(mod, variables = list(gear = "sequential", hp = 10))

hypothesis test: is the `hp` marginal effect at the mean equal to the `drat` marginal effect
mod <- lm(mpg ~ wt + drat, data = mtcars)

comparisons(

datagrid 13

mod,
newdata = "mean",
hypothesis = "wt = drat")

same hypothesis test using row indices
comparisons(

mod,
newdata = "mean",
hypothesis = "b1 - b2 = 0")

same hypothesis test using numeric vector of weights
comparisons(

mod,
newdata = "mean",
hypothesis = c(1, -1))

two custom contrasts using a matrix of weights
lc <- matrix(c(

1, -1,
2, 3),
ncol = 2)

comparisons(
mod,
newdata = "mean",
hypothesis = lc)

`by` argument
mod <- lm(mpg ~ hp * am * vs, data = mtcars)
comparisons(mod, by = TRUE)

mod <- lm(mpg ~ hp * am * vs, data = mtcars)
avg_comparisons(mod, variables = "hp", by = c("vs", "am"))

library(nnet)
mod <- multinom(factor(gear) ~ mpg + am * vs, data = mtcars, trace = FALSE)
by <- data.frame(

group = c("3", "4", "5"),
by = c("3,4", "3,4", "5"))

comparisons(mod, type = "probs", by = by)

End(Not run)

datagrid Data grids

Description

Generate a data grid of user-specified values for use in the newdata argument of the predictions(),
comparisons(), and slopes() functions. This is useful to define where in the predictor space we

14 datagrid

want to evaluate the quantities of interest. Ex: the predicted outcome or slope for a 37 year old
college graduate.

• datagrid() generates data frames with combinations of "typical" or user-supplied predictor
values.

• datagridcf() generates "counter-factual" data frames, by replicating the entire dataset once
for every combination of predictor values supplied by the user.

Usage

datagrid(
...,
model = NULL,
newdata = NULL,
by = NULL,
FUN_character = get_mode,
FUN_factor = get_mode,
FUN_logical = get_mode,
FUN_numeric = function(x) mean(x, na.rm = TRUE),
FUN_integer = function(x) round(mean(x, na.rm = TRUE)),
FUN_other = function(x) mean(x, na.rm = TRUE),
grid_type = "typical"

)

datagridcf(..., model = NULL, newdata = NULL)

Arguments

... named arguments with vectors of values or functions for user-specified vari-
ables.

• Functions are applied to the variable in the model dataset or newdata, and
must return a vector of the appropriate type.

• Character vectors are automatically transformed to factors if necessary.
+The output will include all combinations of these variables (see Exam-
ples below.)

model Model object

newdata data.frame (one and only one of the model and newdata arguments can be used.)

by character vector with grouping variables within which FUN_* functions are ap-
plied to create "sub-grids" with unspecified variables.

FUN_character the function to be applied to character variables.

FUN_factor the function to be applied to factor variables.

FUN_logical the function to be applied to factor variables.

FUN_numeric the function to be applied to numeric variables.

FUN_integer the function to be applied to integer variables.

FUN_other the function to be applied to other variable types.

grid_type character

datagrid 15

• "typical": variables whose values are not explicitly specified by the user in
... are set to their mean or mode, or to the output of the functions supplied
to FUN_type arguments.

• "counterfactual": the entire dataset is duplicated for each combination of
the variable values specified in Variables not explicitly supplied to
datagrid() are set to their observed values in the original dataset.

Details

If datagrid is used in a predictions(), comparisons(), or slopes() call as the newdata argu-
ment, the model is automatically inserted in the model argument of datagrid() call, and users do
not need to specify either the model or newdata arguments.

If users supply a model, the data used to fit that model is retrieved using the insight::get_data
function.

Value

A data.frame in which each row corresponds to one combination of the named predictors supplied
by the user via the ... dots. Variables which are not explicitly defined are held at their mean or
mode.

Functions

• datagridcf(): Counterfactual data grid

Examples

The output only has 2 rows, and all the variables except `hp` are at their
mean or mode.
datagrid(newdata = mtcars, hp = c(100, 110))

We get the same result by feeding a model instead of a data.frame
mod <- lm(mpg ~ hp, mtcars)
datagrid(model = mod, hp = c(100, 110))

Use in `marginaleffects` to compute "Typical Marginal Effects". When used
in `slopes()` or `predictions()` we do not need to specify the
#`model` or `newdata` arguments.
slopes(mod, newdata = datagrid(hp = c(100, 110)))

datagrid accepts functions
datagrid(hp = range, cyl = unique, newdata = mtcars)
comparisons(mod, newdata = datagrid(hp = fivenum))

The full dataset is duplicated with each observation given counterfactual
values of 100 and 110 for the `hp` variable. The original `mtcars` includes
32 rows, so the resulting dataset includes 64 rows.
dg <- datagrid(newdata = mtcars, hp = c(100, 110), grid_type = "counterfactual")
nrow(dg)

We get the same result by feeding a model instead of a data.frame

16 hypotheses

mod <- lm(mpg ~ hp, mtcars)
dg <- datagrid(model = mod, hp = c(100, 110), grid_type = "counterfactual")
nrow(dg)

hypotheses (Non-)Linear Tests for Null Hypotheses, Joint Hypotheses, Equiva-
lence, Non Superiority, and Non Inferiority

Description

Uncertainty estimates are calculated as first-order approximate standard errors for linear or non-
linear functions of a vector of random variables with known or estimated covariance matrix. In that
sense, hypotheses emulates the behavior of the excellent and well-established car::deltaMethod
and car::linearHypothesis functions, but it supports more models; requires fewer dependencies;
expands the range of tests to equivalence and superiority/inferiority; and offers convenience features
like robust standard errors.

To learn more, read the hypothesis tests vignette, visit the package website, or scroll down this page
for a full list of vignettes:

• https://vincentarelbundock.github.io/marginaleffects/articles/hypothesis.html

• https://vincentarelbundock.github.io/marginaleffects/

Warning #1: Tests are conducted directly on the scale defined by the type argument. For some
models, it can make sense to conduct hypothesis or equivalence tests on the "link" scale instead of
the "response" scale which is often the default.

Warning #2: For hypothesis tests on objects produced by the marginaleffects package, it is safer
to use the hypothesis argument of the original function. Using hypotheses() may not work in
certain environments, in lists, or when working programmatically with *apply style functions.

Usage

hypotheses(
model,
hypothesis = NULL,
vcov = NULL,
conf_level = 0.95,
df = Inf,
equivalence = NULL,
joint = FALSE,
joint_test = "f",
FUN = NULL,
...

)

https://vincentarelbundock.github.io/marginaleffects/articles/hypothesis.html
https://vincentarelbundock.github.io/marginaleffects/

hypotheses 17

Arguments

model Model object or object generated by the comparisons(), slopes(), predictions(),
or marginal_means() functions.

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix, a string, or a string formula.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String formula to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• See the Examples section below and the vignette: https://vincentarelbundock.github.io/marginaleffects/articles/hypothesis.html

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

18 hypotheses

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

df Degrees of freedom used to compute p values and confidence intervals. A single
numeric value between 1 and Inf. When df is Inf, the normal distribution is
used. When df is finite, the t distribution is used. See insight::get_df for a
convenient function to extract degrees of freedom. Ex: slopes(model, df =
insight::get_df(model))

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

joint Joint test of statistical significance. The null hypothesis value can be set using
the hypothesis argument.

• FALSE: Hypotheses are not tested jointly.
• TRUE: All parameters are tested jointly.
• String: A regular expression to match parameters to be tested jointly. grep(joint,
perl = TRUE)

• Character vector of parameter names to be tested. Characters refer to the
names of the vector returned by coef(object).

• Integer vector of indices. Which parameters positions to test jointly.

joint_test A character string specifying the type of test, either "f" or "chisq". The null
hypothesis is set by the hypothesis argument, with default null equal to 0 for
all parameters.

FUN NULL or function.

• NULL (default): hypothesis test on a model’s coefficients, or on the quanti-
ties estimated by one of the marginaleffects package functions.

• Function which accepts a model object and returns a numeric vector or a
data.frame with two columns called term and estimate. This argument
can be useful when users want to conduct a hypothesis test on an arbitrary
function of quantities held in a model object.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range of
supported arguments by each modeling package. See the "Model-Specific Argu-
ments" section of the ?marginaleffects documentation for a non-exhaustive
list of available arguments.

Joint hypothesis tests

The test statistic for the joint Wald test is calculated as (R * theta_hat - r)’ * inv(R * V_hat * R’) *
(R * theta_hat - r) / Q, where theta_hat is the vector of estimated parameters, V_hat is the estimated
covariance matrix, R is a Q x P matrix for testing Q hypotheses on P parameters, r is a Q x 1 vector

hypotheses 19

for the null hypothesis, and Q is the number of rows in R. If the test is a Chi-squared test, the test
statistic is not normalized.

The p-value is then calculated based on either the F-distribution (for F-test) or the Chi-squared
distribution (for Chi-squared test). For the F-test, the degrees of freedom are Q and (n - P), where
n is the sample size and P is the number of parameters. For the Chi-squared test, the degrees of
freedom are Q.

Equivalence, Inferiority, Superiority

θ is an estimate, σθ its estimated standard error, and [a, b] are the bounds of the interval supplied to
the equivalence argument.

Non-inferiority:

• H0: θ ≤ a

• H1: θ > a

• t = (θ − a)/σθ

• p: Upper-tail probability

Non-superiority:

• H0: θ ≥ b

• H1: θ < b

• t = (θ − b)/σθ

• p: Lower-tail probability

Equivalence: Two One-Sided Tests (TOST)

• p: Maximum of the non-inferiority and non-superiority p values.

Thanks to Russell V. Lenth for the excellent emmeans package and documentation which inspired
this feature.

Examples

library(marginaleffects)
mod <- lm(mpg ~ hp + wt + factor(cyl), data = mtcars)

When `FUN` and `hypotheses` are `NULL`, `hypotheses()` returns a data.frame of parameters
hypotheses(mod)

Test of equality between coefficients
hypotheses(mod, hypothesis = "hp = wt")

Non-linear function
hypotheses(mod, hypothesis = "exp(hp + wt) = 0.1")

Robust standard errors
hypotheses(mod, hypothesis = "hp = wt", vcov = "HC3")

b1, b2, ... shortcuts can be used to identify the position of the

20 hypotheses

parameters of interest in the output of FUN
hypotheses(mod, hypothesis = "b2 = b3")

term names with special characters have to be enclosed in backticks
hypotheses(mod, hypothesis = "`factor(cyl)6` = `factor(cyl)8`")

mod2 <- lm(mpg ~ hp * drat, data = mtcars)
hypotheses(mod2, hypothesis = "`hp:drat` = drat")

predictions(), comparisons(), and slopes()
mod <- glm(am ~ hp + mpg, data = mtcars, family = binomial)
cmp <- comparisons(mod, newdata = "mean")
hypotheses(cmp, hypothesis = "b1 = b2")

mfx <- slopes(mod, newdata = "mean")
hypotheses(cmp, hypothesis = "b2 = 0.2")

pre <- predictions(mod, newdata = datagrid(hp = 110, mpg = c(30, 35)))
hypotheses(pre, hypothesis = "b1 = b2")

The `FUN` argument can be used to compute standard errors for fitted values
mod <- glm(am ~ hp + mpg, data = mtcars, family = binomial)

f <- function(x) predict(x, type = "link", newdata = mtcars)
p <- hypotheses(mod, FUN = f)
head(p)

f <- function(x) predict(x, type = "response", newdata = mtcars)
p <- hypotheses(mod, FUN = f)
head(p)

Equivalence, non-inferiority, and non-superiority tests
mod <- lm(mpg ~ hp + factor(gear), data = mtcars)
p <- predictions(mod, newdata = "median")
hypotheses(p, equivalence = c(17, 18))

mfx <- avg_slopes(mod, variables = "hp")
hypotheses(mfx, equivalence = c(-.1, .1))

cmp <- avg_comparisons(mod, variables = "gear", hypothesis = "pairwise")
hypotheses(cmp, equivalence = c(0, 10))

joint hypotheses: character vector
model <- lm(mpg ~ as.factor(cyl) * hp, data = mtcars)
hypotheses(model, joint = c("as.factor(cyl)6:hp", "as.factor(cyl)8:hp"))

joint hypotheses: regular expression
hypotheses(model, joint = "cyl")

joint hypotheses: integer indices
hypotheses(model, joint = 2:3)

joint hypotheses: different null hypotheses

inferences 21

hypotheses(model, joint = 2:3, hypothesis = 1)
hypotheses(model, joint = 2:3, hypothesis = 1:2)

joint hypotheses: marginaleffects object
cmp <- avg_comparisons(model)
hypotheses(cmp, joint = "cyl")

inferences (EXPERIMENTAL) Bootstrap and Simulation-Based Inference

Description

Warning: This function is experimental. It may be renamed, the user interface may change, or the
functionality may migrate to arguments in other marginaleffects functions.

Apply this function to a marginaleffects object to change the inferential method used to compute
uncertainty estimates.

Usage

inferences(x, method, R = 1000, conf_type = "perc", ...)

Arguments

x Object produced by one of the core marginaleffects functions.

method String

• "delta": delta method standard errors
• "boot" package
• "fwb": fractional weighted bootstrap
• "rsample" package
• "simulation" from a multivariate normal distribution (Krinsky & Robb, 1986)
• "mi" multiple imputation for missing data

R Number of resamples or simulations.

conf_type String: type of bootstrap interval to construct.

• boot: "perc", "norm", "basic", or "bca"
• fwb: "perc", "norm", "basic", "bc", or "bca"
• rsample: "perc" or "bca"
• simulation: argument ignored.

... • If method="boot", additional arguments are passed to boot::boot().
• If method="fwb", additional arguments are passed to fwb::fwb().
• If method="rsample", additional arguments are passed to rsample::bootstraps().
• If method="simulation", additional arguments are ignored.

22 inferences

Details

When method="simulation", we conduct simulation-based inference following the method dis-
cussed in Krinsky & Robb (1986):

1. Draw R sets of simulated coefficients from a multivariate normal distribution with mean equal
to the original model’s estimated coefficients and variance equal to the model’s variance-
covariance matrix (classical, "HC3", or other).

2. Use the R sets of coefficients to compute R sets of estimands: predictions, comparisons, or
slopes.

3. Take quantiles of the resulting distribution of estimands to obtain a confidence interval and the
standard deviation of simulated estimates to estimate the standard error.

When method="fwb", drawn weights are supplied to the model fitting function’s weights argu-
ment; if the model doesn’t accept non-integer weights, this method should not be used. If weights
were included in the original model fit, they are extracted by weights() and multiplied by the
drawn weights. These weights are supplied to the wts argument of the estimation function (e.g.,
comparisons()).

Value

A marginaleffects object with simulation or bootstrap resamples and objects attached.

References

Krinsky, I., and A. L. Robb. 1986. “On Approximating the Statistical Properties of Elasticities.”
Review of Economics and Statistics 68 (4): 715–9.

King, Gary, Michael Tomz, and Jason Wittenberg. "Making the most of statistical analyses: Im-
proving interpretation and presentation." American journal of political science (2000): 347-361

Dowd, Bryan E., William H. Greene, and Edward C. Norton. "Computation of standard errors."
Health services research 49.2 (2014): 731-750.

Examples

Not run:
library(marginaleffects)
library(magrittr)
set.seed(1024)
mod <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)

bootstrap
avg_predictions(mod, by = "Species") %>%

inferences(method = "boot")

avg_predictions(mod, by = "Species") %>%
inferences(method = "rsample")

Fractional (bayesian) bootstrap
avg_slopes(mod, by = "Species") %>%

inferences(method = "fwb") %>%

marginal_means 23

posterior_draws("rvar") %>%
data.frame()

Simulation-based inference
slopes(mod) %>%

inferences(method = "simulation") %>%
head()

End(Not run)

marginal_means Marginal Means

Description

Marginal means are adjusted predictions, averaged across a grid of categorical predictors, holding
other numeric predictors at their means. To learn more, read the marginal means vignette, visit the
package website, or scroll down this page for a full list of vignettes:

• https://vincentarelbundock.github.io/marginaleffects/articles/marginalmeans.
html

• https://vincentarelbundock.github.io/marginaleffects/

Usage

marginal_means(
model,
variables = NULL,
newdata = NULL,
vcov = TRUE,
conf_level = 0.95,
type = NULL,
transform = NULL,
cross = FALSE,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
wts = "equal",
by = NULL,
...

)

Arguments

model Model object

variables Focal variables

https://vincentarelbundock.github.io/marginaleffects/articles/marginalmeans.html
https://vincentarelbundock.github.io/marginaleffects/articles/marginalmeans.html
https://vincentarelbundock.github.io/marginaleffects/

24 marginal_means

• Character vector of variable names: compute marginal means for each cat-
egory of the listed variables.

• NULL: calculate marginal means for all logical, character, or factor variables
in the dataset used to fit model. Hint: Set cross=TRUE to compute marginal
means for combinations of focal variables.

newdata Grid of predictor values over which we marginalize.
• NULL create a grid with all combinations of all categorical predictors in the

model. Warning: can be expensive.
• Character vector: subset of categorical variables to use when building the

balanced grid of predictors. Other variables are held to their mean or mode.
• Data frame: A data frame which includes all the predictors in the original

model. The full dataset is replicated once for every combination of the focal
variables in the variables argument, using the datagridcf() function.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

type string indicates the type (scale) of the predictions used to compute marginal
effects or contrasts. This can differ based on the model type, but will typically
be a string such as: "response", "link", "probs", or "zero". When an unsupported
string is entered, the model-specific list of acceptable values is returned in an
error message. When type is NULL, the default value is used. This default
is the first model-related row in the marginaleffects:::type_dictionary
dataframe. If type is NULL and the default value is "response", the function
tries to compute marginal means on the link scale before backtransforming them
using the inverse link function.

transform A function applied to unit-level adjusted predictions and confidence intervals
just before the function returns results. For bayesian models, this function is
applied to individual draws from the posterior distribution, before computing
summaries.

marginal_means 25

cross TRUE or FALSE

• FALSE (default): Marginal means are computed for each predictor individ-
ually.

• TRUE: Marginal means are computed for each combination of predictors
specified in the variables argument.

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix, a string, or a string formula.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String formula to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• See the Examples section below and the vignette: https://vincentarelbundock.github.io/marginaleffects/articles/hypothesis.html

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

p_adjust Adjust p-values for multiple comparisons: "holm", "hochberg", "hommel", "bon-
ferroni", "BH", "BY", or "fdr". See stats::p.adjust

df Degrees of freedom used to compute p values and confidence intervals. A single
numeric value between 1 and Inf. When df is Inf, the normal distribution is
used. When df is finite, the t distribution is used. See insight::get_df for a
convenient function to extract degrees of freedom. Ex: slopes(model, df =
insight::get_df(model))

wts character value. Weights to use in the averaging.

• "equal": each combination of variables in newdata gets equal weight.

26 marginal_means

• "cells": each combination of values for the variables in the newdata gets a
weight proportional to its frequency in the original data.

• "proportional": each combination of values for the variables in newdata –
except for those in the variables argument – gets a weight proportional to
its frequency in the original data.

by Collapse marginal means into categories. Data frame with a by column of group
labels, and merging columns shared by newdata or the data frame produced by
calling the same function without the by argument.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range of
supported arguments by each modeling package. See the "Model-Specific Argu-
ments" section of the ?marginaleffects documentation for a non-exhaustive
list of available arguments.

Details

This function begins by calling the predictions function to obtain a grid of predictors, and ad-
justed predictions for each cell. The grid includes all combinations of the categorical variables
listed in the variables and newdata arguments, or all combinations of the categorical variables
used to fit the model if newdata is NULL. In the prediction grid, numeric variables are held at their
means.

After constructing the grid and filling the grid with adjusted predictions, marginal_means computes
marginal means for the variables listed in the variables argument, by average across all categories
in the grid.

marginal_means can only compute standard errors for linear models, or for predictions on the link
scale, that is, with the type argument set to "link".

The marginaleffects website compares the output of this function to the popular emmeans pack-
age, which provides similar but more advanced functionality: https://vincentarelbundock.github.io/marginaleffects/

Value

Data frame of marginal means with one row per variable-value combination.

Standard errors using the delta method

Standard errors for all quantities estimated by marginaleffects can be obtained via the delta
method. This requires differentiating a function with respect to the coefficients in the model using
a finite difference approach. In some models, the delta method standard errors can be sensitive to
various aspects of the numeric differentiation strategy, including the step size. By default, the step
size is set to 1e-8, or to 1e-4 times the smallest absolute model coefficient, whichever is largest.

marginaleffects can delegate numeric differentiation to the numDeriv package, which allows
more flexibility. To do this, users can pass arguments to the numDeriv::jacobian function through
a global option. For example:

• options(marginaleffects_numDeriv = list(method = "simple", method.args = list(eps
= 1e-6)))

marginal_means 27

• options(marginaleffects_numDeriv = list(method = "Richardson", method.args = list(eps
= 1e-5)))

• options(marginaleffects_numDeriv = NULL)

See the "Standard Errors and Confidence Intervals" vignette on the marginaleffects website for
more details on the computation of standard errors:

https://vincentarelbundock.github.io/marginaleffects/articles/uncertainty.html

Note that the inferences() function can be used to compute uncertainty estimates using a boot-
strap or simulation-based inference. See the vignette:

https://vincentarelbundock.github.io/marginaleffects/articles/bootstrap.html

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict
lme4 merMod re.form lme4::predict.merMod

allow.new.levels lme4::predict.merMod
glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB

allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Bayesian posterior summaries

By default, credible intervals in bayesian models are built as equal-tailed intervals. This can be
changed to a highest density interval by setting a global option:

options("marginaleffects_posterior_interval" = "eti")

options("marginaleffects_posterior_interval" = "hdi")

By default, the center of the posterior distribution in bayesian models is identified by the median.
Users can use a different summary function by setting a global option:

options("marginaleffects_posterior_center" = "mean")

options("marginaleffects_posterior_center" = "median")

When estimates are averaged using the by argument, the tidy() function, or the summary() func-
tion, the posterior distribution is marginalized twice over. First, we take the average across units
but within each iteration of the MCMC chain, according to what the user requested in by argument

28 marginal_means

or tidy()/summary() functions. Then, we identify the center of the resulting posterior using the
function supplied to the "marginaleffects_posterior_center" option (the median by default).

Equivalence, Inferiority, Superiority

θ is an estimate, σθ its estimated standard error, and [a, b] are the bounds of the interval supplied to
the equivalence argument.

Non-inferiority:

• H0: θ ≤ a

• H1: θ > a

• t = (θ − a)/σθ

• p: Upper-tail probability

Non-superiority:

• H0: θ ≥ b

• H1: θ < b

• t = (θ − b)/σθ

• p: Lower-tail probability

Equivalence: Two One-Sided Tests (TOST)

• p: Maximum of the non-inferiority and non-superiority p values.

Thanks to Russell V. Lenth for the excellent emmeans package and documentation which inspired
this feature.

Examples

library(marginaleffects)

simple marginal means for each level of `cyl`
dat <- mtcars
dat$carb <- factor(dat$carb)
dat$cyl <- factor(dat$cyl)
dat$am <- as.logical(dat$am)
mod <- lm(mpg ~ carb + cyl + am, dat)

marginal_means(
mod,
variables = "cyl")

collapse levels of cyl by averaging
by <- data.frame(

cyl = c(4, 6, 8),
by = c("4 & 6", "4 & 6", "8"))

marginal_means(mod,
variables = "cyl",
by = by)

plot_comparisons 29

pairwise differences between collapsed levels
marginal_means(mod,

variables = "cyl",
by = by,
hypothesis = "pairwise")

cross
marginal_means(mod,

variables = c("cyl", "carb"),
cross = TRUE)

collapsed cross
by <- expand.grid(

cyl = unique(mtcars$cyl),
carb = unique(mtcars$carb))

by$by <- ifelse(
by$cyl == 4,
paste("Control:", by$carb),
paste("Treatment:", by$carb))

Convert numeric variables to categorical before fitting the model
dat <- mtcars
dat$am <- as.logical(dat$am)
dat$carb <- as.factor(dat$carb)
mod <- lm(mpg ~ hp + am + carb, data = dat)

Compute and summarize marginal means
marginal_means(mod)

Contrast between marginal means (carb2 - carb1), or "is the 1st marginal means equal to the 2nd?"
see the vignette on "Hypothesis Tests and Custom Contrasts" on the `marginaleffects` website.
lc <- c(-1, 1, 0, 0, 0, 0)
marginal_means(mod, variables = "carb", hypothesis = "b2 = b1")

marginal_means(mod, variables = "carb", hypothesis = lc)

Multiple custom contrasts
lc <- matrix(c(

-2, 1, 1, 0, -1, 1,
-1, 1, 0, 0, 0, 0
),

ncol = 2,
dimnames = list(NULL, c("A", "B")))

marginal_means(mod, variables = "carb", hypothesis = lc)

plot_comparisons Plot Conditional or Marginal Comparisons

30 plot_comparisons

Description

Plot comparisons on the y-axis against values of one or more predictors (x-axis, colors/shapes, and
facets).

The by argument is used to plot marginal comparisons, that is, comparisons made on the original
data, but averaged by subgroups. This is analogous to using the by argument in the comparisons()
function.

The condition argument is used to plot conditional comparisons, that is, comparisons made on a
user-specified grid. This is analogous to using the newdata argument and datagrid() function in
a comparisons() call.

All unspecified variables are held at their mean or mode. This includes grouping variables in mixed-
effects models, so analysts who fit such models may want to specify the groups of interest using the
variables argument, or supply model-specific arguments to compute population-level estimates.
See details below. See the "Plots" vignette and website for tutorials and information on how to
customize plots:

• https://vincentarelbundock.github.io/marginaleffects/articles/plot.html

• https://vincentarelbundock.github.io/marginaleffects

Usage

plot_comparisons(
model,
variables = NULL,
condition = NULL,
by = NULL,
newdata = NULL,
type = "response",
vcov = NULL,
conf_level = 0.95,
wts = NULL,
comparison = "difference",
transform = NULL,
rug = FALSE,
gray = FALSE,
draw = TRUE,
...

)

Arguments

model Model object

variables Name of the variable whose contrast we want to plot on the y-axis.

condition Conditional slopes

• Character vector (max length 3): Names of the predictors to display.
• Named list (max length 3): List names correspond to predictors. List ele-

ments can be:

plot_comparisons 31

– Numeric vector
– Function which returns a numeric vector or a set of unique categorical

values
– Shortcut strings for common reference values: "minmax", "quartile",

"threenum"
• 1: x-axis. 2: color/shape. 3: facets.
• Numeric variables in positions 2 and 3 are summarized by Tukey’s five

numbers ?stats::fivenum.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.

newdata When newdata is NULL, the grid is determined by the condition argument.
When newdata is not NULL, the argument behaves in the same way as in the
comparisons() function.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the default value is used. This default is the first
model-related row in the marginaleffects:::type_dictionary dataframe.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

32 plot_comparisons

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

wts string or numeric: weights to use when computing average contrasts or slopes.
These weights only affect the averaging in avg_*() or with the by argument,
and not the unit-level estimates themselves.

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

comparison How should pairs of predictions be compared? Difference, ratio, odds ratio, or
user-defined functions.

• string: shortcuts to common contrast functions.

– Supported shortcuts strings: difference, differenceavg, differenceavgwts,
dydx, eyex, eydx, dyex, dydxavg, eyexavg, eydxavg, dyexavg, dy-
dxavgwts, eyexavgwts, eydxavgwts, dyexavgwts, ratio, ratioavg, ra-
tioavgwts, lnratio, lnratioavg, lnratioavgwts, lnor, lnoravg, lnoravgwts,
expdydx, expdydxavg, expdydxavgwts

– See the Comparisons section below for definitions of each transforma-
tion.

• function: accept two equal-length numeric vectors of adjusted predictions
(hi and lo) and returns a vector of contrasts of the same length, or a unique
numeric value.

– See the Transformations section below for examples of valid functions.

transform string or function. Transformation applied to unit-level estimates and confidence
intervals just before the function returns results. Functions must accept a vector
and return a vector of the same length. Support string shortcuts: "exp", "ln"

rug TRUE displays tick marks on the axes to mark the distribution of raw data.

gray FALSE grayscale or color plot

draw TRUE returns a ggplot2 plot. FALSE returns a data.frame of the underlying
data.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range of
supported arguments by each modeling package. See the "Model-Specific Argu-
ments" section of the ?marginaleffects documentation for a non-exhaustive
list of available arguments.

Value

A ggplot2 object

plot_predictions 33

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict
lme4 merMod re.form lme4::predict.merMod

allow.new.levels lme4::predict.merMod
glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB

allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Examples

mod <- lm(mpg ~ hp * drat * factor(am), data = mtcars)

plot_comparisons(mod, variables = "hp", condition = "drat")

plot_comparisons(mod, variables = "hp", condition = c("drat", "am"))

plot_comparisons(mod, variables = "hp", condition = list("am", "drat" = 3:5))

plot_comparisons(mod, variables = "am", condition = list("hp", "drat" = range))

plot_comparisons(mod, variables = "am", condition = list("hp", "drat" = "threenum"))

plot_predictions Plot Conditional or Marginal Predictions

Description

Plot predictions on the y-axis against values of one or more predictors (x-axis, colors/shapes, and
facets).

The by argument is used to plot marginal predictions, that is, predictions made on the original data,
but averaged by subgroups. This is analogous to using the by argument in the predictions()
function.

The condition argument is used to plot conditional predictions, that is, predictions made on a
user-specified grid. This is analogous to using the newdata argument and datagrid() function in
a predictions() call.

34 plot_predictions

All unspecified variables are held at their mean or mode. This includes grouping variables in mixed-
effects models, so analysts who fit such models may want to specify the groups of interest using the
variables argument, or supply model-specific arguments to compute population-level estimates.
See details below.

See the "Plots" vignette and website for tutorials and information on how to customize plots:

• https://vincentarelbundock.github.io/marginaleffects/articles/plot.html

• https://vincentarelbundock.github.io/marginaleffects

Usage

plot_predictions(
model,
condition = NULL,
by = NULL,
newdata = NULL,
type = NULL,
vcov = NULL,
conf_level = 0.95,
wts = NULL,
transform = NULL,
points = 0,
rug = FALSE,
gray = FALSE,
draw = TRUE,
...

)

Arguments

model Model object

condition Conditional predictions

• Character vector (max length 3): Names of the predictors to display.
• Named list (max length 3): List names correspond to predictors. List ele-

ments can be:
– Numeric vector
– Function which returns a numeric vector or a set of unique categorical

values
– Shortcut strings for common reference values: "minmax", "quartile",

"threenum"
• 1: x-axis. 2: color/shape. 3: facets.
• Numeric variables in positions 2 and 3 are summarized by Tukey’s five

numbers ?stats::fivenum

by Marginal predictions

• Character vector (max length 3): Names of the categorical predictors to
marginalize across.

plot_predictions 35

• 1: x-axis. 2: color. 3: facets.

newdata When newdata is NULL, the grid is determined by the condition argument.
When newdata is not NULL, the argument behaves in the same way as in the
predictions() function.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the default value is used. This default is the first
model-related row in the marginaleffects:::type_dictionary dataframe.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

wts string or numeric: weights to use when computing average contrasts or slopes.
These weights only affect the averaging in avg_*() or with the by argument,
and not the unit-level estimates themselves.

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

transform A function applied to unit-level adjusted predictions and confidence intervals
just before the function returns results. For bayesian models, this function is
applied to individual draws from the posterior distribution, before computing
summaries.

points Number between 0 and 1 which controls the transparency of raw data points. 0
(default) does not display any points.

36 plot_predictions

rug TRUE displays tick marks on the axes to mark the distribution of raw data.

gray FALSE grayscale or color plot

draw TRUE returns a ggplot2 plot. FALSE returns a data.frame of the underlying
data.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range of
supported arguments by each modeling package. See the "Model-Specific Argu-
ments" section of the ?marginaleffects documentation for a non-exhaustive
list of available arguments.

Value

A ggplot2 object or data frame (if draw=FALSE)

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict
lme4 merMod re.form lme4::predict.merMod

allow.new.levels lme4::predict.merMod
glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB

allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Examples

mod <- lm(mpg ~ hp + wt, data = mtcars)
plot_predictions(mod, condition = "wt")

mod <- lm(mpg ~ hp * wt * am, data = mtcars)
plot_predictions(mod, condition = c("hp", "wt"))

plot_predictions(mod, condition = list("hp", wt = "threenum"))

plot_predictions(mod, condition = list("hp", wt = range))

plot_slopes 37

plot_slopes Plot Conditional or Marginal Slopes

Description

Plot slopes on the y-axis against values of one or more predictors (x-axis, colors/shapes, and facets).

The by argument is used to plot marginal slopes, that is, slopes made on the original data, but
averaged by subgroups. This is analogous to using the by argument in the slopes() function.

The condition argument is used to plot conditional slopes, that is, slopes made on a user-specified
grid. This is analogous to using the newdata argument and datagrid() function in a slopes()
call.

All unspecified variables are held at their mean or mode. This includes grouping variables in mixed-
effects models, so analysts who fit such models may want to specify the groups of interest using the
variables argument, or supply model-specific arguments to compute population-level estimates.
See details below. See the "Plots" vignette and website for tutorials and information on how to
customize plots:

• https://vincentarelbundock.github.io/marginaleffects/articles/plot.html

• https://vincentarelbundock.github.io/marginaleffects

Usage

plot_slopes(
model,
variables = NULL,
condition = NULL,
by = NULL,
newdata = NULL,
type = "response",
vcov = NULL,
conf_level = 0.95,
wts = NULL,
slope = "dydx",
rug = FALSE,
gray = FALSE,
draw = TRUE,
...

)

Arguments

model Model object

variables Name of the variable whose marginal effect (slope) we want to plot on the y-
axis.

condition Conditional slopes

38 plot_slopes

• Character vector (max length 3): Names of the predictors to display.
• Named list (max length 3): List names correspond to predictors. List ele-

ments can be:
– Numeric vector
– Function which returns a numeric vector or a set of unique categorical

values
– Shortcut strings for common reference values: "minmax", "quartile",

"threenum"
• 1: x-axis. 2: color/shape. 3: facets.
• Numeric variables in positions 2 and 3 are summarized by Tukey’s five

numbers ?stats::fivenum.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.

newdata When newdata is NULL, the grid is determined by the condition argument.
When newdata is not NULL, the argument behaves in the same way as in the
slopes() function.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the default value is used. This default is the first
model-related row in the marginaleffects:::type_dictionary dataframe.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

plot_slopes 39

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

wts string or numeric: weights to use when computing average contrasts or slopes.
These weights only affect the averaging in avg_*() or with the by argument,
and not the unit-level estimates themselves.

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

slope string indicates the type of slope or (semi-)elasticity to compute:

• "dydx": dY/dX
• "eyex": dY/dX * Y / X
• "eydx": dY/dX * Y
• "dyex": dY/dX / X
• Y is the predicted value of the outcome; X is the observed value of the

predictor.

rug TRUE displays tick marks on the axes to mark the distribution of raw data.

gray FALSE grayscale or color plot

draw TRUE returns a ggplot2 plot. FALSE returns a data.frame of the underlying
data.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range of
supported arguments by each modeling package. See the "Model-Specific Argu-
ments" section of the ?marginaleffects documentation for a non-exhaustive
list of available arguments.

Value

A ggplot2 object

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict

40 posterior_draws

lme4 merMod re.form lme4::predict.merMod
allow.new.levels lme4::predict.merMod

glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB
allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Examples

library(marginaleffects)
mod <- lm(mpg ~ hp * drat * factor(am), data = mtcars)

plot_slopes(mod, variables = "hp", condition = "drat")

plot_slopes(mod, variables = "hp", condition = c("drat", "am"))

plot_slopes(mod, variables = "hp", condition = list("am", "drat" = 3:5))

plot_slopes(mod, variables = "am", condition = list("hp", "drat" = range))

plot_slopes(mod, variables = "am", condition = list("hp", "drat" = "threenum"))

posterior_draws Extract Posterior Draws or Bootstrap Resamples from
marginaleffects Objects

Description

Extract Posterior Draws or Bootstrap Resamples from marginaleffects Objects

Usage

posterior_draws(x, shape = "long")

Arguments

x An object produced by a marginaleffects package function, such as predictions(),
avg_slopes(), hypotheses(), etc.

shape string indicating the shape of the output format:
• "long": long format data frame
• "DxP": Matrix with draws as rows and parameters as columns
• "PxD": Matrix with draws as rows and parameters as columns
• "rvar": Random variable datatype (see posterior package documenta-

tion).

predictions 41

Value

A data.frame with drawid and draw columns.

predictions Predictions

Description

Outcome predicted by a fitted model on a specified scale for a given combination of values of the
predictor variables, such as their observed values, their means, or factor levels (a.k.a. "reference
grid").

• predictions(): unit-level (conditional) estimates.

• avg_predictions(): average (marginal) estimates.

The newdata argument and the datagrid() function can be used to control where statistics are
evaluated in the predictor space: "at observed values", "at the mean", "at representative values", etc.

See the predictions vignette and package website for worked examples and case studies:

• https://vincentarelbundock.github.io/marginaleffects/articles/predictions.html

• https://vincentarelbundock.github.io/marginaleffects/

Usage

predictions(
model,
newdata = NULL,
variables = NULL,
vcov = TRUE,
conf_level = 0.95,
type = NULL,
by = FALSE,
byfun = NULL,
wts = NULL,
transform = NULL,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
...

)

avg_predictions(
model,
newdata = NULL,
variables = NULL,

https://vincentarelbundock.github.io/marginaleffects/articles/predictions.html
https://vincentarelbundock.github.io/marginaleffects/

42 predictions

vcov = TRUE,
conf_level = 0.95,
type = NULL,
by = TRUE,
byfun = NULL,
wts = NULL,
transform = NULL,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
...

)

Arguments

model Model object

newdata Grid of predictor values at which we evaluate predictions.

• NULL (default): Predictions for each observed value in the original dataset.
See insight::get_data()

• data frame: Predictions for each row of the newdata data frame.
• string:

– "mean": Predictions at the Mean. Predictions when each predictor is
held at its mean or mode.

– "median": Predictions at the Median. Predictions when each predictor
is held at its median or mode.

– "marginalmeans": Predictions at Marginal Means. See Details section
below.

– "tukey": Predictions at Tukey’s 5 numbers.
– "grid": Predictions on a grid of representative numbers (Tukey’s 5 num-

bers and unique values of categorical predictors).
• datagrid() call to specify a custom grid of regressors. For example:

– newdata = datagrid(cyl = c(4, 6)): cyl variable equal to 4 and 6
and other regressors fixed at their means or modes.

– See the Examples section and the datagrid() documentation.

variables Counterfactual variables.

• Output:
– predictions(): The entire dataset is replicated once for each unique

combination of variables, and predictions are made.
– avg_predictions(): The entire dataset is replicated, predictions are

made, and they are marginalized by variables categories.
– Warning: This can be expensive in large datasets.
– Warning: Users who need "conditional" predictions should use the
newdata argument instead of variables.

• Input:

predictions 43

– NULL: computes one prediction per row of newdata
– Character vector: the dataset is replicated once of every combination

of unique values of the variables identified in variables.
– Named list: names identify the subset of variables of interest and their

values. For numeric variables, the variables argument supports func-
tions and string shortcuts:

* A function which returns a numeric value

* Numeric vector: Contrast between the 2nd element and the 1st ele-
ment of the x vector.

* "iqr": Contrast across the interquartile range of the regressor.

* "sd": Contrast across one standard deviation around the regressor
mean.

* "2sd": Contrast across two standard deviations around the regressor
mean.

* "minmax": Contrast between the maximum and the minimum values
of the regressor.

* "threenum": mean and 1 standard deviation on both sides

* "fivenum": Tukey’s five numbers

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the default value is used. This default is the first
model-related row in the marginaleffects:::type_dictionary dataframe.
See the details section for a note on backtransformation.

44 predictions

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.

byfun A function such as mean() or sum() used to aggregate estimates within the sub-
groups defined by the by argument. NULL uses the mean() function. Must accept
a numeric vector and return a single numeric value. This is sometimes used to
take the sum or mean of predicted probabilities across outcome or predictor lev-
els. See examples section.

wts string or numeric: weights to use when computing average contrasts or slopes.
These weights only affect the averaging in avg_*() or with the by argument,
and not the unit-level estimates themselves.

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

transform A function applied to unit-level adjusted predictions and confidence intervals
just before the function returns results. For bayesian models, this function is
applied to individual draws from the posterior distribution, before computing
summaries.

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix, a string, or a string formula.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String formula to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

• String:

predictions 45

– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• See the Examples section below and the vignette: https://vincentarelbundock.github.io/marginaleffects/articles/hypothesis.html

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

p_adjust Adjust p-values for multiple comparisons: "holm", "hochberg", "hommel", "bon-
ferroni", "BH", "BY", or "fdr". See stats::p.adjust

df Degrees of freedom used to compute p values and confidence intervals. A single
numeric value between 1 and Inf. When df is Inf, the normal distribution is
used. When df is finite, the t distribution is used. See insight::get_df for a
convenient function to extract degrees of freedom. Ex: slopes(model, df =
insight::get_df(model))

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range of
supported arguments by each modeling package. See the "Model-Specific Argu-
ments" section of the ?marginaleffects documentation for a non-exhaustive
list of available arguments.

Details

For glm(), MASS::glm.nb, gam::gam(), and feols::feglm models with type, transform and
hypothesis all equal to NULL (the default), predictions() first predicts on the link scale, and then
backtransforms the estimates and confidence intervals. This implies that the estimate produced by
avg_predictions() will not be exactly equal to the average of the estimate column produced
by predictions(). Users can circumvent this behavior and average predictions directly on the
response scale by setting type="response" explicitly. With type="response", the intervals are
symmetric and may have undesirable properties (e.g., stretching beyond the [0,1] bounds for a
binary outcome regression).

Value

A data.frame with one row per observation and several columns:

• rowid: row number of the newdata data frame

• type: prediction type, as defined by the type argument

• group: (optional) value of the grouped outcome (e.g., categorical outcome models)

• estimate: predicted outcome

• std.error: standard errors computed using the delta method.

46 predictions

• conf.low: lower bound of the confidence interval (or equal-tailed interval for bayesian mod-
els)

• conf.high: upper bound of the confidence interval (or equal-tailed interval for bayesian mod-
els)

• p.value: p value associated to the estimate column. The null is determined by the hypothesis
argument (0 by default), and p values are computed before applying the transform argument.
For models of class feglm, Gam, glm and negbin, p values are computed on the link scale by
default unless the type argument is specified explicitly.

See ?print.marginaleffects for printing options.

Functions

• avg_predictions(): Average predictions

Standard errors using the delta method

Standard errors for all quantities estimated by marginaleffects can be obtained via the delta
method. This requires differentiating a function with respect to the coefficients in the model using
a finite difference approach. In some models, the delta method standard errors can be sensitive to
various aspects of the numeric differentiation strategy, including the step size. By default, the step
size is set to 1e-8, or to 1e-4 times the smallest absolute model coefficient, whichever is largest.

marginaleffects can delegate numeric differentiation to the numDeriv package, which allows
more flexibility. To do this, users can pass arguments to the numDeriv::jacobian function through
a global option. For example:

• options(marginaleffects_numDeriv = list(method = "simple", method.args = list(eps
= 1e-6)))

• options(marginaleffects_numDeriv = list(method = "Richardson", method.args = list(eps
= 1e-5)))

• options(marginaleffects_numDeriv = NULL)

See the "Standard Errors and Confidence Intervals" vignette on the marginaleffects website for
more details on the computation of standard errors:

https://vincentarelbundock.github.io/marginaleffects/articles/uncertainty.html

Note that the inferences() function can be used to compute uncertainty estimates using a boot-
strap or simulation-based inference. See the vignette:

https://vincentarelbundock.github.io/marginaleffects/articles/bootstrap.html

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation

predictions 47

brms brmsfit ndraws brms::posterior_predict
re_formula brms::posterior_predict

lme4 merMod re.form lme4::predict.merMod
allow.new.levels lme4::predict.merMod

glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB
allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Bayesian posterior summaries

By default, credible intervals in bayesian models are built as equal-tailed intervals. This can be
changed to a highest density interval by setting a global option:

options("marginaleffects_posterior_interval" = "eti")

options("marginaleffects_posterior_interval" = "hdi")

By default, the center of the posterior distribution in bayesian models is identified by the median.
Users can use a different summary function by setting a global option:

options("marginaleffects_posterior_center" = "mean")

options("marginaleffects_posterior_center" = "median")

When estimates are averaged using the by argument, the tidy() function, or the summary() func-
tion, the posterior distribution is marginalized twice over. First, we take the average across units
but within each iteration of the MCMC chain, according to what the user requested in by argument
or tidy()/summary() functions. Then, we identify the center of the resulting posterior using the
function supplied to the "marginaleffects_posterior_center" option (the median by default).

Equivalence, Inferiority, Superiority

θ is an estimate, σθ its estimated standard error, and [a, b] are the bounds of the interval supplied to
the equivalence argument.

Non-inferiority:

• H0: θ ≤ a

• H1: θ > a

• t = (θ − a)/σθ

• p: Upper-tail probability

Non-superiority:

• H0: θ ≥ b

• H1: θ < b

• t = (θ − b)/σθ

• p: Lower-tail probability

48 predictions

Equivalence: Two One-Sided Tests (TOST)

• p: Maximum of the non-inferiority and non-superiority p values.

Thanks to Russell V. Lenth for the excellent emmeans package and documentation which inspired
this feature.

Examples

Not run:
Adjusted Prediction for every row of the original dataset
mod <- lm(mpg ~ hp + factor(cyl), data = mtcars)
pred <- predictions(mod)
head(pred)

Adjusted Predictions at User-Specified Values of the Regressors
predictions(mod, newdata = datagrid(hp = c(100, 120), cyl = 4))

m <- lm(mpg ~ hp + drat + factor(cyl) + factor(am), data = mtcars)
predictions(m, newdata = datagrid(FUN_factor = unique, FUN_numeric = median))

Average Adjusted Predictions (AAP)
library(dplyr)
mod <- lm(mpg ~ hp * am * vs, mtcars)

avg_predictions(mod)

predictions(mod, by = "am")

Conditional Adjusted Predictions
plot_predictions(mod, condition = "hp")

Counterfactual predictions with the `variables` argument
the `mtcars` dataset has 32 rows

mod <- lm(mpg ~ hp + am, data = mtcars)
p <- predictions(mod)
head(p)
nrow(p)

average counterfactual predictions
avg_predictions(mod, variables = "am")

counterfactual predictions obtained by replicating the entire for different
values of the predictors
p <- predictions(mod, variables = list(hp = c(90, 110)))
nrow(p)

hypothesis test: is the prediction in the 1st row equal to the prediction in the 2nd row
mod <- lm(mpg ~ wt + drat, data = mtcars)

predictions(

predictions 49

mod,
newdata = datagrid(wt = 2:3),
hypothesis = "b1 = b2")

same hypothesis test using row indices
predictions(

mod,
newdata = datagrid(wt = 2:3),
hypothesis = "b1 - b2 = 0")

same hypothesis test using numeric vector of weights
predictions(

mod,
newdata = datagrid(wt = 2:3),
hypothesis = c(1, -1))

two custom contrasts using a matrix of weights
lc <- matrix(c(

1, -1,
2, 3),
ncol = 2)

predictions(
mod,
newdata = datagrid(wt = 2:3),
hypothesis = lc)

`by` argument
mod <- lm(mpg ~ hp * am * vs, data = mtcars)
predictions(mod, by = c("am", "vs"))

library(nnet)
nom <- multinom(factor(gear) ~ mpg + am * vs, data = mtcars, trace = FALSE)

first 5 raw predictions
predictions(nom, type = "probs") |> head()

average predictions
avg_predictions(nom, type = "probs", by = "group")

by <- data.frame(
group = c("3", "4", "5"),
by = c("3,4", "3,4", "5"))

predictions(nom, type = "probs", by = by)

sum of predicted probabilities for combined response levels
mod <- multinom(factor(cyl) ~ mpg + am, data = mtcars, trace = FALSE)
by <- data.frame(

by = c("4,6", "4,6", "8"),
group = as.character(c(4, 6, 8)))

predictions(mod, newdata = "mean", byfun = sum, by = by)

50 print.marginaleffects

End(Not run)

print.marginaleffects Print marginaleffects objects

Description

This function controls the text which is printed to the console when one of the core marginalefffects
functions is called and the object is returned: predictions(), comparisons(), slopes(), marginal_means(),
hypotheses(), avg_predictions(), avg_comparisons(), avg_slopes().

All of those functions return standard data frames. Columns can be extracted by name, predictions(model)$estimate,
and all the usual data manipulation functions work out-of-the-box: colnames(), head(), subset(),
dplyr::filter(), dplyr::arrange(), etc.

Some of the data columns are not printed by default. You can disable pretty printing and print the
full results as a standard data frame using the style argument or by applying as.data.frame() on
the object. See examples below.

Usage

S3 method for class 'marginaleffects'
print(
x,
digits = getOption("marginaleffects_print_digits", default = 3),
p_eps = getOption("marginaleffects_print_p_eps", default = 0.001),
topn = getOption("marginaleffects_print_topn", default = 5),
nrows = getOption("marginaleffects_print_nrows", default = 30),
ncols = getOption("marginaleffects_print_ncols", default = 30),
style = getOption("marginaleffects_print_style", default = "summary"),
...

)

Arguments

x An object produced by one of the marginaleffects package functions.

digits The number of digits to display.

p_eps p values smaller than this number are printed in "<0.001" style.

topn The number of rows to be printed from the beginning and end of tables with
more than nrows rows.

nrows The number of rows which will be printed before truncation.

ncols The maximum number of column names to display at the bottom of the printed
output.

style "summary" or "data.frame"

... Other arguments are currently ignored.

slopes 51

Examples

library(marginaleffects)
mod <- lm(mpg ~ hp + am + factor(gear), data = mtcars)
p <- predictions(mod, by = c("am", "gear"))
p

subset(p, am == 1)

print(p, style = "data.frame")

data.frame(p)

slopes Slopes (aka Partial derivatives, Marginal Effects, or Trends)

Description

Partial derivative of the regression equation with respect to a regressor of interest.

• slopes(): unit-level (conditional) estimates.

• avg_slopes(): average (marginal) estimates.

The newdata argument and the datagrid() function can be used to control where statistics are
evaluated in the predictor space: "at observed values", "at the mean", "at representative values", etc.

See the slopes vignette and package website for worked examples and case studies:

• https://vincentarelbundock.github.io/marginaleffects/articles/slopes.html

• https://vincentarelbundock.github.io/marginaleffects/

Usage

slopes(
model,
newdata = NULL,
variables = NULL,
type = NULL,
by = FALSE,
vcov = TRUE,
conf_level = 0.95,
slope = "dydx",
wts = NULL,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
eps = NULL,

https://vincentarelbundock.github.io/marginaleffects/articles/slopes.html
https://vincentarelbundock.github.io/marginaleffects/

52 slopes

...
)

avg_slopes(
model,
newdata = NULL,
variables = NULL,
type = NULL,
by = TRUE,
vcov = TRUE,
conf_level = 0.95,
slope = "dydx",
wts = NULL,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
eps = NULL,
...

)

Arguments

model Model object

newdata Grid of predictor values at which we evaluate the slopes.

• NULL (default): Unit-level slopes for each observed value in the original
dataset. See insight::get_data()

• data frame: Unit-level slopes for each row of the newdata data frame.
• datagrid() call to specify a custom grid of regressors. For example:

– newdata = datagrid(cyl = c(4, 6)): cyl variable equal to 4 and 6
and other regressors fixed at their means or modes.

– See the Examples section and the datagrid() documentation.
• string:

– "mean": Marginal Effects at the Mean. Slopes when each predictor is
held at its mean or mode.

– "median": Marginal Effects at the Median. Slopes when each predictor
is held at its median or mode.

– "marginalmeans": Marginal Effects at Marginal Means. See Details
section below.

– "tukey": Marginal Effects at Tukey’s 5 numbers.
– "grid": Marginal Effects on a grid of representative numbers (Tukey’s

5 numbers and unique values of categorical predictors).

variables Focal variables

• NULL: compute slopes or comparisons for all the variables in the model
object (can be slow).

• Character vector: subset of variables (usually faster).

slopes 53

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the default value is used. This default is the first
model-related row in the marginaleffects:::type_dictionary dataframe.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:
• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.
vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-

able values:
• FALSE: Do not compute standard errors. This can speed up computation

considerably.
• TRUE: Unit-level standard errors using the default vcov(model) variance-

covariance matrix.
• String which indicates the kind of uncertainty estimates to return.

– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

slope string indicates the type of slope or (semi-)elasticity to compute:
• "dydx": dY/dX
• "eyex": dY/dX * Y / X
• "eydx": dY/dX * Y
• "dyex": dY/dX / X
• Y is the predicted value of the outcome; X is the observed value of the

predictor.
wts string or numeric: weights to use when computing average contrasts or slopes.

These weights only affect the averaging in avg_*() or with the by argument,
and not the unit-level estimates themselves.

54 slopes

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix, a string, or a string formula.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String formula to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• See the Examples section below and the vignette: https://vincentarelbundock.github.io/marginaleffects/articles/hypothesis.html

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

p_adjust Adjust p-values for multiple comparisons: "holm", "hochberg", "hommel", "bon-
ferroni", "BH", "BY", or "fdr". See stats::p.adjust

df Degrees of freedom used to compute p values and confidence intervals. A single
numeric value between 1 and Inf. When df is Inf, the normal distribution is
used. When df is finite, the t distribution is used. See insight::get_df for a
convenient function to extract degrees of freedom. Ex: slopes(model, df =
insight::get_df(model))

eps NULL or numeric value which determines the step size to use when calculating
numerical derivatives: (f(x+eps)-f(x))/eps. When eps is NULL, the step size is
0.0001 multiplied by the difference between the maximum and minimum values
of the variable with respect to which we are taking the derivative. Changing eps
may be necessary to avoid numerical problems in certain models.

slopes 55

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range of
supported arguments by each modeling package. See the "Model-Specific Argu-
ments" section of the ?marginaleffects documentation for a non-exhaustive
list of available arguments.

Details

A "slope" or "marginal effect" is the partial derivative of the regression equation with respect to
a variable in the model. This function uses automatic differentiation to compute slopes for a vast
array of models, including non-linear models with transformations (e.g., polynomials). Uncertainty
estimates are computed using the delta method.

Numerical derivatives for the slopes function are calculated using a simple epsilon difference ap-
proach: ∂Y/∂X = (f(X + ε/2) − f(X − ε/2))/ε, where f is the predict() method associated
with the model class, and ε is determined by the eps argument.

Value

A data.frame with one row per observation (per term/group) and several columns:

• rowid: row number of the newdata data frame

• type: prediction type, as defined by the type argument

• group: (optional) value of the grouped outcome (e.g., categorical outcome models)

• term: the variable whose marginal effect is computed

• dydx: slope of the outcome with respect to the term, for a given combination of predictor
values

• std.error: standard errors computed by via the delta method.

See ?print.marginaleffects for printing options.

Functions

• avg_slopes(): Average slopes

Standard errors using the delta method

Standard errors for all quantities estimated by marginaleffects can be obtained via the delta
method. This requires differentiating a function with respect to the coefficients in the model using
a finite difference approach. In some models, the delta method standard errors can be sensitive to
various aspects of the numeric differentiation strategy, including the step size. By default, the step
size is set to 1e-8, or to 1e-4 times the smallest absolute model coefficient, whichever is largest.

marginaleffects can delegate numeric differentiation to the numDeriv package, which allows
more flexibility. To do this, users can pass arguments to the numDeriv::jacobian function through
a global option. For example:

• options(marginaleffects_numDeriv = list(method = "simple", method.args = list(eps
= 1e-6)))

56 slopes

• options(marginaleffects_numDeriv = list(method = "Richardson", method.args = list(eps
= 1e-5)))

• options(marginaleffects_numDeriv = NULL)

See the "Standard Errors and Confidence Intervals" vignette on the marginaleffects website for
more details on the computation of standard errors:

https://vincentarelbundock.github.io/marginaleffects/articles/uncertainty.html

Note that the inferences() function can be used to compute uncertainty estimates using a boot-
strap or simulation-based inference. See the vignette:

https://vincentarelbundock.github.io/marginaleffects/articles/bootstrap.html

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict
lme4 merMod re.form lme4::predict.merMod

allow.new.levels lme4::predict.merMod
glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB

allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Bayesian posterior summaries

By default, credible intervals in bayesian models are built as equal-tailed intervals. This can be
changed to a highest density interval by setting a global option:

options("marginaleffects_posterior_interval" = "eti")

options("marginaleffects_posterior_interval" = "hdi")

By default, the center of the posterior distribution in bayesian models is identified by the median.
Users can use a different summary function by setting a global option:

options("marginaleffects_posterior_center" = "mean")

options("marginaleffects_posterior_center" = "median")

When estimates are averaged using the by argument, the tidy() function, or the summary() func-
tion, the posterior distribution is marginalized twice over. First, we take the average across units
but within each iteration of the MCMC chain, according to what the user requested in by argument

slopes 57

or tidy()/summary() functions. Then, we identify the center of the resulting posterior using the
function supplied to the "marginaleffects_posterior_center" option (the median by default).

Equivalence, Inferiority, Superiority

θ is an estimate, σθ its estimated standard error, and [a, b] are the bounds of the interval supplied to
the equivalence argument.

Non-inferiority:

• H0: θ ≤ a

• H1: θ > a

• t = (θ − a)/σθ

• p: Upper-tail probability

Non-superiority:

• H0: θ ≥ b

• H1: θ < b

• t = (θ − b)/σθ

• p: Lower-tail probability

Equivalence: Two One-Sided Tests (TOST)

• p: Maximum of the non-inferiority and non-superiority p values.

Thanks to Russell V. Lenth for the excellent emmeans package and documentation which inspired
this feature.

Examples

Unit-level (conditional) Marginal Effects
mod <- glm(am ~ hp * wt, data = mtcars, family = binomial)
mfx <- slopes(mod)
head(mfx)

Average Marginal Effect (AME)
avg_slopes(mod, by = TRUE)

Marginal Effect at the Mean (MEM)
slopes(mod, newdata = datagrid())

Marginal Effect at User-Specified Values
Variables not explicitly included in `datagrid()` are held at their means
slopes(mod, newdata = datagrid(hp = c(100, 110)))

Group-Average Marginal Effects (G-AME)
Calculate marginal effects for each observation, and then take the average

58 slopes

marginal effect within each subset of observations with different observed
values for the `cyl` variable:
mod2 <- lm(mpg ~ hp * cyl, data = mtcars)
avg_slopes(mod2, variables = "hp", by = "cyl")

Marginal Effects at User-Specified Values (counterfactual)
Variables not explicitly included in `datagrid()` are held at their
original values, and the whole dataset is duplicated once for each
combination of the values in `datagrid()`
mfx <- slopes(mod,

newdata = datagrid(hp = c(100, 110),
grid_type = "counterfactual"))

head(mfx)

Heteroskedasticity robust standard errors
mfx <- slopes(mod, vcov = sandwich::vcovHC(mod))
head(mfx)

hypothesis test: is the `hp` marginal effect at the mean equal to the `drat` marginal effect
mod <- lm(mpg ~ wt + drat, data = mtcars)

slopes(
mod,
newdata = "mean",
hypothesis = "wt = drat")

same hypothesis test using row indices
slopes(

mod,
newdata = "mean",
hypothesis = "b1 - b2 = 0")

same hypothesis test using numeric vector of weights
slopes(

mod,
newdata = "mean",
hypothesis = c(1, -1))

two custom contrasts using a matrix of weights
lc <- matrix(c(

1, -1,
2, 3),
ncol = 2)

colnames(lc) <- c("Contrast A", "Contrast B")
slopes(

mod,
newdata = "mean",
hypothesis = lc)

Index

avg_comparisons (comparisons), 3
avg_predictions (predictions), 41
avg_slopes (slopes), 51

brms::posterior_predict, 10, 27, 33, 36,
39, 47, 56

car::deltaMethod, 16
car::linearHypothesis, 16
comparisons, 3

datagrid, 5, 13
datagrid(), 5, 42, 52
datagridcf (datagrid), 13

glmmTMB::predict.glmmTMB, 10, 27, 33, 36,
40, 47, 56

hypotheses, 16, 16

inferences, 21
insight::get_data(), 4, 42, 52
insight::get_df, 8, 18, 25, 45, 54

lme4::predict.merMod, 10, 27, 33, 36, 40,
47, 56

marginal_means, 23
marginaleffects, 50
mgcv::predict.bam, 10, 27, 33, 36, 40, 47, 56

plot_comparisons, 29
plot_predictions, 33
plot_slopes, 37
posterior_draws, 40
predictions, 41
print.marginaleffects, 50

robustlmm::predict.rlmerMod, 10, 27, 33,
36, 40, 47, 56

slopes, 51

stats::p.adjust, 8, 25, 45, 54

weights(), 22

59

	comparisons
	datagrid
	hypotheses
	inferences
	marginal_means
	plot_comparisons
	plot_predictions
	plot_slopes
	posterior_draws
	predictions
	print.marginaleffects
	slopes
	Index

