Package ‘mnormt’

February 20, 2015

Version 1.5-1
Date 2014-06-30
Title The multivariate normal and t distributions
Author Fortran code by Alan Genz, R code by Adelchi Azzalini
Maintainer Adelchi Azzalini <adelchi.azzalini@unipd.it>
Depends R (>= 2.2.0)
Description This package provides functions for computing the density and the
distribution function of multivariate normal and multivariate "t" variates,
and for generating random vectors sampled from these distributions.
Probabilities are computed via a non-Monte Carlo method; different routines
are used for the case d=1, d=2, d>2, if d denotes the number of dimensions.
License GPL-2 | GPL-3
URL http://azzalini.stat.unipd.it/SW/Pkg-mnormt
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-06-30 00:02:53

R topics documented:

mnormt-package ... 2
dmnorm .. 2
dmt ... 4
pd.solve ... 7

Index 8
Description

This package provides functions for computing the density and the distribution function of multivariate normal and multivariate Student’s t variates and for generating random vectors sampled from these distributions.

Details

Probabilities are computed via a non-Monte Carlo method. Different routines are used in the three cases $d=1$, $d=2$, $d>2$, if d denotes the number of dimensions.

Licence

This package and its documentation are usable under the terms of the “GNU General Public License” version 3 or version 2, as you prefer; a copy of them is available from http://www.R-project.org/Licenses/.

Author(s)

Adelchi Azzalini (R code and package creation) and Alan Genz (Fortran code, see references below; this includes routines of other authors)

References

Genz, A.: Fortran code available at http://www.math.wsu.edu/math/faculty/genz/software/fort77/mvn.f
Usage

dmnorm(x, mean = rep(0, d), varcov, log = FALSE)

pmnorm(x, mean = rep(0, d), varcov, ...)

rmnorm(n = 1, mean = rep(0, d), varcov)

sadmvn(lower, upper, mean, varcov, maxpts = 2000 * d, abseps = 1e-06, releps = 0)

Arguments

x either a vector of length d or a matrix with d columns, where d=ncol(varcov), representing the coordinates of the point(s) where the density must be evaluated; for pmnorm, d cannot exceed 20

mean either a vector of length d, representing the mean value, or a matrix whose rows represent different mean vectors; if it is a matrix, its dimensions must match those of x

varcov a symmetric positive-definite matrix representing the variance-covariance matrix of the distribution; a vector of length 1 is also allowed (in this case, d=1 is set)

log a logical value (default value is FALSE); if TRUE, the logarithm of the density is computed

... parameters passed to sadmvn, among maxpts, abseps, releps

n the number of random vectors to be generated

lower a numeric vector of lower integration limits of the density function; must be of maximal length 20; +Inf and -Inf entries are allowed

upper a numeric vector of upper integration limits of the density function; must be of maximal length 20; +Inf and -Inf entries are allowed

maxpts the maximum number of function evaluations (default value: 2000*d)

abseps absolute error tolerance (default value: 1e-6)

releps relative error tolerance (default value: 0)

Details

The function pmnorm works by making a suitable call to sadmvn if d>2, or to biv.nt.prob if d=2, or to pnorm if d=1. Function sadmvn is an interface to a Fortran-77 routine with the same name written by Alan Genz, and available from his web page; this makes uses of some auxiliary functions whose authors are documented in the Fortran code. The routine uses an adaptive integration method.

Value

dmnorm returns a vector of density values (possibly log-transformed); pmnorm and sadmvn return a single probability with attributes giving details on the achieved accuracy, provided x of pmnorm is a vector; rmnorm returns a matrix of n rows of random vectors

Note

The attributes error and status of the probability returned by pmnorm and sadmvn indicate whether the function had a normal termination, achieving the required accuracy. If this is not the case, re-run the function with an higher value of maxpts
Author(s)

Fortran code of SADMVN and most auxiliary functions by Alan Genz, some additional auxiliary functions by people referred to within his program. Interface to R and additional R code by Adelchi Azzalini

References

Genz, A.: Fortran code available at http://www.math.wsu.edu/math/faculty/genz/software/fort77/mvn.f

See Also
dnorm, dmt, biv.nt.prob

Examples

```r
x <- seq(-2,4,length=21)
y <- cos(2*x) + 10
z <- x + sin(3*y)
mu <- c(1,12,2)
Sigma <- matrix(c(1,2,0,2,5,0.5,0,0.5,3,3), 3, 3)
f <- dnorm(cbind(x,y,z), mu, Sigma)
f0 <- dnorm(mu, mu, Sigma)
p1 <- pmnorm(c(2,11,3), mu, Sigma)
p2 <- pmnorm(c(2,11,3), mu, Sigma, maxpts=10000, abseps=1e-10)
p <- pmnorm(cbind(x,y,z), mu, Sigma)
x <- rmnorm(10, mu, Sigma)
p <- sadmvn(lower=c(2,11,3), upper=rep(Inf,3), mu, Sigma) # upper tail
# p0 <- pmnorm(c(2,11, mu[1:2], Sigma[1:2,1:2])
p1 <- biv.nt.prob(0, lower=rep(-Inf,2), upper=c(2,11), mu[1:2], Sigma[1:2,1:2])
p2 <- sadmvn(lower=rep(-Inf,2), upper=c(2,11), mu[1:2], Sigma[1:2,1:2])
c(p0, p1, p2, p0-p2)
# p1 <- pnorm(0, 1, 3)
p2 <- pmnorm(0, 1, 3^2)
```

dmt

Multivariate t distribution

Description

The probability density function, the distribution function and random number generation for the multivariate Student’s t distribution
Usage

dmt(x, mean = rep(0, d), S, df=Inf, log = FALSE)
pmt(x, mean = rep(0, d), S, df=Inf, ...)
rmt(n = 1, mean = rep(0, d), S, df=Inf)
sadmvt(df, lower, upper, mean, S, maxpts = 2000 * d, abseps = 1e-06, releps = 0)
biv.nt.prob(df, lower, upper, mean, S)

Arguments

x either a vector of length d or a matrix with d columns, giving the coordinates of the point(s) where the density must be evaluated; for pmt, d cannot exceed 20

t
mean either a vector of length d, representing the location parameter (equal to the mean vector when df>1), or a matrix whose rows represent different location vectors; if it is a matrix, its dimensions must match those of x

S a symmetric positive-definite matrix representing the scale matrix of the distribution, such that S*df/(df-2) is the variance-covariance matrix when df>2; a vector of length 1 is also allowed (in this case, d=1 is set)

df degrees of freedom; it must be a positive integer for pmt, sadmvt and biv.nt.prob, otherwise a positive number. If df=Inf (default value), the corresponding *nmnorm function is called, unless d=2; in this case biv.nt.prob is used. If biv.nt.prob is called with df=Inf, it returns the probability of a rectangle assigned by a bivariate normal distribution

log a logical value; if TRUE, the logarithm of the density is computed

... parameters passed to sadmvt, among maxpts, absrel, releps

n the number of random vectors to be generated

t
lower a numeric vector of lower integration limits of the density function; must be of maximal length 20; +Inf and -Inf entries are allowed

upper a numeric vector of upper integration limits of the density function; must be of maximal length 20; +Inf and -Inf entries are allowed

maxpts the maximum number of function evaluations (default value: 2000*d)

abseps absolute error tolerance (default value: 1e-6)

releps relative error tolerance (default value: 0)

Details

The functions sadmvt and biv.nt.prob are interfaces to Fortran-77 routines by Alan Genz, and available from his web page; they makes uses of some auxiliary functions whose authors are documented in the Fortran code. The routine sadmvt uses an adaptive integration method. The routine biv.nt.prob is specific for the bivariate case; if df<1 or df=Inf, it computes the bivariate normal distribution function using a non-iterative method described in a reference given below. If pmt is called with d>2, this is converted into a suitable call to sadmvt; if d=2, a call to biv.nt.prob is used; if d=1, then pt is used.
Value

dmt returns a vector of density values (possibly log-transformed); pmt and sadmvt return a single probability with attributes giving details on the achieved accuracy, provided x of pmnrm is a vector; rmt returns a matrix of n rows of random vectors

Note

The attributes error and status of the probability returned by pmt and sadmvt indicate whether the function had a normal termination, achieving the required accuracy. If this is not the case, re-run the function with an higher value of maxpts

Author(s)

Fortran code of SADMVT and most auxiliary functions by Alan Genz, some additional auxiliary functions by people referred to within his program. Interface to R and additional R code by Adelchi Azzalini

References

See Also

dt, dmnorm

Examples

```r
x <- seq(-2,4,length=21)
y <- 2*x+10
z <- x+cos(y)
mu <- c(1,12,2)
Sigma <- matrix(c(1,2,0,2,5,0.5,0.5,0,0.5,3,3), 3, 3)
df <- 4
f <- dmt(cbind(x,y,z), mu, Sigma,df)
p1 <- pmt(c(2,11,3), mu, Sigma, df)
p2 <- pmt(c(2,11,3), mu, Sigma, df, maxpts=10000, abseps=1e-8)
x <- rmt(10, mu, Sigma, df)
p <- sadmvt(df, lower=c(2,11,3), upper=rep(Inf,3), mu, Sigma) # upper tail
# p0 <- pmt(c(2,11), mu[1:2], Sigma[1:2,1:2], df=5)
p1 <- biv.nt.prob(5, lower=rep(-Inf,2), upper=c(2, 11), mu[1:2], Sigma[1:2,1:2])
p2 <- sadmvt(5, lower=rep(-Inf,2), upper=c(2, 11), mu[1:2], Sigma[1:2,1:2])
c(p0, p1, p2, p0-p1, p0-p2)
```
pd.solve

Inverse of a symmetric positive-definite matrix

Description

The inverse of a symmetric positive-definite matrix and its log-determinant

Usage

```
pd.solve(x, silent = FALSE, log.det=FALSE)
```

Arguments

- **x**: a symmetric positive-definite matrix.
- **silent**: a logical value which indicates the action to take in case of an error. If `silent==TRUE` and an error occurs, the function silently returns a NULL value; if `silent==FALSE` (default) an error generates a stop with an error message.
- **log.det**: a logical value to indicate whether the log-determinant of `x` is required (default is FALSE).

Details

The function checks that `x` is a symmetric positive-definite matrix. If an error is detected, an action is taken which depends on the value of the argument `silent`.

Value

the inverse matrix of `x`; if `log.det=TRUE`, this inverse has an attribute which contains the logarithm of the determinant of `x`.

Author(s)

Adelchi Azzalini

Examples

```
x <- toeplitz(rev(1:4))
x.inv <- pd.solve(x)
print(x.inv %*% x)
x.inv <- pd.solve(x, log.det=TRUE)
logDet <- attr(x.inv, "log.det")
print(abs(logDet - determinant(x, logarithm=TRUE)$modulus))
```
Index

*Topic algebra
 pd.solve, 7
*Topic array
 pd.solve, 7
*Topic distribution
 dmnorm, 2
 dmt, 4
 mnormt-package, 2
*Topic multivariate
 dmnorm, 2
 dmt, 4
 mnormt-package, 2
*Topic package
 mnormt-package, 2

biv.nt.prob, 4
biv.nt.prob(dmt), 4

dmnorm, 2, 6
dmt, 4, 4
dnorm, 4
dt, 6

mnormt-package, 2

pd.solve, 7
pmnorm(dmnorm), 2
pmt(dmt), 4
rmnorm(dmnorm), 2
rmt(dmt), 4
sadmvn(dmnorm), 2
sadmvt(dmt), 4