Package ‘msgl’

February 20, 2015

Type Package

Title High Dimensional Multiclass Classification Using Sparse Group Lasso

Version 2.0.125.1

Date 2014-11-04

Author Martin Vincent

Maintainer Martin Vincent <vincent@math.ku.dk>

Description Sparse group lasso multiclass classification, suitable for high dimensional problems with many classes. Fast algorithm for solving the multinomial sparse group lasso convex optimization problem. This package apply template metaprogramming techniques, therefore -- when compiling the package from source -- a high level of optimization is needed to gain full speed (e.g. for the GCC compiler use -O3). Use of multiple processors for cross validation and subsampling is supported through OpenMP. The Armadillo C++ library is used as the primary linear algebra engine.

URL http://dx.doi.org/10.1016/j.csda.2013.06.004

License GPL (>= 2)

LazyLoad yes

Depends R (>= 3.0.0), Matrix, sglOptim (>= 1.0.122.0)

LinkingTo Rcpp, RcppProgress, RcppArmadillo, BH, sglOptim

Collate 'msgl_fit.R' 'msgl_cv.R' 'msgl_subsampling.R' 'msgl_predict.R' 'msgl_navigate.R' 'msgl_config.R'

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-11-06 01:05:25
R topics documented:

coef.msgl ... 2
Err.msgl ... 3
features.msgl .. 5
models.msgl ... 6
msgl .. 6
msgl.algorithm.config ... 8
msgl.cv ... 10
msgl.lambda.seq .. 12
msgl.standard.config ... 13
msgl.subsampling ... 14
nmod.msgl ... 16
parameters.msgl ... 17
predict.msgl .. 18
print.msgl ... 19
sim.data ... 20

Index 21

coef.msgl Extract nonzero coefficients

Description

Extract nonzero coefficients

Usage

```r
## S3 method for class 'msgl'
coef(object, index = 1:nmod(object), ...)
```

Arguments

- `object` a msgl object
- `index` indices of the models
- `...` ignored

Value

a list of length `length(index)` with nonzero coefficients of the models

Author(s)

Martin Vincent
Examples

data(SimData)
x <- SimData$x
classes <- SimData$classes
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl(x, classes, alpha = .5, lambda = lambda)

the nonzero coefficients of the models 1, 10 and 20
coef(fit, index = c(1,10,20))

Err.msgl

Compute error rates

Description

Compute error rates. If type = "rate" then the misclassification rates will be computed. If type = "count" then the misclassification counts will be computed. If type = "loglike" then the negative log likelihood error will be computed.

Usage

S3 method for class 'msgl'
Err(object, data = NULL,
 response = object$classes.true, classes = response,
 type = "rate", ...)

Arguments

object a msgl object
data a matrix of
response a vector of classes
classes a vector of classes
type type of error rate rate or count
... ignored

Value

a vector of error rates

Author(s)

Martin Vincent
Examples

data(SimData)
 x.all <- sim.data$x
 x.1 <- sim.data$x[1:50,]
 x.2 <- sim.data$x[51:100,]
 classes.all <- sim.data$classes
 classes.1 <- sim.data$classes[1:50]
 classes.2 <- sim.data$classes[51:100]

 # Fit models using x.1
 lambda <- msgl.lambda.seq(x.1, classes.1, alpha = .5, d = 50, lambda.min = 0.05)
 fit <- msgl(x.1, classes.1, alpha = .5, lambda = lambda)

 # Training errors:
 err(fit, x.1)
 err(fit, x.1, type = "count")
 err(fit, x.1, type = "loglike")

 # Misclassification rate of x.2
 err(fit, x.2, classes.2)

 # Do cross validation
 fit.cv <- msgl.cv(x.all, classes.all, alpha = .5, lambda = lambda)

 # Cross validation errors (estimated expected generalization error)
 err(fit.cv)
 err(fit.cv, type = "loglike")

 # Do subsampling
 test <- list(1:20, 21:40)
 train <- lapply(test, function(s) (1:length(classes.all))[!s])
 fit.sub <- msgl.subsampling(x.all, classes.all, alpha = .5,
 lambda = lambda, training = train, test = test)

 # Mean misclassification error of the tests
 err(fit.sub)
 err(fit.sub, type = "loglike")
features.msgl

Nonzero features

Description

Extracts the nonzero features for each model.

Usage

```r
## S3 method for class 'msgl'
features(object, ...)  
```

Arguments

- `object`: a msgl object
- `...`: ignored

Value

a list of of length `nmod(x)` containing the nonzero features (that is nonzero columns of the beta matrices)

Author(s)

Martin Vincent

Examples

```r
data(SimData)
x <- sim.data$x
classes <- sim.data$classes
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl(x, classes, alpha = .5, lambda = lambda)

# the nonzero features of model 1, 10 and 25
features(fit)[c(1,10,25)]

# count the number of nonzero features in each model
sapply(features(fit), length)
```
models.msgl

Extract the fitted models

Description

Returns the fitted models, that is the estimated β matrices.

Usage

```r
## S3 method for class 'msgl'
models(object, index = 1:nmod(object),
       ...)  
```

Arguments

- `object`: a msgl object
- `index`: indices of the models to be returned
- `...`: ignored

Value

A list of β matrices.

Author(s)

Martin Vincent

msgl

Fit a multinomial sparse group lasso regularization path.

Description

Fit a sequence of multinomial logistic regression models using sparse group lasso, group lasso or lasso. In addition to the standard parameter grouping the algorithm supports further grouping of the features.

Usage

```r
msgl(x, classes,
     sampleWeights = rep(1/length(classes), length(classes)),
     grouping = NULL, groupWeights = NULL,
     parameterWeights = NULL, alpha = 0.5,
     standardize = TRUE, lambda, return = 1:length(lambda),
     intercept = TRUE, sparse.data = is(x, "sparseMatrix"),
     algorithm.config = msgl.standard.config)
```
Arguments

- **x**: design matrix, matrix of size $N \times p$.
- **classes**: classes, factor of length N.
- **sampleWeights**: sample weights, a vector of length N.
- **grouping**: grouping of features, a vector of length p. Each element of the vector specifying the group of the feature.
- **groupWeights**: the group weights, a vector of length m (the number of groups). If `groupWeights` = `NULL` default weights will be used. Default weights are 0 for the intercept and $\sqrt{K} \cdot \text{number of features in the group}$ for all other weights.
- **parameterWeights**: a matrix of size $K \times p$. If `parameterWeights` = `NULL` default weights will be used. Default weights are is 0 for the intercept weights and 1 for all other weights.
- **alpha**: the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty.
- **standardize**: if TRUE the features are standardize before fitting the model. The model parameters are returned in the original scale.
- **lambda**: the lambda sequence for the regularization path.
- **return**: the indices of lambda values for which to return a the fitted parameters.
- **intercept**: should the model include intercept parameters
- **sparse.data**: if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as sparse by default.
- **algorithm.config**: the algorithm configuration to be used.

Details

For a classification problem with K classes and p features (covariates) dived into m groups. This function computes a sequence of minimizers (one for each lambda given in the `lambda` argument) of

$$
\hat{R}(\beta) + \lambda \left((1 - \alpha) \sum_{J=1}^{m} \gamma_{J}\|\beta^{(J)}\|_{2} + \alpha \sum_{i=1}^{n} \xi_{i}|\beta_{i}| \right)
$$

where \hat{R} is the weighted empirical log-likelihood risk of the multinomial regression model. The vector $\beta^{(J)}$ denotes the parameters associated with the J'th group of features (default is one covariate per group, hence the default dimension of $\beta^{(J)}$ is K). The group weights $\gamma \in [0, \infty)^m$ and parameter weights $\xi \in [0, \infty)^n$ may be explicitly specified.
Value

- **beta**: the fitted parameters – a list of length length(lambda) with each entry a matrix of size $K \times (p + 1)$ holding the fitted parameters
- **loss**: the values of the loss function
- **objective**: the values of the objective function (i.e. loss + penalty)
- **lambda**: the lambda values used
- **classes.true**: the true classes used for estimation, this is equal to the classes argument

Author(s)

Martin Vincent

Examples

data(SimData)
x <- SimData$x
classes <- SimData$classes
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl(x, classes, alpha = .5, lambda = lambda)

Model 10, i.e. the model corresponding to lambda[10]
models(fit)[[10]]

The nonzero features of model 10
features(fit)[[10]]

The nonzero parameters of model 10
parameters(fit)[[10]]

The training errors of the models.
err(fit, x)
Note: For high dimensional models the training errors are almost always over optimistic,
instead use msgl.cv to estimate the expected errors by cross validation

msgl.algorithm.config Create a new algorithm configuration

Description

With the exception of verbose it is not recommended to change any of the default values.

Usage

```
msgl.algorithm.config(tolerance_penalized_main_equation_loop = 1e-10, 
tolerance_penalized_inner_loop_alpha = 1e-04, 
tolerance_penalized_inner_loop_beta = 1, 
tolerance_penalized_middel_loop_alpha = 0.01, 
```
tolerance_penalized_outer_loop_alpha = 0.01,
tolerance_penalized_outer_loop_beta = 0,
tolerance_penalized_outer_loop_gamma = 1e-05,
use_bound_optimization = TRUE,
use_stepsize_optimization_in_penalized_loop = TRUE,
stepsize_opt_penalized_initial_t = 1,
stepsize_opt_penalized_a = 0.1,
stepsize_opt_penalized_b = 0.1, verbose = TRUE)

Arguments

tolerance_penalized_main_equation_loop
tolerance threshold.
tolerance_penalized_inner_loop_alpha
tolerance threshold.
tolerance_penalized_inner_loop_beta
tolerance threshold.
tolerance_penalized_middeel_loop_alpha
tolerance threshold.
tolerance_penalized_outer_loop_alpha
tolerance threshold.
tolerance_penalized_outer_loop_beta
tolerance threshold.
tolerance_penalized_outer_loop_gamma
tolerance threshold.
use_bound_optimization
 if TRUE hessian bound check will be used.
use_stepsize_optimization_in_penalized_loop
 if TRUE step-size optimization will be used.
stepsize_opt_penalized_initial_t
 initial step-size.
stepsize_opt_penalized_a
 step-size optimization parameter.
stepsize_opt_penalized_b
 step-size optimization parameter.
verbose
 If TRUE some information, regarding the status of the algorithm, will be printed in the R terminal.

Value

A configuration.

Author(s)

Martin Vincent
Examples

data(SimData)
x <- sim.data$x
classes <- sim.data$classes

Create configuration
config <- msgl.algorithm.config(verbose = FALSE)

lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 50,
 lambda.min = 0.05, algorithm.config = config)

fit <- msgl(x, classes, alpha = .5, lambda = lambda,
 algorithm.config = config)

msgl.cv

Multinomial sparse group lasso cross validation

Description

Multinomial sparse group lasso cross validation using multiple possessors.

Usage

msgl.cv(x, classes, sampleWeights = NULL,
 grouping = NULL, groupWeights = NULL,
 parameterWeights = NULL, alpha = 0.5,
 standardize = TRUE, lambda, fold = 10L,
 cv.indices = list(), intercept = TRUE,
 sparse.data = is(x, "sparseMatrix"), maxthreads = 2L,
 seed = NULL, algorithm.config = msgl.standard.config)

Arguments

x design matrix, matrix of size $N \times p$.
classes classes, factor of length N.
sampleWeights sample weights, a vector of length N.
grouping grouping of features (covariates), a vector of length p. Each element of the vector specifying the group of the feature.
groupWeights the group weights, a vector of length m (the number of groups). If groupWeights = NULL default weights will be used. Default weights are 0 for the intercept and $\sqrt{K \cdot \text{number of features in the group}}$ for all other weights.
parameterWeights a matrix of size $K \times p$. If parameterWeights = NULL default weights will be used. Default weights are 0 for the intercept weights and 1 for all other weights.
alpha
the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty.

standardize
if TRUE the features are standardize before fitting the model. The model parameters are returned in the original scale.

lambda
the lambda sequence for the regularization path.

fold
the fold of the cross validation, an integer larger than 1 and less than $N + 1$. Ignored if `cv.indices` != NULL. If fold<=$\max(\text{table(classes)})$ then the data will be split into fold disjoint subsets keeping the ration of classes approximately equal. Otherwise the data will be split into fold disjoint subsets without keeping the ration fixed.

cv.indices
a list of indices of a cross validation splitting. If `cv.indices` = NULL then a random splitting will be generated using the fold argument.

intercept
should the model include intercept parameters

sparse.data
if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as sparse by default.

max.threads
the maximal number of threads to be used

seed
deprecated, use `set.seed`.

algorithm.config
the algorithm configuration to be used.

Value

link
the linear predictors – a list of length `\length(lambda)` one item for each lambda value, with each item a matrix of size $K \times N$ containing the linear predictors.

response
the estimated probabilities - a list of length `\length(lambda)` one item for each lambda value, with each item a matrix of size $K \times N$ containing the probabilities.

classes
the estimated classes - a matrix of size $N \times d$ with $d = \length(lambda)$.

cv.indices
the cross validation splitting used.

features
number of features used in the models.

parameters
number of parameters used in the models.

classes.true
the true classes used for estimation, this is equal to the `classes` argument.

Author(s)
Martin Vincent

Examples

data(SimData)
x <- sim.data$x
classes <- sim.data$classes

lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit.cv <- msgl.cv(x, classes, alpha = .5, lambda = lambda)
 msgl.lambda.seq

Computes a lambda sequence for the regularization path

Description

Computes a decreasing lambda sequence of length d. The sequence ranges from a data determined maximal lambda λ_{max} to the user inputed λ_{min}.

Usage

```r
msgl.lambda.seq(x, classes, 
    sampleWeights = rep(1/length(classes)), length(classes)), 
    grouping = NULL, groupWeights = NULL, 
    parameterWeights = NULL, alpha = 0.5, d = 100L, 
    standardize = TRUE, lambda.min, intercept = TRUE, 
    sparse.data = is(x, "sparseMatrix"), 
    algorithm.config = sgl.standard.config)
```

Arguments

- **x** design matrix, matrix of size $N \times p$.
- **classes** classes, factor of length N.
- **sampleWeights** sample weights, a vector of length N.
- **grouping** grouping of features, a vector of length p. Each element of the vector specifying the group of the covariate.
- **groupWeights** the group weights, a vector of length $m + 1$ (the number of groups). The first element of the vector is the intercept weight. If `groupWeights = NULL` default weights will be used. Default weights are 0 for the intercept and
 $$\sqrt{K} \cdot \text{number of features in the group}$$
 for all other weights.
- **parameterWeights** a matrix of size $K \times (p + 1)$. The first column of the matrix is the intercept weights. Default weights are 0 for the intercept weights and 1 for all other weights.
- **alpha** the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty.
msgl.standard.config

- **d**
 - the length of lambda sequence
- **standardize**
 - if TRUE the features are standardized before fitting the model. The model parameters are returned in the original scale.
- **lambda.min**
 - the smallest lambda value in the computed sequence.
- **intercept**
 - should the model include intercept parameters
- **sparse.data**
 - if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as sparse by default.
- **algorithm.config**
 - the algorithm configuration to be used.

Value

a vector of length d containing the computed lambda sequence.

Author(s)

Martin Vincent

Examples

```r
data(simData)
x <- sim.data$x
classes <- sim.data$classes

lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 100, lambda.min = 0.01)
```

msgl.standard.config
Standard msgl algorithm configuration

Description

`msgl.standard.config <- msgl.algorithm.config()`

Usage

`msgl.standard.config`

Format

List of 13
- `tolerance_penalized_main_equation_loop` : num 1e-10
- `tolerance_penalized_inner_loop_alpha` : num 1e-04
- `tolerance_penalized_inner_loop_beta` : num 1
- `tolerance_penalized_middel_loop_alpha` : num 0.01
- `tolerance_penalized_outer_loop_alpha` : num 0.01
- `tolerance_penalized_outer_loop_beta` : num 0
- `tolerance_penalized_outer_loop_gamma` : num 1e-05
- `use_bound_optimization` : logi TRUE
- `use_stepsize_optimization_in_penalized_loop` : logi TRUE
- `stepsize_opt_penalized_initial_t` : num 1
- `stepsize_opt_penalized_a` : num 0.1
- `stepsize_opt_penalized_b` : num 0.1
- `verbose` : logi TRUE
msgl.subsampling

Multinomial sparse group lasso generic subsampling procedure

Description

Multinomial sparse group lasso generic subsampling procedure using multiple possessors

Usage

```r
msgl.subsampling(x, classes,
    sampleWeights = rep(1/length(classes), length(classes)),
    grouping = NULL, groupWeights = NULL,
    parameterWeights = NULL, alpha = 0.5,
    standardize = TRUE, lambda, training, test,
    intercept = TRUE, sparse.data = is(x, "sparseMatrix"),
    collapse = FALSE, max.threads = 2L,
    algorithm.config = msgl.standard.config)
```

Arguments

- `x`
 design matrix, matrix of size $N \times p$.
- `classes`
 classes, factor of length N.
- `sampleWeights`
 sample weights, a vector of length N.
- `grouping`
 grouping of features (covariates), a vector of length p. Each element of the vector specifying the group of the feature.
- `groupWeights`
 the group weights, a vector of length m (the number of groups). If `groupWeights = NULL` default weights will be used. Default weights are 0 for the intercept and
 \[\sqrt{K \cdot \text{number of features in the group}} \]
 for all other weights.
- `parameterWeights`
 a matrix of size $K \times p$. If `parameterWeights = NULL` default weights will be used. Default weights are 0 for the intercept weights and 1 for all other weights.
- `alpha`
 the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty.
- `standardize`
 if TRUE the features are standardize before fitting the model. The model parameters are returned in the original scale.
- `lambda`
 the lambda sequence for the regularization path.
training: A list of training samples, each item of the list corresponding to a subsample. Each item in the list must be a vector with the indices of the training samples for the corresponding subsample. The length of the list must equal the length of the test list.

test: A list of test samples, each item of the list corresponding to a subsample. Each item in the list must be vector with the indices of the test samples for the corresponding subsample. The length of the list must equal the length of the training list.

intercept: Should the model include intercept parameters?

sparse.data: If TRUE, x will be treated as sparse, if x is a sparse matrix it will be treated as sparse by default.

collapse: If TRUE, the results for each subsample will be collapse into one result (this is useful if the subsamples are not overlapping).

max.threads: The maximal number of threads to be used.

algorithm.config: The algorithm configuration to be used.

Value

link: The linear predictors – a list of length length(test) with each element of the list another list of length length(lambda) one item for each lambda value, with each item a matrix of size $K \times N$ containing the linear predictors.

response: The estimated probabilities – a list of length length(test) with each element of the list another list of length length(lambda) one item for each lambda value, with each item a matrix of size $K \times N$ containing the probabilities.

classes: The estimated classes – a list of length length(test) with each element of the list a matrix of size $N \times d$ with $d = \text{length}$(lambda).

features: Number of features used in the models.

parameters: Number of parameters used in the models.

classes.true: A list of length length(training), containing the true classes used for estimation.

Author(s)

Martin Vincent

Examples

data(SimData)
x <- sim.data$x
classes <- sim.data$classes

test <- list(1:20, 21:40)
train <- lapply(test, function(s) (1:length(classes))[s])

lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit.sub <- msgl.subsampling(x, classes, alpha = .5, lambda = lambda, training = train, test = test)
```
# Mean misclassification error of the tests
Err(fit.sub)

# Negative log likelihood error
Err(fit.sub, type="loglike")
```

nmod.msgl

Returns the number of models in a msgl object

Description

Returns the number of models in a msgl object

Usage

```r
## S3 method for class 'msgl'
nmod(object, ...)
```

Arguments

- `object`: a msgl object
- `...`: not used

Value

the number of models in `object`

Author(s)

Martin Vincent

Examples

```r
data(SimData)
x <- SimData$x
classes <- SimData$classes
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl(x, classes, alpha = .5, lambda = lambda)

# the number of models
nmod(fit)
```
parameters.msgl

Nonzero parameters

Description

Extracts the nonzero parameters for each model.

Usage

```r
## S3 method for class 'msgl'
parameters(object, ...)
```

Arguments

- `object`: a msgl object
- `...`: ignored

Value

a list of length nmod(x) containing the nonzero parameters of the models.

Author(s)

Martin Vincent

Examples

```r
data(SimData)
x <- SimData$x
classes <- SimData$classes
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl(x, classes, alpha = .5, lambda = lambda)

# the nonzero parameters of model 1, 10 and 25
parameters(fit)[c(1,10,25)]

# count the number of nonzero parameters in each model
sapply(parameters(fit), sum)
```
predict.msgl

Description

Computes the linear predictors, the estimated probabilities and the estimated classes for a new data set.

Usage

```r
## S3 method for class 'msgl'
predict(object, x, 
    sparse.data = is(x, "sparseMatrix"), ...)  
```

Arguments

- `object` an object of class msgl, produced with msgl.
- `x` a data matrix of size $N_{\text{new}} \times p$.
- `sparse.data` if TRUE x will be treated as sparse, if x is a sparse matrix it will be treated as sparse by default.
- `...` ignored.

Value

- `link` the linear predictors – a list of length `length(fit$beta)` one item for each model, with each item a matrix of size $K \times N_{\text{new}}$ containing the linear predictors.
- `response` the estimated probabilities – a list of length `length(fit$beta)` one item for each model, with each item a matrix of size $K \times N_{\text{new}}$ containing the probabilities.
- `classes` the estimated classes – a matrix of size $N_{\text{new}} \times d$ with $d = length(fit$beta).

Author(s)

Martin Vincent

Examples

```r
data(SimData)
x.1 <- sim.data$x[1:50,]
x.2 <- sim.data$x[51:100,]
classes.1 <- sim.data$classes[1:50]
classes.2 <- sim.data$classes[51:100]
lambda <- msgl.lambda.seq(x.1, classes.1, alpha = .5, d = 50, lambda.min = 0.05)
```
print.msgl

```
fit <- msgl(x.1, classes.1, alpha = .5, lambda = lambda)

# Predict classes of new data set x.2
res <- predict(fit, x.2)

# The error rates of the models
Err(res, classes = classes.2)

# The predicted classes for model 20
res$classes[,20]
```

print.msgl

Print function for msgl

Description

This function will print some general information about the msgl object.

Usage

```r
## S3 method for class 'msgl'
print(x, ...)
```

Arguments

- **x**: msgl object
- **...**: ignored

Author(s)

Martin Vincent

Examples

```r
data(SimData)
x <- sim.data$x
classes <- sim.data$classes

### Estimation
lambda <- msgl.lambda.seq(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit <- msgl(x, classes, alpha = .5, lambda = lambda)

# Print some information about the estimated models
fit

### Cross validation
fit.cv <- msgl.cv(x, classes, alpha = .5, lambda = lambda)

# Print some information
```
fit.cv

Subsampling

```r
test <- list(1:20, 21:40)
train <- lapply(test, function(s) (1:length(classes))[-s])
```

```r
lambda <- mseg.lambda.seq(x, classes, alpha = .5, d = 50, lambda.min = 0.05)
fit.sub <- mseg.subsampling(x, classes, alpha = .5, lambda = lambda, training = train, test = test)
```

Print some information

```r
fit.sub
```

sim.data

Simulated data set

Description

The use of this data set is only intended for testing and examples. The data set contains 100 simulated samples grouped into 10 classes. For each sample 400 features have been simulated.
Index

*Topic datasets
 msgl.standard.config, 13
 sim.data, 20
*Topic data
 sim.data, 20

coeff.msgl, 2
Err.msgl, 3
features.msgl, 5
models.msgl, 6
msgl, 6
msgl.algorithm.config, 8
msgl.cv, 10
msgl.lambda.seq, 12
msgl.standard.config, 13
msgl.subsampling, 14

nmod.msgl, 16

parameters.msgl, 17
predict.msgl, 18
print.msgl, 19

sim.data, 20