Package ‘nets’
February 20, 2015

Type Package
Title Network Estimation for Time Series
Version 0.1
Date 2012-09-03
Author Christian Brownlees
Maintainer Christian Brownlees <christian.brownlees@upf.edu>
Depends igraph
Description The NETS package provides routines for the estimation of sparse long run partial correlation networks for time series data
License GPL
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2013-03-04 09:09:34

R topics documented:

nets-package .. 1
nets ... 2

Index

nets-package Network Estimator for Time Series

Description

The NETS package provides routines for the estimation of sparse long run partial correlation networks for time series data as well as other types of sparse networks.

Details
Author(s)
Christian Brownlees
Maintainer: Christian Brownlees

References

Description

'nets' is used to fit sparse long run partial correlation networks for time series using the NETS algorithm as well as other types of sparse networks.

Usage

nets(y, type='lrpc', algorithm='default', p=1, lambda, verbose=FALSE)

Arguments

y data, an T x N matrix, each column being a data time series.
type network type: Long Run Partial Correlation (lrpc), Partial Correlation (pc) or Granger (g).
p VAR order (for Granger)
algorithum Optimization algorithm to be used.
lambda shrinkage parameter
verbose extra output messages

Details

The nets procedure can be used to fit long run partial correlation networks, partial correlation and Granger networks.
Value

The return value of the nets method is a network object.

Author(s)

Christian Brownlees

References

Examples

```r
N <- 3
t <- 500

# A
A <- matrix( 0, N, N )
A[1,1] <- 0.71; A[1,2] <- 0.00; A[1,3] <- 0.00;
A[2,1] <- 0.00; A[2,2] <- 0.63; A[2,3] <- 0.00;
A[3,1] <- 0.00; A[3,2] <- 0.00; A[3,3] <- 0.10;

# Simulate Process
y <- matrix( )
eps <- matrix( rnorm(T*N,0,1) , T , N )
for( t in 2:T ){
  for( i in 1:N ){
    y[t,i] = sum( A[i,] * y[t-1,] ) + eps[t,i]
  }
}

network <- nets(y,type='g',lambda=1,verbose=TRUE)

print( cbind( A , rep(NA,N) , round( network$A[1,,] , 2 ) ) )
```
Index

*Topic **multivariate timeseries**
 nets, 2

*Topic **network**
 nets, 2

*Topic **package**
 nets-package, 1

nets, 2
nets-package, 1

plot.nets (nets), 2
print.nets (nets), 2