
Package ‘nonprobsvy’
April 3, 2024

Type Package

Title Inference Based on Non-Probability Samples

Version 0.1.0

Description Statistical inference with non-probability samples when auxiliary information from exter-
nal sources such as probability samples or population totals or means is available. De-
tails can be found in: Wu et al. (2020) <doi:10.1080/01621459.2019.1677241>, Kim et al. (2021) <doi:10.1111/rssa.12696>, Wu et al. (2023) <https:
//www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00002-eng.
htm>, Kim et al. (2021) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2021001/
article/00004-eng.htm>, Kim et al. (2020) <doi:10.1111/rssb.12354>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RdMacros mathjaxr

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

URL https://github.com/ncn-foreigners/nonprobsvy, https:
//ncn-foreigners.github.io/nonprobsvy/

BugReports https://github.com/ncn-foreigners/nonprobsvy/issues

Suggests tinytest,
covr,
sampling,
spelling

Depends R (>= 4.0.0),
survey

Imports maxLik,
stats,
Matrix,
MASS,
ncvreg,
mathjaxr,
RANN,
Rcpp (>= 1.0.12),
nleqslv,
doParallel,
foreach,
parallel

1

https://doi.org/10.1080/01621459.2019.1677241
https://doi.org/10.1111/rssa.12696
https://www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00002-eng.htm
https://www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00002-eng.htm
https://www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00002-eng.htm
https://www150.statcan.gc.ca/n1/pub/12-001-x/2021001/article/00004-eng.htm
https://www150.statcan.gc.ca/n1/pub/12-001-x/2021001/article/00004-eng.htm
https://doi.org/10.1111/rssb.12354
https://github.com/ncn-foreigners/nonprobsvy
https://ncn-foreigners.github.io/nonprobsvy/
https://ncn-foreigners.github.io/nonprobsvy/
https://github.com/ncn-foreigners/nonprobsvy/issues

2 cloglog_model_nonprobsvy

LinkingTo Rcpp,
RcppArmadillo

Language en-US

R topics documented:
cloglog_model_nonprobsvy . 2
confint.nonprobsvy . 3
controlInf . 3
controlOut . 4
controlSel . 6
genSimData . 8
logit_model_nonprobsvy . 9
nonprob . 9
pop.size . 17
probit_model_nonprobsvy . 17
summary.nonprobsvy . 18
vcov.nonprobsvy . 19

Index 20

cloglog_model_nonprobsvy

Complementary log-log model for weights adjustment

Description

cloglog_model_nonprobsvy returns all the methods/objects/functions required to estimate the
model, assuming a cloglog link function.

Usage

cloglog_model_nonprobsvy(...)

Arguments

... Additional, optional arguments.

Value

List with selected methods/objects/functions.

Author(s)

Łukasz Chrostowski, Maciej Beręsewicz

See Also

nonprob() – for fitting procedure with non-probability samples.

confint.nonprobsvy 3

confint.nonprobsvy Confidence Intervals for Model Parameters

Description

A function that computes confidence intervals for selection model coefficients.

Usage

S3 method for class 'nonprobsvy'
confint(object, parm, level = 0.95, ...)

Arguments

object object of nonprobsvy class.

parm names of parameters for which confidence intervals are to be computed, if miss-
ing all parameters will be considered.

level confidence level for intervals.

... additional arguments

Value

An object with named columns that include upper and lower limit of confidence intervals.

controlInf Control parameters for inference

Description

controlInf constructs a list with all necessary control parameters for statistical inference.

Usage

controlInf(
vars_selection = FALSE,
var_method = c("analytic", "bootstrap"),
rep_type = c("auto", "JK1", "JKn", "BRR", "bootstrap", "subbootstrap", "mrbbootstrap",

"Fay"),
bias_inf = c("union", "div"),
num_boot = 500,
bias_correction = FALSE,
alpha = 0.05,
cores = 1,
keep_boot,
pmm_exact_se = FALSE,
pi_ij

)

4 controlOut

Arguments

vars_selection If TRUE, then variables selection model is used.

var_method variance method.

rep_type replication type for weights in the bootstrap method for variance estimation
passed to survey::as.svrepdesign(). Default is subbootstrap.

bias_inf inference method in the bias minimization.

• if union then final model is fitting on union of selected variables for selec-
tion and outcome models

• if div then final model is fitting separately on division of selected variables
into relevant ones for selection and outcome model.

num_boot number of iteration for bootstrap algorithms.

bias_correction

if TRUE, then bias minimization estimation used during fitting the model.

alpha Significance level, Default is 0.05.

cores Number of cores in parallel computing.

keep_boot Logical indicating whether statistics from bootstrap should be kept. By default
set to TRUE

pmm_exact_se Logical value indicating whether to compute the exact standard error estimate
for pmm estimator. The variance estimator for estimation based on pmm can be
decomposed into three parts, with the third being computed using covariance be-
tween imputed values for units in probability sample using predictive matches
from non-probability sample. In most situations this term is negligible and is
very computationally expensive so by default this is set to FALSE, but it is rec-
ommended to set this value to TRUE before submitting final results.

pi_ij TODO, either matrix or ppsmat class object.

Value

List with selected parameters.

See Also

nonprob() – for fitting procedure with non-probability samples.

controlOut Control parameters for outcome model

Description

controlOut constructs a list with all necessary control parameters for outcome model.

controlOut 5

Usage

controlOut(
epsilon = 1e-04,
maxit = 100,
trace = FALSE,
k = 1,
penalty = c("SCAD", "lasso", "MCP"),
a_SCAD = 3.7,
a_MCP = 3,
lambda_min = 0.001,
nlambda = 100,
nfolds = 10,
treetype = "kd",
searchtype = "standard",
predictive_match = 1:2,
pmm_weights = c("none", "prop_dist"),
pmm_k_choice = c("none", "min_var"),
pmm_reg_engine = c("glm", "loess")

)

Arguments

epsilon Tolerance for fitting algorithms. Default is 1e-6.

maxit Maximum number of iterations.

trace logical value. If TRUE trace steps of the fitting algorithms. Default is FALSE.

k The k parameter in the RANN::nn2() function. Default is 5.

penalty penalty algorithm for variable selection. Default is SCAD

a_SCAD The tuning parameter of the SCAD penalty for outcome model. Default is 3.7.

a_MCP The tuning parameter of the MCP penalty for outcome model. Default is 3.

lambda_min The smallest value for lambda, as a fraction of lambda.max. Default is .001.

nlambda The number of lambda values. Default is 100.

nfolds The number of folds during cross-validation for variables selection model.

treetype Type of tree for nearest neighbour imputation passed to RANN::nn2() function.

searchtype Type of search for nearest neighbour imputation passed to RANN::nn2() func-
tion.

predictive_match

(Only for predictive mean matching) Indicates how to select ’closest’ unit from
nonprobability sample for each unit in probability sample. Either 1 (default) or
2 where 1 is matching by minimizing distance between ŷi for i ∈ SA and yj for
j ∈ SB and 2 is matching by minimizing distance between ŷi for i ∈ SA and ŷi
for i ∈ SA.

pmm_weights (Only for predictive mean matching) Indicate how to weight k nearest neigh-
bours in SB to create imputed value for units in SA. The default value "none"
indicates that mean of k nearest y’s from SB should be used whereas "prop_dist"
results in weighted mean of these k values where weights are inversely propor-
tional to distance between matched values.

pmm_k_choice Character value indicating how k hyper-parameter should be chosen, by default
"none" meaning k provided in control_outcome argument will be used. For

6 controlSel

now the only other option "min_var" means that k will be chosen by minimizing
estimated variance of estimator for mean. Parameter k provided in this control
list will be chosen as starting point.

pmm_reg_engine TODO

Value

List with selected parameters.

See Also

nonprob() – for fitting procedure with non-probability samples.

controlSel Control parameters for selection model

Description

controlSel constructs a list with all necessary control parameters for selection model.

Usage

controlSel(
method = "glm.fit",
epsilon = 1e-04,
maxit = 500,
trace = FALSE,
optimizer = c("maxLik", "optim"),
maxLik_method = "NR",
optim_method = "BFGS",
dependence = FALSE,
key = NULL,
est_method_sel = c("mle", "gee"),
h = c(1, 2),
penalty = c("SCAD", "lasso", "MCP"),
a_SCAD = 3.7,
a_MCP = 3,
lambda = -1,
lambda_min = 0.001,
nlambda = 50,
nfolds = 10,
print_level = 0,
start_type = c("glm", "naive", "zero")

)

Arguments

method estimation method.

epsilon Tolerance for fitting algorithms by default 1e-6.

maxit Maximum number of iterations.

controlSel 7

trace logical value. If TRUE trace steps of the fitting algorithms. Default is FALSE

optimizer • optimization function for maximum likelihood estimation.

maxLik_method maximisation method that will be passed to maxLik::maxLik() function. De-
fault is NR.

optim_method maximisation method that will be passed to stats::optim() function. Default
is BFGS.

dependence logical value - TRUE if samples are dependent.

key binary key variable

est_method_sel Method of estimation for propensity score model.

h Smooth function for the generalized estimating equations methods taking the
following values

• if 1 then h (x,θ) = π(x,θ)
x

• if 2 then h (x,θ) = x

penalty The penanlization function used during variables selection.

a_SCAD The tuning parameter of the SCAD penalty for selection model. Default is 3.7.

a_MCP The tuning parameter of the MCP penalty for selection model. Default is 3.

lambda A user-specified λ value during variable selection model fitting.

lambda_min The smallest value for lambda, as a fraction of lambda.max. Default is .001.

nlambda The number of lambda values. Default is 50.

nfolds The number of folds for cross validation. Default is 10.

print_level this argument determines the level of printing which is done during the opti-
mization (for propensity score model) process.

start_type • Type of method for start points for model fitting taking the following values
– if glm then start taken from the glm function called on samples.
– if naive then start consists of a vector which has the value of an esti-

mated parameter for one-dimensional data (on intercept) and 0 for the
rest.

– if zero then start is a vector of zeros.

Value

List with selected parameters.

Author(s)

Łukasz Chrostowski, Maciej Beręsewicz

See Also

nonprob() – for fitting procedure with non-probability samples.

8 genSimData

genSimData Simulation data

Description

Generate simulated data according to Chen, Li & Wu (2020), section 5.

Usage

genSimData(N = 10000, n = 1000)

Arguments

N integer, population size, default 10000
n integer, big data sample, default 1000

Value

genSimData returns a data.frame, with the following columns:

• x0 – intercept
• x1 – the first variable based on z1
• x2 – the second variable based on z2 and x1
• x3 – the third variable based on z3 and x1 and x2
• x4 – the third variable based on z4 and x1, x2 and x3
• y30 – y generated from the model y = 2 + x1 + x2 + x3 + x4 + σ · ε, so the cor(y,y_hat) =

0.30
• y60 – y generated from the model y = 2 + x1 + x2 + x3 + x4 + σ · ε, so the cor(y,y_hat) =

0.60
• y80 – y generated from the model y = 2 + x1 + x2 + x3 + x4 + σ · ε, so the cor(y,y_hat) =

0.80
• rho – true propensity scores for big data such that sum(rho)=n
• srs – probabilities of inclusion to random sample such that max(srs)/min(srs)=50

Author(s)

Łukasz Chrostowski, Maciej Beręsewicz

References

Chen, Y., Li, P., & Wu, C. (2020). Doubly Robust Inference With Nonprobability Survey Samples.
Journal of the American Statistical Association, 115(532), 2011–2021. doi:10.1080/01621459.2019.1677241

Examples

generate data with N=20000 and n=2000
genSimData(N = 20000, n = 2000)

generate data when big data is almost as N
genSimData(N = 10000, n = 9000)

logit_model_nonprobsvy 9

logit_model_nonprobsvy

Logit model for weights adjustment

Description

logit_model_nonprobsvy returns all the methods/objects/functions required to estimate the model,
assuming a logit link function.

Usage

logit_model_nonprobsvy(...)

Arguments

... Additional, optional arguments.

Value

List with selected methods/objects/functions.

Author(s)

Łukasz Chrostowski, Maciej Beręsewicz

See Also

nonprob() – for fitting procedure with non-probability samples.

nonprob Inference with the non-probability survey samples

Description

nonprob fits model for inference based on non-probability surveys (including big data) using vari-
ous methods. The function allows you to estimate the population mean with access to a reference
probability sample, as well as sums and means of covariates.

The package implements state-of-the-art approaches recently proposed in the literature: Chen et al.
(2020), Yang et al. (2020), Wu (2022) and use the Lumley 2004 survey package for inference.

It provides propensity score weighting (e.g. with calibration constraints), mass imputation (e.g.
nearest neighbor) and doubly robust estimators that take into account minimisation of the asymp-
totic bias of the population mean estimators, variable selection or overlap between probability and
non-probability samples. The package uses survey package functionality when a probability sam-
ple is available.

https://CRAN.R-project.org/package=survey

10 nonprob

Usage

nonprob(
data,
selection = NULL,
outcome = NULL,
target = NULL,
svydesign = NULL,
pop_totals = NULL,
pop_means = NULL,
pop_size = NULL,
method_selection = c("logit", "cloglog", "probit"),
method_outcome = c("glm", "nn", "pmm"),
family_outcome = c("gaussian", "binomial", "poisson"),
subset = NULL,
strata = NULL,
weights = NULL,
na_action = NULL,
control_selection = controlSel(),
control_outcome = controlOut(),
control_inference = controlInf(),
start_selection = NULL,
start_outcome = NULL,
verbose = FALSE,
x = TRUE,
y = TRUE,
se = TRUE,
...

)

Arguments

data data.frame with data from the non-probability sample.

selection formula, the selection (propensity) equation.

outcome formula, the outcome equation.

target formula with target variables.

svydesign an optional svydesign object (from the survey package) containing probability
sample and design weights.

pop_totals an optional named vector with population totals of the covariates.

pop_means an optional named vector with population means of the covariates.

pop_size an optional double with population size.
method_selection

a character with method for propensity scores estimation

method_outcome a character with method for response variable estimation

family_outcome a character string describing the error distribution and link function to be used
in the model. Default is "gaussian". Currently supports: gaussian with identity
link, poisson and binomial.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

strata an optional vector specifying strata.

nonprob 11

weights an optional vector of prior weights to be used in the fitting process. Should be
NULL or a numeric vector. It is assumed that this vector contains frequency or
analytic weights

na_action a function which indicates what should happen when the data contain NAs.

control_selection

a list indicating parameters to use in fitting selection model for propensity
scores

control_outcome

a list indicating parameters to use in fitting model for outcome variable

control_inference

a list indicating parameters to use in inference based on probability and non-
probability samples, contains parameters such as estimation method or variance
method

start_selection

an optional vector with starting values for the parameters of the selection equa-
tion

start_outcome an optional vector with starting values for the parameters of the outcome equa-
tion

verbose verbose, numeric

x Logical value indicating whether to return model matrix of covariates as a part
of output.

y Logical value indicating whether to return vector of outcome variable as a part
of output.

se Logical value indicating whether to calculate and return standard error of esti-
mated mean.

... Additional, optional arguments.

Details

Let y be the response variable for which we want to estimate the population mean, given by

µy =
1

N

N∑
i=1

yi.

For this purpose we consider data integration with the following structure. Let SA be the non-
probability sample with the design matrix of covariates as

XA =

x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xnA1 xnA2 · · · xnAp

and vector of outcome variable

y =

y1
y2
...

ynA
.

12 nonprob

On the other hand, let SB be the probability sample with design matrix of covariates be

XB =

x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xnB1 xnB2 · · · xnBp.

Instead of a sample of units we can consider a vector of population sums in the form of τx =
(
∑

i∈U xi1,
∑

i∈U xi2, ...,
∑

i∈U xip) or means τx
N , where U refers to a finite population. Note

that we do not assume access to the response variable for SB . In general we make the following
assumptions:

1. The selection indicator of belonging to non-probability sample Ri and the response variable
yi are independent given the set of covariates xi.

2. All units have a non-zero propensity score, i.e., πA
i > 0 for all i.

3. The indicator variables RA
i and RA

j are independent for given xi and xj for i ̸= j.

There are three possible approaches to the problem of estimating population mean using non-
probability samples:

1. Inverse probability weighting - The main drawback of non-probability sampling is the un-
known selection mechanism for a unit to be included in the sample. This is why we talk about
the so-called "biased sample" problem. The inverse probability approach is based on the as-
sumption that a reference probability sample is available and therefore we can estimate the
propensity score of the selection mechanism. The estimator has the following form:

µ̂IPW =
1

NA

∑
i∈SA

yi
π̂A
i

.

For this purpose several estimation methods can be considered. The first approach is maximum
likelihood estimation with a corrected log-likelihood function, which is given by the following
formula

ℓ∗(θ) =
∑
i∈SA

log

{
π(xi,θ)

1− π(xi,θ)

}
+

∑
i∈SB

dBi log {1− π(xi,θ)} .

In the literature, the main approach to modelling propensity scores is based on the logit link
function. However, we extend the propensity score model with the additional link functions
such as cloglog and probit. The pseudo-score equations derived from ML methods can be
replaced by the idea of generalised estimating equations with calibration constraints defined
by equations.

U(θ) =
∑
i∈SA

h (xi,θ)−
∑
i∈SB

dBi π (xi,θ)h (xi,θ) .

Notice that for h (xi,θ) =
π(x,θ)

x We do not need a probability sample and can use a vector
of population totals/means.

2. Mass imputation – This method is based on a framework where imputed values of outcome
variables are created for the entire probability sample. In this case, we treat the large sample
as a training data set that is used to build an imputation model. Using the imputed values
for the probability sample and the (known) design weights, we can build a population mean
estimator of the form:

µ̂MI =
1

NB

∑
i∈SB

dBi ŷi.

It opens the the door to a very flexible method for imputation models. The package uses gener-
alized linear models from stats::glm(), the nearest neighbour algorithm using RANN::nn2()
and predictive mean matching.

nonprob 13

3. Doubly robust estimation – The IPW and MI estimators are sensitive to misspecified models
for the propensity score and outcome variable, respectively. To this end, so-called doubly
robust methods are presented that take these problems into account. It is a simple idea to
combine propensity score and imputation models during inference, leading to the following
estimator

µ̂DR =
1

NA

∑
i∈SA

d̂Ai (yi − ŷi) +
1

NB

∑
i∈SB

dBi ŷi.

In addition, an approach based directly on bias minimisation has been implemented. The
following formula

bias(µ̂DR) =E(µ̂DR − µ)

=E

{
1

N

N∑
i=1

(
RA

i

πA
i (x

T
i θ)

− 1)(yi −m(xT
i β))

}

+E

{
1

N

N∑
i=1

(RB
i d

B
i − 1)m(xT

i β)

}
,

lead us to system of equations

J(θ, β) =

{
J1(θ, β)
J2(θ, β)

}
=

∑N

i=1 R
A
i

{
1

π(xi,θ)
− 1

}
{yi −m(xi,β)}xi∑N

i=1
RA

i

π(xi,θ)
∂m(xi,β)

∂β −
∑

i∈SB
dBi

∂m(xi,β)
∂β

 ,

where m (xi,β) is a mass imputation (regression) model for the outcome variable and propen-
sity scores πA

i are estimated using a logit function for the model. As with the MLE and GEE
approaches we have extended this method to cloglog and probit links.

As it is not straightforward to calculate the variances of these estimators, asymptotic equivalents of
the variances derived using the Taylor approximation have been proposed in the literature. Details
can be found here. In addition, a bootstrap approach can be used for variance estimation.

The function also allows variables selection using known methods that have been implemented
to handle the integration of probability and non-probability sampling. In the presence of high-
dimensional data, variable selection is important, because it can reduce the variability in the estimate
that results from using irrelevant variables to build the model. Let U(θ,β) be the joint estimating
function for (θ,β). We define the penalized estimating functions as

Up (θ,β) = U (θ,β)−
{

qλθ
(|θ|) sgn(θ) qλβ

(|β|) sgn(β)
}
,

where λθ and qλβ
are some smooth functions. We let qλ (x) = ∂pλ

∂x , where pλ is some penalization
function. Details of penalization functions and techniques for solving this type of equation can
be found here. To use the variable selection model, set the vars_selection parameter in the
controlInf() function to TRUE. In addition, in the other control functions such as controlSel()
and controlOut() you can set parameters for the selection of the relevant variables, such as the
number of folds during cross-validation algorithm or the lambda value for penalizations. Details
can be found in the documentation of the control functions for nonprob.

Value

Returns an object of class c("nonprobsvy", "nonprobsvy_dr") in case of doubly robust estima-
tor, c("nonprobsvy", "nonprobsvy_mi") in case of mass imputation estimator and c("nonprobsvy",
"nonprobsvy_ipw") in case of inverse probability weighting estimator with type list containing:

https://ncn-foreigners.github.io/nonprobsvy-book/intro.html
https://ncn-foreigners.github.io/nonprobsvy-book/variableselection.html

14 nonprob

• X – model matrix containing data from probability and non-probability samples if specified at
a function call.

• y – list of vector of outcome variables if specified at a function call.

• prob – vector of estimated propensity scores for non-probability sample.

• weights – vector of estimated weights for non-probability sample.

• control – list of control functions.

• output – output of the model with information on the estimated population mean and standard
errors.

• SE – standard error of the estimator of the population mean, divided into errors from probabil-
ity and non-probability samples.

• confidence_interval – confidence interval of population mean estimator

• nonprob_size – size of non-probability sample

• prob_size – size of probability sample

• pop_size – estimated population size derived from estimated weights (non-probability sam-
ple) or known design weights (probability sample)

• outcome – list containing information about the fitting of the mass imputation model, in the
case of regression model the object containing the list returned by stats::glm(), in the case
of the nearest neighbour imputation the object containing list returned by RANN::nn2(). If
bias_correction in controlInf() is set to TRUE, the estimation is based on the joint es-
timating equations for the selection and outcome model and therefore, the list is different
from the one returned by the stats::glm() function and contains elements such as

– coefficients – estimated coefficients of the regression model
– std_err – standard errors of the estimated coefficients
– residuals – The response residuals
– variance_covariance – The variance-covariance matrix of the coefficient estimates
– df_residual – The degrees of freedom for residuals
– family – specifies the error distribution and link function to be used in the model
– fitted.values – The predicted values of the response variable based on the fitted model
– linear.predictors – The linear fit on link scale
– X – The design matrix
– method – set on glm, since the regression method

In addition, if the variable selection model for the outcome variable is fitting, the list includes
the

– cve – the error for each value of lambda, averaged across the cross-validation folds.

• selection – list containing information about fitting of propensity score model, such as

– coefficients – a named vector of coefficients
– std_err – standard errors of the estimated model coefficients
– residuals – the response residuals
– variance – the root mean square error
– fitted_values – the fitted mean values, obtained by transforming the linear predictors

by the inverse of the link function.
– link – the link object used.
– linear_predictors – the linear fit on link scale.
– aic – A version of Akaike’s An Information Criterion, minus twice the maximized log-

likelihood plus twice the number of parameters.

nonprob 15

– weights – vector of estimated weights for non-probability sample.
– prior.weights – the weights initially supplied, a vector of 1s if none were.
– formula – the formula supplied.
– df_residual – the residual degrees of freedom.
– log_likelihood – value of log-likelihood function if mle method, in the other case NA.
– cve – the error for each value of the lambda, averaged across the cross-validation folds

for the variable selection model when the propensity score model is fitting. Returned only
if selection of variables for the model is used.

• stat – matrix of the estimated population means in each bootstrap iteration. Returned only if
a bootstrap method is used to estimate the variance and keep_boot in controlInf() is set on
TRUE.

Author(s)

Łukasz Chrostowski, Maciej Beręsewicz

References

Kim JK, Park S, Chen Y, Wu C. Combining non-probability and probability survey samples through
mass imputation. J R Stat Soc Series A. 2021;184:941– 963.

Shu Yang, Jae Kwang Kim, Rui Song. Doubly robust inference when combining probability and
non-probability samples with high dimensional data. J. R. Statist. Soc. B (2020)

Yilin Chen , Pengfei Li & Changbao Wu (2020) Doubly Robust Inference With Nonprobability
Survey Samples, Journal of the American Statistical Association, 115:532, 2011-2021

Shu Yang, Jae Kwang Kim and Youngdeok Hwang Integration of data from probability surveys and
big found data for finite population inference using mass imputation. Survey Methodology, June
2021 29 Vol. 47, No. 1, pp. 29-58

See Also

stats::optim() – For more information on the optim function used in the optim method of
propensity score model fitting.

maxLik::maxLik() – For more information on the maxLik function used in maxLik method of
propensity score model fitting.

ncvreg::cv.ncvreg() – For more information on the cv.ncvreg function used in variable selec-
tion for the outcome model.

nleqslv::nleqslv() – For more information on the nleqslv function used in estimation process
of the bias minimization approach.

stats::glm() – For more information about the generalised linear models used during mass im-
putation process.

RANN::nn2() – For more information about the nearest neighbour algorithm used during mass
imputation process.

controlSel() – For the control parameters related to selection model.

controlOut() – For the control parameters related to outcome model.

controlInf() – For the control parameters related to statistical inference.

16 nonprob

Examples

generate data based on Doubly Robust Inference With Non-probability Survey Samples (2021)
Yilin Chen , Pengfei Li & Changbao Wu
library(sampling)
set.seed(123)
sizes of population and probability sample
N <- 20000 # population
n_b <- 1000 # probability
data
z1 <- rbinom(N, 1, 0.7)
z2 <- runif(N, 0, 2)
z3 <- rexp(N, 1)
z4 <- rchisq(N, 4)

covariates
x1 <- z1
x2 <- z2 + 0.3 * z2
x3 <- z3 + 0.2 * (z1 + z2)
x4 <- z4 + 0.1 * (z1 + z2 + z3)
epsilon <- rnorm(N)
sigma_30 <- 10.4
sigma_50 <- 5.2
sigma_80 <- 2.4

response variables
y30 <- 2 + x1 + x2 + x3 + x4 + sigma_30 * epsilon
y50 <- 2 + x1 + x2 + x3 + x4 + sigma_50 * epsilon
y80 <- 2 + x1 + x2 + x3 + x4 + sigma_80 * epsilon

population
sim_data <- data.frame(y30, y50, y80, x1, x2, x3, x4)
propensity score model for non-probability sample (sum to 1000)
eta <- -4.461 + 0.1 * x1 + 0.2 * x2 + 0.1 * x3 + 0.2 * x4
rho <- plogis(eta)

inclusion probabilities for probability sample
z_prob <- x3 + 0.2051
sim_data$p_prob <- inclusionprobabilities(z_prob, n = n_b)

data
sim_data$flag_nonprob <- UPpoisson(rho) ## sampling nonprob
sim_data$flag_prob <- UPpoisson(sim_data$p_prob) ## sampling prob
nonprob_df <- subset(sim_data, flag_nonprob == 1) ## non-probability sample
svyprob <- svydesign(

ids = ~1, probs = ~p_prob,
data = subset(sim_data, flag_prob == 1),
pps = "brewer"

) ## probability sample

mass imputation estimator
MI_res <- nonprob(

outcome = y80 ~ x1 + x2 + x3 + x4,
data = nonprob_df,
svydesign = svyprob

)
summary(MI_res)

pop.size 17

inverse probability weighted estimator
IPW_res <- nonprob(

selection = ~ x1 + x2 + x3 + x4,
target = ~y80,
data = nonprob_df,
svydesign = svyprob

)
summary(IPW_res)
doubly robust estimator
DR_res <- nonprob(

outcome = y80 ~ x1 + x2 + x3 + x4,
selection = ~ x1 + x2 + x3 + x4,
data = nonprob_df,
svydesign = svyprob

)
summary(DR_res)

pop.size Estimate size of population

Description

Estimate size of population

Usage

pop.size(object, ...)

Arguments

object object returned by nonprobsvy.

... additional parameters

Value

Vector returning the value of the estimated population size.

probit_model_nonprobsvy

Probit model for weights adjustment

Description

probit_model_nonprobsvy returns all the methods/objects/functions required to estimate the model,
assuming a probit link function.

Usage

probit_model_nonprobsvy(...)

18 summary.nonprobsvy

Arguments

... Additional, optional arguments.

Value

List with selected methods/objects/functions.

Author(s)

Łukasz Chrostowski, Maciej Beręsewicz

See Also

nonprob() – for fitting procedure with non-probability samples.

summary.nonprobsvy Summary statistics for model of nonprobsvy class.

Description

Summary statistics for model of nonprobsvy class.

Usage

S3 method for class 'nonprobsvy'
summary(object, test = c("t", "z"), correlation = FALSE, cov = NULL, ...)

Arguments

object object of nonprobsvy class

test Type of test for significance of parameters "t" for t-test and "z" for normal
approximation of students t distribution, by default "z" is used if there are more
than 30 degrees of freedom and "t" is used in other cases.

correlation correlation Logical value indicating whether correlation matrix should be com-
puted from covariance matrix by default FALSE.

cov Covariance matrix corresponding to regression parameters

... Additional optional arguments

Value

An object of summary_nonprobsvy class containing:

• call – A call which created object.

• pop_total – A list containing information about the estimated population mean, its standard
error and confidence interval.

• sample_size – The size of the samples used in the model.

• population_size – The estimated size of the population from which the nonoprobability
sample was drawn.

• test – Type of statistical test performed.

vcov.nonprobsvy 19

• control – A List of control parameters used in fitting the model.

• model – A descriptive name of the model used, e.g., "Doubly-Robust", "Inverse probability
weighted", or "Mass Imputation".

• aic – Akaike’s information criterion.

• bic – Bayesian (Schwarz’s) information criterion.

• residuals – Residuals from the model, providing information on the difference between
observed and predicted values.

• likelihood – Logarithm of likelihood function evaluated at coefficients.

• df_residual – Residual degrees of freedom.

• weights – Distribution of estimated weights obtained from the model.

• coef – Regression coefficients estimated by the model.

• std_err – Standard errors of the regression coefficients.

• w_val – Wald statistic values for the significance testing of coefficients.

• p_values – P-values corresponding to the Wald statistic values, assessing the significance of
coefficients.

• crr – The correlation matrix of the model coefficients, if requested.

• confidence_interval_coef – Confidence intervals for the model coefficients.

• names – Names of the fitted models.

vcov.nonprobsvy Obtain Covariance Matrix estimation.

Description

A vcov method for nonprobsvy class.

Usage

S3 method for class 'nonprobsvy'
vcov(object, ...)

Arguments

object object of nonprobsvy class.

... additional arguments for method functions

Details

Returns a estimated covariance matrix for model coefficients calculated from analytic hessian or
Fisher information matrix usually utilising asymptotic effectiveness of maximum likelihood esti-
mates.

Value

A covariance matrix for fitted coefficients

Index

cloglog_model_nonprobsvy, 2
confint.nonprobsvy, 3
controlInf, 3
controlInf(), 13–15
controlOut, 4
controlOut(), 13, 15
controlSel, 6
controlSel(), 13, 15

genSimData, 8

logit_model_nonprobsvy, 9

maxLik::maxLik(), 7, 15

ncvreg::cv.ncvreg(), 15
nleqslv::nleqslv(), 15
nonprob, 9
nonprob(), 2, 4, 6, 7, 9, 18

pop.size, 17
probit_model_nonprobsvy, 17

RANN::nn2(), 5, 12, 14, 15

stats::glm(), 12, 14, 15
stats::optim(), 7, 15
summary.nonprobsvy, 18
survey::as.svrepdesign(), 4

vcov.nonprobsvy, 19

20

	cloglog_model_nonprobsvy
	confint.nonprobsvy
	controlInf
	controlOut
	controlSel
	genSimData
	logit_model_nonprobsvy
	nonprob
	pop.size
	probit_model_nonprobsvy
	summary.nonprobsvy
	vcov.nonprobsvy
	Index

