Package ‘pvclass’

February 20, 2015

Type Package
Title P-values for Classification
Version 1.2
Date 2014-11-23
Author Niki Zumbrunnen <niki.zumbrunnen@gmail.com>,
 Lutz Duembgen <lutz.duembgen@stat.unibe.ch>.
Maintainer Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Imports Matrix
Description Computes nonparametric p-values for the potential class
 memberships of new observations as well as cross-validated
 p-values for the training data. The p-values are based on
 permutation tests applied to an estimated Bayesian likelihood
 ratio, using a plug-in statistic for the Gaussian model, 'k
 nearest neighbors', 'weighted nearest neighbors' or
 'penalized logistic regression'.
 Additionally, it provides graphical displays and quantitative
 analyses of the p-values.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2014-11-24 08:20:55

R topics documented:

 pvclass-package .. 2
 analyze.pvs ... 3
 buerk .. 4
 cvpvs .. 5
 cvpvs.gaussian .. 7
 cvpvs.knn .. 8
 cvpvs.logreg .. 10
Description

Computes nonparametric p-values for the potential class memberships of new observations as well as cross-validated p-values for the training data. The p-values are based on permutation tests applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the Gaussian model, 'k nearest neighbors', 'weighted nearest neighbors' or 'penalized logistic regression'.

Additionally, it provides graphical displays and quantitative analyses of the p-values.

Details

Use `cvpvs` to compute cross-validated p-values, `pvs` to classify new observations and `analyze.pvs` to analyze the p-values.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References

Examples

```r
NewX <- iris[c(50, 100, 150), 1:4]

cv <- cvpvs(X, Y)
analyze.pvs(cv, Y)

pv <- pvs(NewX, X, Y, method = 'k', k = 10)
analyze.pvs(pv)
```
analyze.pvs

Description

Graphical displays and quantitative analyses of a matrix of p-values.

Usage

analyze.pvs(pv, Y = NULL, alpha = 0.05, roc = TRUE, pvplot = TRUE, cex = 1)

Arguments

- **pv**: matrix with p-values, e.g. output of `cvpvs` or `pvs`.
- **Y**: optional. Vector indicating the classes which the observations belong to.
- **alpha**: test level, i.e. 1 - confidence level.
- **roc**: logical. If TRUE and Y is not NULL, ROC curves are plotted.
- **pvplot**: logical. If TRUE or Y is NULL, the p-values are displayed graphically.
- **cex**: A numerical value giving the amount by which plotting text should be magnified relative to the default.

Details

Displays the p-values graphically, i.e. it plots for each p-value a rectangle. The area of this rectangle is proportional to the the p-value. The rectangle is drawn blue if the p-value is greater than alpha and red otherwise.

If Y is not NULL, i.e. the class memberships of the observations are known (e.g. cross-validated p-values), then additionally it plots the empirical ROC curves and prints some empirical conditional inclusion probabilities $I(b, \theta)$ and/or pattern probabilities $P(b, S)$. Precisely, $I(b, \theta)$ is the proportion of training observations of class b whose p-value for class θ is greater than α, while $P(b, S)$ is the proportion of training observations of class b such that the $(1 - \alpha)$-prediction region equals S.

Value

- **T**: Table containing empirical conditional inclusion and/or pattern probabilities for each class b. In case of $L = 2$ or $L = 3$ classes, all patterns S are considered. In case of $L > 3$, all inclusion probabilities and some special patterns S are considered.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>

http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html
References

See Also
cvpvs, pvs

Examples
```r
NewX <- iris[c(50, 100, 150), 1:4]

cv <- cvpvs(X, Y)
analyze.pvs(cv, Y)

pv <- pvs(NewX, X, Y, method = 'k', k = 10)
analyze.pvs(pv)
```

Medical Dataset

This data set collected by Dr. Bürk at the university hospital in Lübeck contains data of 21556 surgeries in a certain time period (end of the nineties). Besides the mortality and the morbidity it contains 21 variables describing the condition of the patient and the surgery.

Usage
data(buerk)

Format
A data frame with 21556 observations on the following 23 variables.

- **age** Age in years
- **sex** Sex (1 = female, 0 = male)
- **asa** ASA-Score (American Society of Anesthesiologists), describes the physical condition on an ordinal scale:
 - 1 = A normal healthy patient
 - 2 = A patient with mild systemic disease
 - 3 = A patient with severe systemic disease
4 = A patient with severe systemic disease that is a constant threat to life
5 = A moribund patient who is not expected to survive without the operation
6 = A declared brain-dead patient whose organs are being removed for donor purposes

rf_cer Risk factor: cerebral (1 = yes, 0 = no)
rf_car Risk factor: cardiovascular (1 = yes, 0 = no)
rf_pul Risk factor: pulmonary (1 = yes, 0 = no)
rf_ren Risk factor: renal (1 = yes, 0 = no)
rf_hep Risk factor: hepatic (1 = yes, 0 = no)
rf_imu Risk factor: immunological (1 = yes, 0 = no)
rf_metab Risk factor: metabolic (1 = yes, 0 = no)
rf_noc Risk factor: uncooperative, unreliable (1 = yes, 0 = no)
e_malig Etiology: malignant (1 = yes, 0 = no)
e_vascu Etiology: vascular (1 = yes, 0 = no)
antibio Antibiotics therapy (1 = yes, 0 = no)
op Surgery indicated (1 = yes, 0 = no)
opacute Emergency operation (1 = yes, 0 = no)
optime Surgery time in minutes
opsepsis Septic surgery (1 = yes, 0 = no)
opskill Experienced surgeon, i.e. senior physician (1 = yes, 0 = no)
blood Blood transfusion necessary (1 = yes, 0 = no)
icu Intensive care necessary (1 = yes, 0 = no)
mortal Mortality (1 = yes, 0 = no)
morb Morbidity (1 = yes, 0 = no)

Source

cvpvs | Cross-Validated P-Values

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data.

Usage

cvpvs(X, Y, method = c('gaussian','knn','wnn', 'logreg'), ...)

Arguments

- **X**: matrix containing training observations, where each observation is a row vector.
- **Y**: vector indicating the classes which the training observations belong to.
- **method**: one of the following methods:
 - 'gaussian': plug-in statistic for the standard Gaussian model,
 - 'knn': k nearest neighbors,
 - 'wnn': weighted nearest neighbors,
 - 'logreg': multicategory logistic regression with l1-penalization.
- ... further arguments depending on the method (see `cvpvs.gaussian`, `cvpvs.knn`, `cvpvs.wnn`, `cvpvs.logreg`).

Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector $X[i,\cdot]$ and each class b the number $PV[i,b]$ is a p-value for the null hypothesis that $Y[i] = b$.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the Gaussian model, 'k nearest neighbors', 'weighted nearest neighbors' or multicategory logistic regression with l1-penalization (see `cvpvs.gaussian`, `cvpvs.knn`, `cvpvs.wnn`, `cvpvs.logreg`) with estimated prior probabilities $N(b)/n$. Here $N(b)$ is the number of observations of class b and n is the total number of observations.

Value

PV is a matrix containing the cross-validated p-values. Precisely, for each feature vector $X[i,\cdot]$ and each class b the number $PV[i,b]$ is a p-value for the null hypothesis that $Y[i] = b$.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References

See Also

`cvpvs.gaussian`, `cvpvs.knn`, `cvpvs.wnn`, `cvpvs.logreg`, `pvs`, `analyze.pvs`
Examples

```r
X <- iris[,1:4]
Y <- iris[,5]
cvpvs(X,Y,method='k',k=10,distance='d')
```

cvpvs.gaussian

Cross-Validated P-Values (Gaussian)

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. The p-values are based on a plug-in statistic for the standard Gaussian model. The latter means that the conditional distribution of X, given $Y = y$, is Gaussian with mean depending on y and a global covariance matrix.

Usage

```r
cvpvs.gaussian(X, Y, cova = c('standard', 'M', 'sym'))
```

Arguments

- **X**: matrix containing training observations, where each observation is a row vector.
- **Y**: vector indicating the classes which the training observations belong to.
- **cova**: estimator for the covariance matrix:
 - 'standard': standard estimator,
 - 'M': M-estimator,
 - 'sym': symmetrized M-estimator.

Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector $X[i,]$ and each class b the number $PV[i, b]$ is a p-value for the null hypothesis that $Y[i] = b$.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the standard Gaussian model with estimated prior probabilities $N(b)/n$. Here $N(b)$ is the number of observations of class b and n is the total number of observations.

Value

PV is a matrix containing the cross-validated p-values. Precisely, for each feature vector $X[i,]$ and each class b the number $PV[i, b]$ is a p-value for the null hypothesis that $Y[i] = b$.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>

http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html
References

See Also

cvpvs, cvpvs.knn, cvpvs.wnn, cvpvs.logreg

Examples

```r
X <- iris[, 1:4]
Y <- iris[, 5]

cvpvs.gaussian(X, Y, cova = 'standard')
```

cvpvs.knn
Cross-Validated P-Values (k Nearest Neighbors)

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. The p-values are based on 'k nearest neighbors'.

Usage

```r
cvpvs.knn(X, Y, k = NULL, distance = c('euclidean', 'ddeuclidean', 'mahalanobis'), cova = c('standard', 'M', 'sym'))
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>matrix containing training observations, where each observation is a row vector.</td>
</tr>
<tr>
<td>Y</td>
<td>vector indicating the classes which the training observations belong to.</td>
</tr>
<tr>
<td>k</td>
<td>number of nearest neighbors. If k is a vector or k = NULL, the program searches for the best k. For more information see section 'Details'.</td>
</tr>
<tr>
<td>distance</td>
<td>the distance measure: "euclidean": fixed Euclidean distance, "ddeuclidean": data driven Euclidean distance (component-wise standardization), "mahalanobis": Mahalanobis distance.</td>
</tr>
<tr>
<td>cova</td>
<td>estimator for the covariance matrix: 'standard': standard estimator, 'M': M-estimator, 'sym': symmetrized M-estimator.</td>
</tr>
</tbody>
</table>
Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector $X[i,\cdot]$ and each class b the number $PV[i,b]$ is a p-value for the null hypothesis that $Y[i] = b$. This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'k nearest neighbors' with estimated prior probabilities $N(b)/n$. Here $N(b)$ is the number of observations of class b and n is the total number of observations.

If k is a vector, the program searches for the best k. To determine the best k for the p-value $PV[i,b]$, the class label of the training observation $X[i,\cdot]$ is set temporarily to b and then for all training observations with $Y[j] \neq b$ the proportion of the k nearest neighbors of $X[j,\cdot]$ belonging to class b is computed. Then the k which minimizes the sum of these values is chosen.

If $k = \text{NULL}$, it is set to $2:ceiling(length(Y)/2)$.

Value

PV is a matrix containing the cross-validated p-values. Precisely, for each feature vector $X[i,\cdot]$ and each class b the number $PV[i,b]$ is a p-value for the null hypothesis that $Y[i] = b$.

If k is a vector or NULL, PV has an attribute "opt.k", which is a matrix and opt.k[i,b] is the best k for observation $X[i,\cdot]$ and class b (see section 'Details'). opt.k[i,b] is used to compute the p-value for observation $X[i,\cdot]$ and class b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References

See Also

cvpvs, cvpvs.gaussian, cvpvs.wnn, cvpvs.logreg

Examples

```r
X <- iris[,1:4]
Y <- iris[,5]
cvpvs.knn(X, Y, k = c(5, 10, 15))
```
Cross-Validated P-Values (Penalized Multicategory Logistic Regression)

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. The p-values are based on 'penalized logistic regression'.

Usage

```r
cvpvs.logreg(x, y, tau.o=10, find.tau=FALSE, delta=2, tau.max=80, tau.min=1, pen.method = c("vectors", "simple", "none"), progress = TRUE)
```

Arguments

- **X**: matrix containing training observations, where each observation is a row vector.
- **Y**: vector indicating the classes which the training observations belong to.
- **tau.o**: the penalty parameter (see section 'Details' below).
- **find.tau**: logical. If TRUE the program searches for the best tau. For more information see section 'Details'.
- **delta**: factor for the penalty parameter. Should be greater than 1. Only needed if find.tau == TRUE.
- **tau.max**: maximal penalty parameter considered. Only needed if find.tau == TRUE.
- **tau.min**: minimal penalty parameter considered. Only needed if find.tau == TRUE.
- **pen.method**: the method of penalization (see section 'Details' below).
- **progress**: optional parameter for reporting the status of the computations.

Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector \(X[i,,]\) and each class \(b\) the number \(PV[i,b]\) is a p-value for the null hypothesis that \(Y[i]\) equals \(b\), based on the remaining training observations. This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'penalized logistic regression'. This means, the conditional probability of \(Y = y\), given \(X = x\), is assumed to be proportional to \(\exp(a_y + b_y^T x)\). The parameters \(a_y\), \(b_y\) are estimated via penalized maximum log-likelihood. The penalization is either a weighted sum of the euclidean norms of the vectors \((b_1[j], b_2[j], \ldots, b_L[j])(\text{pen.method}='\text{vectors}')\) or a weighted sum of all moduli \(|b_y[j]|\) (\text{pen.method}='\text{simple}'). The weights are given by \(\text{tau.o}\) times the sample standard deviation (within groups) of the \(j\)-th components of the feature vectors. In case of \text{pen.method}='\text{none}', no penalization is used, but this option may be unstable.

If \text{find.tau} == TRUE, the program searches for the best penalty parameter. To determine the best parameter tau for the p-value \(PV[i,b]\), the class label of the training observation \(X[i,,]\) is set temporarily to \(b\) and then for all training observations with \(Y[j] \neq b\) the estimated probability of \(X[j,,]\) belonging to class \(b\) is computed. Then the tau which minimizes the sum of these values
is chosen. First, \(\tau_0 \) is compared with \(\tau_0 \cdot \delta \). If \(\tau_0 \cdot \delta \) is better, it is compared with \(\tau_0 \cdot \delta^2 \), etc. The maximal parameter considered is \(\tau_{max} \). If \(\tau_0 \) is better than \(\tau_0 \cdot \delta \), it is compared with \(\tau_0 \cdot \delta^\ast \), etc. The minimal parameter considered is \(\tau_{min} \).

Value

\(PV \) is a matrix containing the cross-validated p-values. Precisely, for each feature vector \(X[i,] \) and each class \(b \) the number \(PV[i,b] \) is a p-value for the null hypothesis that \(Y[i] = b \), based on the remaining training observations.

If `findNtau == TRUE`, \(PV \) has an attribute "\(\tau_{opt} \)" , which is a matrix and \(\tau_{opt}[i,b] \) is the best \(\tau \) for observation \(X[i,] \) and class \(b \) (see section 'Details'). \(\tau_{opt}[i,b] \) is used to compute the p-value for observation \(X[i,] \) and class \(b \).

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References

See Also

cvpvs, cvpvs.gaussian, cvpvs.knn, cvpvs.wnn

Examples

```r
X <- iris[, 1:4]
Y <- iris[, 5]
cvpvs.logreg(X, Y, tau.o=1, pen.method="vectors", progress=TRUE)
```

A bigger data example: Buerk's hospital data.
Not run:
data(buerk)
X.raw <- as.matrix(buerk[,1:21])
Y.raw <- buerk[,22]
n0.raw <- sum(1 - Y.raw)
n1 <- sum(Y.raw)
n0 <- 3*n1
X0 <- X.raw[Y.raw==0,]
X1 <- X.raw[Y.raw==1,]
```
temp0 <- sample(1:n0.raw, size=n0, replace=FALSE)
temp1 <- sample(1:n1, size=n1, replace=FALSE)

X <- rbind(temp0[,],X1)
Y <- c(rep(1,n0),rep(2,n1))

str(X)
str(Y)

PV <- cvpvs.logreg(X, Y,
tau=0.3, distance = c('euclidean', 'ddeuclidean', 'mahalanobis'), cova = c('standard', 'M', 'sym'))

## End(Not run)

cvpvs.wnn

Cross-Validated P-Values (Weighted Nearest Neighbors)

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. The p-values are based on 'weighted nearest-neighbors'.

Usage

cvpvs.wnn(X, Y, wtype = c('linear', 'exponential'), W = NULL,
tau = 0.3, distance = c('euclidean', 'ddeuclidean', 'mahalanobis'), cova = c('standard', 'M', 'sym'))

Arguments

X matrix containing training observations, where each observation is a row vector.
Y vector indicating the classes which the training observations belong to.
wtype type of the weight function (see section 'Details' below).
W vector of the (decreasing) weights (see section 'Details' below).
tau parameter of the weight function. If tau is a vector or tau = NULL, the program searches for the best tau. For more information see section 'Details'.
distance the distance measure:
   'euclidean': fixed Euclidean distance,
   'ddeuclidean': data driven Euclidean distance (component-wise standardization),
   'mahalanobis': Mahalanobis distance.
cova estimator for the covariance matrix:
   'standard': standard estimator,
   'M': M-estimator,
   'sym': symmetrized M-estimator.
Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector $X[i,]$ and each class $b$ the number $PV[i, b]$ is a p-value for the null hypothesis that $Y[i]$ equals $b$. This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'weighted nearest neighbors' with estimated prior probabilities $N(b)/n$. Here $N(b)$ is the number of observations of class $b$ and $n$ is the total number of observations. The (decreasing) weights for the observations can be either indicated with a $n$ dimensional vector $W$ or (if $W = \text{NULL}$) one of the following weight functions can be used:

- Linear:
  $$W_i = \max(1 - \frac{i}{n}/\tau, 0),$$

- Exponential:
  $$W_i = (1 - \frac{i}{n})^{\tau}.$$

If $\tau$ is a vector, the program searches for the best $\tau$. To determine the best $\tau$ for the p-value $PV[i, b]$, the class label of the training observation $X[i,]$ is set temporarily to $b$ and then for all training observations with $Y[j] \neq b$ the sum of the weights of the observations belonging to class $b$ is computed. Then the $\tau$ which minimizes the sum of these values is chosen.

If $W = \text{NULL}$ and $\tau = \text{NULL}$, $\tau$ is set to $\text{seq}(0.1, 0.9, 0.1)$ if $\text{wtype} = "l"$ and to $c(1, 5, 10, 20)$ if $\text{wtype} = "e"$.

Value

$PV$ is a matrix containing the cross-validated p-values. Precisely, for each feature vector $X[i,]$ and each class $b$ the number $PV[i, b]$ is a p-value for the null hypothesis that $Y[i] = b$. If $\tau$ is a vector or $\text{NULL}$ (and $W = \text{NULL}$), $PV$ has an attribute "opt.tau", which is a matrix and opt.tau[i, b] is the best $\tau$ for observation $X[i,]$ and class $b$ (see section 'Details'). "opt.tau" is used to compute the p-values.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References


See Also

cvpvs, cvpvs.gaussian, cvpvs.knn, cvpvs.logreg
Examples

```r
X <- iris[, 1:4]
Y <- iris[, 5]
cvpvs.wnn(X, Y, wtype = 'l', tau = 0.5)
```

---

**pvs**

*P-Values to Classify New Observations*

---

**Description**

Computes nonparametric p-values for the potential class memberships of new observations.

**Usage**

```r
pvs(NewX, X, Y, method = c('gaussian', 'knn', 'wnn', 'logreg'), ...)```

Arguments

- `NewX` data matrix consisting of one or several new observations (row vectors) to be classified.
- `X` matrix containing training observations, where each observation is a row vector.
- `Y` vector indicating the classes which the training observations belong to.
- `method` one of the following methods:
 - 'gaussian': plug-in statistic for the standard Gaussian model,
 - 'knn': k nearest neighbors,
 - 'wnn': weighted nearest neighbors,
 - 'logreg': multicategory logistic regression with l1-penalization.
- `...` further arguments depending on the method (see `pvs.gaussian`, `pvs.knn`, `pvs.wnn`, `pvs.logreg`).

Details

Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the Gaussian model, 'k nearest neighbors', 'weighted nearest neighbors' or multicategory logistic regression with l1-penalization (see `pvs.gaussian`, `pvs.knn`, `pvs.wnn`, `pvs.logreg`) with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

Value

PV is a matrix containing the p-values. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.
Author(s)
Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References

See Also
pvs.gaussian, pvs.knn, pvs.wnn, pvs.logreg, cvpvs, analyze.pvs

Examples
NewX <- iris[c(50, 100, 150), 1:4]
pvs(NewX, X, Y, method = 'k', k = 10)

pvs.gaussian P-Values to Classify New Observations (Gaussian)

Description
Computes nonparametric p-values for the potential class memberships of new observations. The p-values are based on a plug-in statistic for the standard Gaussian model. The latter means that the conditional distribution of \(X \), given \(Y = y \), is Gaussian with mean depending on \(y \) and a global covariance matrix.

Usage
pvs.gaussian(NewX, X, Y, cova = c('standard', 'M', 'sym'))

Arguments
NewX data matrix consisting of one or several new observations (row vectors) to be classified.
X matrix containing training observations, where each observation is a row vector.
Y vector indicating the classes which the training observations belong to.
cova estimator for the covariance matrix:
'standard': standard estimator,
'M': M-estimator,
'sym': symmetrized M-estimator.

Details
Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.
This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the standard Gaussian model with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

Value
PV is a matrix containing the p-values. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

Author(s)
Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References

See Also
pvs, pvs.knn, pvs.wnn, pvs.logreg

Examples
NewX <- iris[c(50, 100, 150), 1:4]
pvs.gaussian(NewX, X, Y, cova = 'standard')
pvs.knn

P-Values to Classify New Observations (k Nearest Neighbors)

Description

Computes nonparametric p-values for the potential class memberships of new observations. The p-values are based on 'k nearest neighbors'.

Usage

```r
pvs.knn(NewX, X, Y, k = NULL, distance = c('euclidean', 'ddeuclidean', 'mahalanobis'), cova = c('standard', 'M', 'sym'))
```

Arguments

- `NewX` : data matrix consisting of one or several new observations (row vectors) to be classified.
- `X` : matrix containing training observations, where each observation is a row vector.
- `Y` : vector indicating the classes which the training observations belong to.
- `k` : number of nearest neighbors. If `k` is a vector or `k = NULL`, the program searches for the best `k`. For more information see section 'Details'.
- `distance` : the distance measure:
 - 'euclidean': fixed Euclidean distance,
 - 'ddeuclidean': data driven Euclidean distance (component-wise standardization),
 - 'mahalanobis': Mahalanobis distance.
- `cova` : estimator for the covariance matrix:
 - 'standard': standard estimator,
 - 'M': M-estimator,
 - 'sym': symmetrized M-estimator.

Details

Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation `NewX[i,]` and each class `b` the number `PV[i,b]` is a p-value for the null hypothesis that `Y[i] = b`.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'k nearest neighbors' with estimated prior probabilities `N(b)/n`. Here `N(b)` is the number of observations of class `b` and `n` is the total number of observations.

If `k` is a vector, the program searches for the best `k`. To determine the best `k` for the p-value `PV[i,b]`, the new observation `NewX[i,]` is added to the training data with class label `b` and then for all training observations with `Y[j] != b` the proportion of the `k` nearest neighbors of `X[j,]` belonging to class `b` is computed. Then the `k` which minimizes the sum of these values is chosen.

If `k = NULL`, it is set to `2:ceiling(length(Y)/2)`.
Value

PV is a matrix containing the p-values. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that $Y[i] = b$. If k is a vector or NULL, PV has an attribute "opt.k", which is a matrix and opt.k[i,b] is the best k for observation NewX[i,] and class b (see section 'Details'). opt.k[i,b] is used to compute the p-value for observation NewX[i,] and class b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References

See Also

pvs, pvs.gaussian, pvs.wnn, pvs.logreg

Examples

```r
NewX <- iris[c(50, 100, 150), 1:4]

pvs.knn(NewX, X, Y, k = c(5, 10, 15))
```

pvs.logreg P-Values to Classify New Observations (Penalized Multicategory Logistic Regression)

Description

Computes nonparametric p-values for the potential class memberships of new observations. The p-values are based on 'penalized logistic regression'.

Usage

```r
pvs.logreg(NewX, X, Y, tau.o = 10, find.tau=FALSE, delta=2, tau.max=80, tau.min=1,
a0 = NULL, b0 = NULL,
pen.method = c('vectors', 'simple', 'none'),
progress = FALSE)
```
Arguments

NewX
data matrix consisting of one or several new observations (row vectors) to be classified.

X
matrix containing training observations, where each observation is a row vector.

Y
vector indicating the classes which the training observations belong to.

tau.o
the penalty parameter (see section 'Details' below).

find.tau
logical. If TRUE the program searches for the best tau. For more information see section 'Details'.

delta
factor for the penalty parameter. Should be greater than 1. Only needed if find.tau == TRUE.

tau.max
maximal penalty parameter considered. Only needed if find.tau == TRUE.

tau.min
minimal penalty parameter considered. Only needed if find.tau == TRUE.

a0, b0
optional starting values for logistic regression.

pen.method
the method of penalization (see section 'Details' below).

progress
optional parameter for reporting the status of the computations.

Details

Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation NewX[i,] and each class b the number PV[i, b] is a p-value for the null hypothesis that Y[i] equals b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'penalized logistic regression'. This means, the conditional probability of $Y = y$, given $X = x$, is assumed to be proportional to $exp(a_y + b_y^T x)$. The parameters a_y, b_y are estimated via penalized maximum log-likelihood. The penalization is either a weighted sum of the euclidean norms of the vectors $(b_1[j], b_2[j], ..., b_L[j])$ (pen.method='vectors') or a weighted sum of all moduli $|b_\theta[j]|$ (pen.method='simple'). The weights are given by tau.o times the sample standard deviation (within groups) of the j-th components of the feature vectors. In case of pen.method='none', no penalization is used, but this option may be unstable.

If find.tau == TRUE, the program searches for the best penalty parameter. To determine the best parameter tau for the p-value PV[i, b] the new observation NewX[i,] is added to the training data with class label b and then for all training observations with Y[j] != b the estimated probability of X[j,] belonging to class b is computed. Then the tau which minimizes the sum of these values is chosen. First, tau.o is compared with tau.o*delta. If tau.o*delta is better, it is compared with tau.o*delta^2, etc. The maximal parameter considered is tau.max. If tau.o is better than tau.o*delta, it is compared with tau.o*delta^-1, etc. The minimal parameter considered is tau.min.

Value

PV is a matrix containing the p-values. Precisely, for each new observation NewX[i,] and each class b the number PV[i, b] is a p-value for the null hypothesis that Y[i] = b.

If find.tau == TRUE, PV has an attribute "tau.opt", which is a matrix and tau.opt[i, b] is the best tau for observation NewX[i,] and class b (see section 'Details'). tau.opt[i, b] is used to compute the p-value for observation NewX[i,] and class b.
Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duebgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References

See Also

pvs, pvs.gaussian, pvs.knn, pvs.wnn

Examples

NewX <- iris[c(50, 100, 150), 1:4]
pvs.logreg(NewX, X, Y, tau=1, pen.method="vectors", progress=TRUE)

A bigger data example: Buerk's hospital data.
Not run:
data(buerk)
X.raw <- as.matrix(buerk[,1:21])
Y.raw <- buerk[,22]
n0.raw <- sum(1 - Y.raw)
n1 <- sum(Y.raw)
n0 <- 3*n1
X0 <- X.raw[Y.raw==0,]
X1 <- X.raw[Y.raw==1,]

tmpi0 <- sample(1:n0.raw,size=3*n1,replace=FALSE)
tmpi1 <- sample(1:n1, size= n1,replace=FALSE)

Xtrain <- rbind(X0[tmopi0[1:(n0-100)]],X1[1:(n1-100)],)
Ytrain <- c(rep(1,n0-100),rep(2,n1-100))
Xtest <- rbind(X0[tmopi0[(n0-99):n0]],X1[(n1-99):n1],)
Ytest <- c(rep(1,100),rep(2,100))

PV <- pvs.logreg(Xtest,Xtrain,Ytrain,tau.o=2,progress=TRUE)
analyze.pvs(Y=Ytest,pv=PV,pvplot=FALSE)

End(Not run)
pvs.wnn P-Values to Classify New Observations (Weighted Nearest Neighbors)

Description
Computes nonparametric p-values for the potential class memberships of new observations. The p-values are based on 'weighted nearest-neighbors'.

Usage
pvs.wnn(NewX, X, Y, wtype = c('linear', 'exponential'), W = NULL, tau = 0.3, distance = c('euclidean', 'ddeuclidean', 'mahalanobis'), cova = c('standard', 'M', 'sym'))

Arguments
NewX data matrix consisting of one or several new observations (row vectors) to be classified.
X matrix containing training observations, where each observation is a row vector.
Y vector indicating the classes which the training observations belong to.
wtype type of the weight function (see section 'Details' below).
W vector of the (decreasing) weights (see section 'Details' below).
tau parameter of the weight function. If tau is a vector or tau = NULL, the program searches for the best tau. For more information see section 'Details'.
distance the distance measure:
'euclidean': fixed Euclidean distance,
'ddeuclidean': data driven Euclidean distance (component-wise standardization),
'mahalanobis': Mahalanobis distance.
cova estimator for the covariance matrix:
'standard': standard estimator,
'M': M-estimator,
'sym': symmetrized M-estimator.

Details
Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.
This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'weighted nearest neighbors' with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.
The (decreasing) weights for the observation can be either indicated with a n dimensional vector W.
or (if \(W = \text{NULL} \)) one of the following weight functions can be used:

linear:
\[
W_i = \max(1 - \frac{i}{n}/\tau, 0),
\]

exponential:
\[
W_i = (1 - \frac{i}{n})^\tau.
\]

If \(\text{tau} \) is a vector, the program searches for the best \(\text{tau} \). To determine the best \(\text{tau} \) for the p-value \(\text{PV}[i,b] \), the new observation \(\text{NewX}[i,:] \) is added to the training data with class label \(b \) and then for all training observations with \(Y[j] \neq b \) the sum of the weights of the observations belonging to class \(b \) is computed. Then the \(\text{tau} \) which minimizes the sum of these values is chosen.

If \(\text{tau} = \text{NULL} \), it is set to \(\text{seq}(0.1,0.9,0.1) \) if \(\text{wtype} = "l" \) and to \(\text{c}(1,5,10,20) \) if \(\text{wtype} = "e" \).

Value

\(\text{PV} \) is a matrix containing the p-values. Precisely, for each new observation \(\text{NewX}[i,:] \) and each class \(b \) the number \(\text{PV}[i,b] \) is a p-value for the null hypothesis that \(Y[i] = b \).

If \(\text{tau} \) is a vector or \(\text{NULL} \) (and \(W = \text{NULL} \)), \(\text{PV} \) has an attribute "\(\text{opt.tau}"", which is a matrix and \(\text{opt.tau}[i,b] \) is the best \(\text{tau} \) for observation \(\text{NewX}[i,:] \) and class \(b \) (see section 'Details'). \(\text{opt.tau}[i,b] \) is used to compute the p-value for observation \(\text{NewX}[i,:] \) and class \(b \).

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@stat.unibe.ch>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
http://www.imsv.unibe.ch/content/staff/personalhomepages/duembgen/index_eng.html

References

See Also

pvs, pvs.gaussian, pvs.knn, pvs.logreg

Examples

```r
NewX <- iris[c(50, 100, 150), 1:4]

pvs.wnn(NewX, X, Y, wtype = 'l', tau = 0.5)
```
Index

*Topic classif
 analyze.pvs, 3
cvpvs, 5
cvpvs.gaussian, 7
cvpvs.knn, 8
cvpvs.logreg, 10
cvpvs.wnn, 12
pvclass-package, 2
pvs, 14
pvs.gaussian, 15
pvs.knn, 17
pvs.logreg, 18
pvs.wnn, 21

*Topic datasets
 buerk, 4

*Topic package
 pvclass-package, 2

analyze.pvs, 2, 3, 6, 15

buerk, 4
cvpvs, 2–4, 5, 8, 9, 11, 13, 15
cvpvs.gaussian, 6, 7, 9, 11, 13
cvpvs.knn, 6, 8, 8, 11, 13
cvpvs.logreg, 6, 8, 9, 10, 13
cvpvs.wnn, 6, 8, 9, 11, 12

pvclass (pvclass-package), 2
pvclass-package, 2
pvs, 2–4, 6, 14, 16, 18, 20, 22
pvs.gaussian, 14, 15, 15, 18, 20, 22
pvs.knn, 14–16, 17, 20, 22
pvs.logreg, 14–16, 18, 18, 22
pvs.wnn, 14–16, 18, 20, 21