Package 'quadform'

April 9, 2024
Type Package
Title Efficient Evaluation of Quadratic Forms
Version 0.0-1
Depends R (>= 3.0.1)
Imports mathjaxr
Suggests testhat
Maintainer Robin K. S. Hankin <hankin. robin@gmail.com>
Description A range of quadratic forms are evaluated, using efficient methods. Unnecessary transposes are not performed. Complex values are handled consistently.

License GPL

URL https://github.com/RobinHankin/quadform
BugReports https://github.com/RobinHankin/quadform/issues
RdMacros mathjaxr

R topics documented:

\qquad
quad.form

```
Index

\section*{Description}

Given a square matrix \(M\) of size \(n \times n\), and a matrix \(x\) of size \(n \times p\) (or a vector of length \(n\) ), evaluate various quadratic forms.
(in the following, \(x^{T}\) denotes the complex conjugate of the transpose, also known as the Hermitian transpose. This only matters when considering complex numbers).

\section*{Usage}
```

quad.form(M, x)
quad.form.inv(M, x)
quad.form.chol(chol,x)
quad.tform(M, x)
quad.3form(M,left,right)
quad.3tform(M,left,right)
quad.tform.inv(M,x)
quad.diag(M,x)
quad.tdiag(M,x)
quad.3diag(M,left,right)
quad.3tdiag(M,left,right)
cprod(x,y)
tcprod(x,y)
ht(x)

```

\section*{Arguments}
\begin{tabular}{ll} 
M & Square matrix of size \(n \times n\) \\
\(\mathrm{x}, \mathrm{y}\) & Matrix of size \(n \times p\), or vector of length \(n\) \\
chol & Lower triangular Cholesky decomposition of the quadratic form, see details \\
left, right & In function quad. 3form(), matrices with \(n\) rows and arbitrary number of columns
\end{tabular}

\section*{Details}
- Function quad. form \((\mathrm{M}, \mathrm{x})\) evaluates \(x^{T} M x\) in an efficient manner [terse form qf() ]
- Function quad.form.inv \((M, x)\) returns \(x^{T} M^{-1} x\) using an efficient method that avoids inverting \(M\) [terse form \(q f i()]\)
- Function quad. \(\mathrm{tform}(\mathrm{M}, \mathrm{x})\) returns \(x M x^{T}\) using tcrossprod() without taking a transpose [qt()]
- Function quad.tform. \(\mathrm{inv}(\mathrm{M}, \mathrm{x})\) returns \(x M^{-1} x^{T}\), although a single transpose is needed [qti()]
- Function quad. 3form( \(M, 1, r\) ) returns \(l^{T} M r\) using nested calls to crossprod(). It's no faster than calling crossprod () directly, but makes code neater and less error-prone (IMHO) [q3()]
- Function quad.3form.inv(M,l,r) returns \(l^{T} M^{-1} r\) [q3i()]
- Function quad. 3 tform \((M, l, r)\) returns \(l M r^{T}\) using nested calls to tcrossprod(). Again, this is to make for neater code [q3t()]
- Function quad. \(\operatorname{diag}(M, x)\) returns the diagonal of the (potentially very large) square matrix quad. form( \(M, x\) ) without calculating the off diagonal elements [qd()]
- Function quad. tdiag(M,x) similarly returns the diagonal of quad.tform(M,x) [qtd()]
- Function quad.3diag(M,l,r) returns the diagonal of quad.3form(M,l,r) [q3d()]
- Function quad. \(3 t d i a g(M, 1, r)\) returns the diagonal of quad. \(3 t\) form \((M, l, r)\) [q3td( \()\) ]
- Function quad. form. chol() interprets argument chol as the lower triangular Cholesky decomposition of the quadratic form. Remember that \(M\). lower \(\% * \% M\). upper \(==M\), and chol() returns the upper triangular matrix, so one needs to use the transpose \(t(\operatorname{chol}(M))\) in calls.
These functions invoke the following lower-level calls:
- Function \(h t(x)\) returns the Hermitian transpose, that is, the complex conjugate of the transpose, sometimes written \(x^{*}\)
- Function \(\operatorname{cprod}(\mathrm{x}, \mathrm{y})\) returns \(x^{T} y\), equivalent to \(\operatorname{crossprod}(\operatorname{Conj}(\mathrm{x}), \mathrm{y})[\mathrm{cp}()]\)
- Function \(\operatorname{tcprod}(x, y)\) returns \(x y^{T}\), equivalent to \(\operatorname{crossprod}(x, \operatorname{Conj}(y))[\operatorname{tcp}()]\)

Note again that in the calls above, "transpose" [that is, \(x^{T}\) ] means "Conjugate transpose", or the Hermitian transpose.

These various functions generally avoid taking needless expensive transposes in favour of using nested \(\operatorname{crossprod}()\) and tcrossprod() calls. For example, the "meat" of quad.form() is just crossprod(crossprod(M,Conj(x)),x)

Functions such as quad.form.inv() avoid taking a matrix inverse. The meat of quad.form.inv(), for example, is \(\operatorname{cprod}(x, \operatorname{solve}(M, x))\). Many people have stated things like "Never invert a matrix unless absolutely necessary". But \(I\) have never seen a case where quad. form.inv \((M, x)\) is faster than quad. form(solve(M), x)
If the Cholesky decomposition of M is available, then using quad.form.chol() and supplying chol ( \((M)\) should generally be faster (for large matrices) than calling quad.form() and using \(M\) directly. The time saving is negligible for matrices smaller than about \(50 \times 50\), even if the overhead of computing the decomposition is ignored.
Terse forms [qf() for quad.form(), qti() for quad.tform.inv(), etc] are provided for the perl golfers among us.

\section*{Value}

Generally, return a (dropped) matrix, real or complex as appropriate

\section*{Note}

These functions are used extensively in the emulator and calibrator packages, primarily in the interests of elegant code, but also speed. For the problems I usually consider, the speedup (of quad. form \((M, x)\) over \(t(x) \% * \% M \% * \% x\), say) is marginal at best.

\section*{Author(s)}

Robin K. S. Hankin

\section*{See Also}
optimize

\section*{Examples}
```

jj <- matrix(rnorm(80),20,4)
M <- crossprod(jj,jj)
M.lower <- t(chol(M))
x <- matrix(rnorm(8),4,2)
jj.1 <- t(x) %*% M %*% x
jj.2 <- quad.form(M,x)
jj.3 <- quad.form.chol(M.lower, x)
print(jj.1)
print(jj.2)
print(jj.3)

```
\#\# Make two Hermitian positive-definite matrices:

L <- matrix \((c(1,0.1 i,-0.1 i, 1), 2,2)\)
LL <- diag(11)
\(\operatorname{LL}[2,1]<--(L L[1,2]<-0.1 i)\)
z <- matrix(rnorm(22) + 1i*rnorm(22), 2,11)
quad.diag \((L, z)\) \# elements real because \(L\) is HPD
quad.tdiag(LL,z) \# ditto
\#\# Now consider accuracy:
quad.form(solve(M),x) - quad.form.inv(M,x) \# should be zero
quad.form \((M, x)\) - quad.tform \((M, t(x)) \quad \#\) should be zero
quad. \(\operatorname{diag}(M, x)\) - diag(quad.form \((M, x)\) ) \# should be zero
diag(quad.form(L,z)) - quad.diag(L,z) \# should be zero
diag(quad.tform(LL,z)) - quad.tdiag(LL,z) \# should be zero

\section*{Index}
```

* array
quad.form, 1
cp (quad.form), 1
cprod (quad.form), 1
ht (quad.form), 1
optimize, 3
q3(quad.form), 1
q3d (quad.form),1
q3i (quad.form),1
q3t (quad.form), 1
q3td (quad.form), 1
qd (quad.form), 1
qf (quad.form), 1
qfi (quad.form),1
qt (quad.form), 1
qtd (quad.form), 1
qti (quad.form), 1
quad.3diag (quad.form), 1
quad.3form(quad. form), 1
quad.3tdiag (quad.form), 1
quad.3tform (quad.form), 1
quad.diag (quad.form), 1
quad.form, 1
quad.tdiag (quad.form), 1
quad.tform(quad.form), 1
tcp (quad.form), 1
tcprod (quad.form),1

```
```

