
Package ‘quanteda’
December 8, 2022

Version 3.2.4

Title Quantitative Analysis of Textual Data

Description A fast, flexible, and comprehensive framework for
quantitative text analysis in R. Provides functionality for corpus management,
creating and manipulating tokens and n-grams, exploring keywords in context,
forming and manipulating sparse matrices
of documents by features and feature co-
occurrences, analyzing keywords, computing feature similarities and
distances, applying content dictionaries, applying supervised and unsupervised machine learning,
visually representing text and text analyses, and more.

License GPL-3

Depends R (>= 3.5.0), methods

Imports fastmatch, magrittr, Matrix (>= 1.5-0), Rcpp (>= 0.12.12),
RcppParallel, SnowballC, stopwords, stringi, xml2, yaml

LinkingTo Rcpp, RcppParallel, RcppArmadillo (>= 0.7.600.1.0)

Suggests rmarkdown, spelling, testthat, formatR, tm (>= 0.6),
tokenizers, knitr, lda, lsa, dplyr, purrr, quanteda.textmodels,
quanteda.textstats, quanteda.textplots, RColorBrewer, slam,
spacyr, stm, text2vec, topicmodels, jsonlite, quanteda, tibble,
tidytext, xtable, ggplot2

URL https://quanteda.io

Encoding UTF-8

BugReports https://github.com/quanteda/quanteda/issues

LazyData TRUE

VignetteBuilder knitr

Language en-GB

RoxygenNote 7.2.2

SystemRequirements C++11

Collate 'RcppExports.R' 'meta.R' 'quanteda-documentation.R' 'aaa.R'
'bootstrap_dfm.R' 'casechange-functions.R' 'char_select.R'

1

https://quanteda.io
https://github.com/quanteda/quanteda/issues

2 R topics documented:

'convert.R' 'corpus-addsummary-metadata.R' 'corpus-methods.R'
'corpus.R' 'corpus_group.R' 'corpus_reshape.R'
'corpus_sample.R' 'corpus_segment.R' 'corpus_subset.R'
'corpus_trim.R' 'data-documentation.R' 'dfm-classes.R'
'dfm-methods.R' 'dfm-print.R' 'dfm-subsetting.R' 'dfm.R'
'dfm_compress.R' 'dfm_group.R' 'dfm_lookup.R' 'dfm_match.R'
'dfm_replace.R' 'dfm_sample.R' 'dfm_select.R' 'dfm_sort.R'
'dfm_subset.R' 'dfm_trim.R' 'dfm_weight.R' 'dictionaries.R'
'dimnames.R' 'fcm-classes.R' 'docnames.R' 'docvars.R'
'fcm-methods.R' 'fcm-print.R' 'fcm-subsetting.R' 'fcm.R'
'fcm_select.R' 'index.R' 'kwic.R' 'message.R' 'nfunctions.R'
'object-builder.R' 'object2fixed.R' 'pattern2fixed.R'
'phrases.R' 'quanteda_options.R' 'readtext-methods.R'
'spacyr-methods.R' 'stopwords.R' 'summary.R' 'textmodel.R'
'textplot.R' 'texts.R' 'textstat.R' 'tokenizers.R'
'tokens-methods.R' 'tokens.R' 'tokens_chunk.R'
'tokens_compound.R' 'tokens_group.R' 'tokens_lookup.R'
'tokens_ngrams.R' 'tokens_replace.R' 'tokens_sample.R'
'tokens_segment.R' 'tokens_select.R' 'tokens_split.R'
'tokens_subset.R' 'utils.R' 'validator.R' 'wordstem.R' 'zzz.R'

NeedsCompilation yes

Author Kenneth Benoit [cre, aut, cph]
(<https://orcid.org/0000-0002-0797-564X>),

Kohei Watanabe [aut] (<https://orcid.org/0000-0001-6519-5265>),
Haiyan Wang [aut] (<https://orcid.org/0000-0003-4992-4311>),
Paul Nulty [aut] (<https://orcid.org/0000-0002-7214-4666>),
Adam Obeng [aut] (<https://orcid.org/0000-0002-2906-4775>),
Stefan Müller [aut] (<https://orcid.org/0000-0002-6315-4125>),
Akitaka Matsuo [aut] (<https://orcid.org/0000-0002-3323-6330>),
William Lowe [aut] (<https://orcid.org/0000-0002-1549-6163>),
Christian Müller [ctb],
European Research Council [fnd] (ERC-2011-StG 283794-QUANTESS)

Maintainer Kenneth Benoit <kbenoit@lse.ac.uk>

Repository CRAN

Date/Publication 2022-12-08 13:00:02 UTC

R topics documented:
quanteda-package . 4
as.character.corpus . 6
as.dfm . 7
as.dictionary . 7
as.fcm . 9
as.list.tokens . 9
as.matrix.dfm . 11
as.yaml . 11

https://orcid.org/0000-0002-0797-564X
https://orcid.org/0000-0001-6519-5265
https://orcid.org/0000-0003-4992-4311
https://orcid.org/0000-0002-7214-4666
https://orcid.org/0000-0002-2906-4775
https://orcid.org/0000-0002-6315-4125
https://orcid.org/0000-0002-3323-6330
https://orcid.org/0000-0002-1549-6163

R topics documented: 3

bootstrap_dfm . 12
char_select . 13
char_tolower . 14
convert . 15
corpus . 17
corpus_group . 20
corpus_reshape . 21
corpus_sample . 22
corpus_segment . 24
corpus_subset . 26
corpus_trim . 27
data_char_sampletext . 28
data_char_ukimmig2010 . 29
data_corpus_inaugural . 30
data_dfm_lbgexample . 31
data_dictionary_LSD2015 . 31
dfm . 33
dfm_compress . 34
dfm_group . 36
dfm_lookup . 37
dfm_match . 38
dfm_replace . 39
dfm_sample . 40
dfm_select . 41
dfm_sort . 44
dfm_subset . 45
dfm_tfidf . 46
dfm_tolower . 47
dfm_trim . 48
dfm_weight . 50
dictionary . 52
docfreq . 54
docnames . 56
docvars . 58
fcm . 59
fcm_sort . 62
featfreq . 63
featnames . 63
index . 64
is.collocations . 65
kwic . 65
meta . 67
ndoc . 68
nsentence . 69
ntoken . 70
phrase . 71
print-methods . 72
quanteda_options . 74

4 quanteda-package

readtext-methods . 76
spacyr-methods . 76
sparsity . 77
textmodels . 78
textplots . 78
textstats . 78
tokens . 79
tokens_chunk . 82
tokens_compound . 83
tokens_group . 85
tokens_lookup . 86
tokens_ngrams . 88
tokens_replace . 90
tokens_sample . 91
tokens_select . 92
tokens_split . 94
tokens_subset . 95
tokens_tolower . 96
tokens_wordstem . 97
topfeatures . 98
types . 99

Index 100

quanteda-package An R package for the quantitative analysis of textual data

Description

Functions for creating and managing textual corpora, extracting features from textual data, and
analyzing those features using quantitative methods.

Details

quanteda makes it easy to manage texts in the form of a corpus, defined as a collection of texts that
includes document-level variables specific to each text, as well as meta-data. quanteda includes
tools to make it easy and fast to manipulate the texts in a corpus, by performing the most common
natural language processing tasks simply and quickly, such as tokenizing, stemming, or forming
ngrams. quanteda’s functions for tokenizing texts and forming multiple tokenized documents into
a document-feature matrix are both extremely fast and very simple to use. quanteda can segment
texts easily by words, paragraphs, sentences, or even user-supplied delimiters and tags.

Built on the text processing functions in the stringi package, which is in turn built on C++ imple-
mentation of the ICU libraries for Unicode text handling, quanteda pays special attention to fast
and correct implementation of Unicode and the handling of text in any character set.

quanteda is built for efficiency and speed, through its design around three infrastructures: the
stringi package for text processing, the Matrix package for sparse matrix objects, and computa-
tionally intensive processing (e.g. for tokens) handled in parallelized C++. If you can fit it into

quanteda-package 5

memory, quanteda will handle it quickly. (And eventually, we will make it possible to process
objects even larger than available memory.)

quanteda is principally designed to allow users a fast and convenient method to go from a corpus of
texts to a selected matrix of documents by features, after defining what the documents and features.
The package makes it easy to redefine documents, for instance by splitting them into sentences or
paragraphs, or by tags, as well as to group them into larger documents by document variables, or to
subset them based on logical conditions or combinations of document variables. The package also
implements common NLP feature selection functions, such as removing stopwords and stemming
in numerous languages, selecting words found in dictionaries, treating words as equivalent based
on a user-defined "thesaurus", and trimming and weighting features based on document frequency,
feature frequency, and related measures such as tf-idf.

Tools for working with dictionaries are one of quanteda’s principal strengths, and the package
includes several core functions for preparing and applying dictionaries to texts, for example for
lexicon-based sentiment analysis.

Once constructed, a quanteda document-feature matrix ("dfm") can be easily analyzed using either
quanteda’s built-in tools for scaling document positions, or used with a number of other text ana-
lytic tools, such as: topic models (including converters for direct use with the topicmodels, LDA,
and stm packages) document scaling (using the quanteda.textmodels package’s functions for the
"wordfish" and "Wordscores" models, or direct use with the ca package for correspondence analy-
sis), or machine learning through a variety of other packages that take matrix or matrix-like inputs.
quanteda includes functions for converting its core objects, but especially a dfm, into other formats
so that these are easy to use with other analytic packages.

Additional features of quanteda include:

• powerful, flexible tools for working with dictionaries;

• the ability to identify keywords associated with documents or groups of documents;

• the ability to explore texts using key-words-in-context;

• quick computation of word or document similarities, for clustering or to compute distances
for other purposes;

• a comprehensive suite of descriptive statistics on text such as the number of sentences, words,
characters, or syllables per document; and

• flexible, easy to use graphical tools to portray many of the analyses available in the package.

Source code and additional information

https://github.com/quanteda/quanteda

Author(s)

Maintainer: Kenneth Benoit <kbenoit@lse.ac.uk> (ORCID) [copyright holder]

Authors:

• Kohei Watanabe <watanabe.kohei@gmail.com> (ORCID)

• Haiyan Wang <whyinsa@yahoo.com> (ORCID)

• Paul Nulty <paul.nulty@gmail.com> (ORCID)

• Adam Obeng <quanteda@binaryeagle.com> (ORCID)

https://github.com/quanteda/quanteda
https://orcid.org/0000-0002-0797-564X
https://orcid.org/0000-0001-6519-5265
https://orcid.org/0000-0003-4992-4311
https://orcid.org/0000-0002-7214-4666
https://orcid.org/0000-0002-2906-4775

6 as.character.corpus

• Stefan Müller <mullers@tcd.ie> (ORCID)
• Akitaka Matsuo <a.matsuo@lse.ac.uk> (ORCID)
• William Lowe <wlowe@princeton.edu> (ORCID)

Other contributors:

• Christian Müller <C.Mueller@lse.ac.uk> [contributor]
• European Research Council (ERC-2011-StG 283794-QUANTESS) [funder]

See Also

Useful links:

• https://quanteda.io

• Report bugs at https://github.com/quanteda/quanteda/issues

as.character.corpus Coercion and checking methods for corpus objects

Description

Coercion functions to and from corpus objects, including conversion to a plain character object; and
checks for whether an object is a corpus.

Usage

S3 method for class 'corpus'
as.character(x, use.names = TRUE, ...)

is.corpus(x)

as.corpus(x)

Arguments

x object to be coerced or checked
use.names logical; preserve (document) names if TRUE
... additional arguments used by specific methods

Value

as.character() returns the corpus as a plain character vector, with or without named elements.

is.corpus returns TRUE if the object is a corpus.

as.corpus() upgrades a corpus object to the newest format. object.

Note

as.character(x) where x is a corpus is equivalent to calling the deprecated texts(x).

https://orcid.org/0000-0002-6315-4125
https://orcid.org/0000-0002-3323-6330
https://orcid.org/0000-0002-1549-6163
https://quanteda.io
https://github.com/quanteda/quanteda/issues

as.dfm 7

as.dfm Coercion and checking functions for dfm objects

Description

Convert an eligible input object into a dfm, or check whether an object is a dfm. Current eligible
inputs for coercion to a dfm are: matrix, (sparse) Matrix, TermDocumentMatrix and DocumentTer-
mMatrix (from the tm package), data.frame, and other dfm objects.

Usage

as.dfm(x)

is.dfm(x)

Arguments

x a candidate object for checking or coercion to dfm

Value

as.dfm converts an input object into a dfm. Row names are used for docnames, and column names
for featnames, of the resulting dfm.

is.dfm returns TRUE if and only if its argument is a dfm.

See Also

as.data.frame.dfm(), as.matrix.dfm(), convert()

as.dictionary Coercion and checking functions for dictionary objects

Description

Convert a dictionary from a different format into a quanteda dictionary, or check to see if an object
is a dictionary.

Usage

as.dictionary(x, format = c("tidytext"), separator = " ", tolower = FALSE)

is.dictionary(x)

8 as.dictionary

Arguments

x a dictionary-like object to be coerced or checked

format input format for the object to be coerced to a dictionary; current legal values are
a data.frame with the fields word and sentiment (as per the tidytext package)

separator the character in between multi-word dictionary values. This defaults to " ".

tolower if TRUE, convert all dictionary values to lowercase

Value

as.dictionary returns a quanteda dictionary object. This conversion function differs from the
dictionary() constructor function in that it converts an existing object rather than creates one
from components or from a file.

is.dictionary returns TRUE if an object is a quanteda dictionary.

Examples

Not run:
data(sentiments, package = "tidytext")
as.dictionary(subset(sentiments, lexicon == "nrc"))
as.dictionary(subset(sentiments, lexicon == "bing"))
to convert AFINN into polarities - adjust thresholds if desired
datafinn <- subset(sentiments, lexicon == "AFINN")
datafinn[["sentiment"]] <-

with(datafinn,
sentiment <- ifelse(score < 0, "negative",

ifelse(score > 0, "positive", "netural"))
)

with(datafinn, table(score, sentiment))
as.dictionary(datafinn)

dat <- data.frame(
word = c("Great", "Horrible"),
sentiment = c("positive", "negative")
)

as.dictionary(dat)
as.dictionary(dat, tolower = FALSE)

End(Not run)

is.dictionary(dictionary(list(key1 = c("val1", "val2"), key2 = "val3")))
[1] TRUE
is.dictionary(list(key1 = c("val1", "val2"), key2 = "val3"))
[1] FALSE

as.fcm 9

as.fcm Coercion and checking functions for fcm objects

Description

Convert an eligible input object into a fcm, or check whether an object is a fcm. Current eligible
inputs for coercion to a dfm are: matrix, (sparse) Matrix and other fcm objects.

Usage

as.fcm(x)

Arguments

x a candidate object for checking or coercion to dfm

Value

as.fcm converts an input object into a fcm.

as.list.tokens Coercion, checking, and combining functions for tokens objects

Description

Coercion functions to and from tokens objects, checks for whether an object is a tokens object, and
functions to combine tokens objects.

Usage

S3 method for class 'tokens'
as.list(x, ...)

S3 method for class 'tokens'
as.character(x, use.names = FALSE, ...)

is.tokens(x)

as.tokens(x, concatenator = "_", ...)

S3 method for class 'spacyr_parsed'
as.tokens(
x,
concatenator = "/",
include_pos = c("none", "pos", "tag"),
use_lemma = FALSE,

10 as.list.tokens

...
)

is.tokens(x)

Arguments

x object to be coerced or checked

... additional arguments used by specific methods. For c.tokens, these are the to-
kens objects to be concatenated.

use.names logical; preserve names if TRUE. For as.character and unlist only.

concatenator character between multi-word expressions, default is the underscore character.
See Details.

include_pos character; whether and which part-of-speech tag to use: "none" do not use any
part of speech indicator, "pos" use the pos variable, "tag" use the tag variable.
The POS will be added to the token after "concatenator".

use_lemma logical; if TRUE, use the lemma rather than the raw token

Details

The concatenator is used to automatically generate dictionary values for multi-word expressions
in tokens_lookup() and dfm_lookup(). The underscore character is commonly used to join el-
ements of multi-word expressions (e.g. "piece_of_cake", "New_York"), but other characters (e.g.
whitespace " " or a hyphen "-") can also be used. In those cases, users have to tell the system what is
the concatenator in your tokens so that the conversion knows to treat this character as the inter-word
delimiter, when reading in the elements that will become the tokens.

Value

as.list returns a simple list of characters from a tokens object.

as.character returns a character vector from a tokens object.

is.tokens returns TRUE if the object is of class tokens, FALSE otherwise.

as.tokens returns a quanteda tokens object.

is.tokens returns TRUE if the object is of class tokens, FALSE otherwise.

Examples

create tokens object from list of characters with custom concatenator
dict <- dictionary(list(country = "United States",

sea = c("Atlantic Ocean", "Pacific Ocean")))
lis <- list(c("The", "United-States", "has", "the", "Atlantic-Ocean",

"and", "the", "Pacific-Ocean", "."))
toks <- as.tokens(lis, concatenator = "-")
tokens_lookup(toks, dict)

as.matrix.dfm 11

as.matrix.dfm Coerce a dfm to a matrix or data.frame

Description

Methods for coercing a dfm object to a matrix or data.frame object.

Usage

S3 method for class 'dfm'
as.matrix(x, ...)

Arguments

x dfm to be coerced

... unused

Examples

coercion to matrix
as.matrix(data_dfm_lbgexample[, 1:10])

as.yaml Convert quanteda dictionary objects to the YAML format

Description

Converts a quanteda dictionary object constructed by the dictionary function into the YAML for-
mat. The YAML files can be edited in text editors and imported into quanteda again.

Usage

as.yaml(x)

Arguments

x a dictionary object

Value

as.yaml a dictionary in the YAML format, as a character object

12 bootstrap_dfm

Examples

Not run:
dict <- dictionary(list(one = c("a b", "c*"), two = c("x", "y", "z??")))
cat(yaml <- as.yaml(dict))
cat(yaml, file = (yamlfile <- paste0(tempfile(), ".yml")))
dictionary(file = yamlfile)

End(Not run)

bootstrap_dfm Bootstrap a dfm

Description

Create an array of resampled dfms.

Usage

bootstrap_dfm(x, n = 10, ..., verbose = quanteda_options("verbose"))

Arguments

x a character or corpus object

n number of resamples

... additional arguments passed to dfm()

verbose if TRUE print status messages

Details

Function produces multiple, resampled dfm objects, based on resampling sentences (with replace-
ment) from each document, recombining these into new "documents" and computing a dfm for
each. Resampling of sentences is done strictly within document, so that every resampled document
will contain at least some of its original tokens.

Value

A named list of dfm objects, where the first, dfm_0, is the dfm from the original texts, and subse-
quent elements are the sentence-resampled dfms.

Author(s)

Kenneth Benoit

char_select 13

Examples

bootstrapping from the original text
set.seed(10)
txt <- c(textone = "This is a sentence. Another sentence. Yet another.",

texttwo = "Premiere phrase. Deuxieme phrase.")
bootstrap_dfm(txt, n = 3, verbose = TRUE)

char_select Select or remove elements from a character vector

Description

These function select or discard elements from a character object. For convenience, the functions
char_remove and char_keep are defined as shortcuts for char_select(x, pattern, selection
= "remove") and char_select(x, pattern, selection = "keep"), respectively.

These functions make it easy to change, for instance, stopwords based on pattern matching.

Usage

char_select(
x,
pattern,
selection = c("keep", "remove"),
valuetype = c("glob", "fixed", "regex"),
case_insensitive = TRUE

)

char_remove(x, ...)

char_keep(x, ...)

Arguments

x an input character vector

pattern a character vector, list of character vectors, dictionary, or collocations object.
See pattern for details.

selection whether to "keep" or "remove" the tokens matching pattern

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

... additional arguments passed by char_remove and char_keep to char_select.
Cannot include selection.

14 char_tolower

Value

a modified character vector

Examples

character selection
mykeywords <- c("natural", "national", "denatured", "other")
char_select(mykeywords, "nat*", valuetype = "glob")
char_select(mykeywords, "nat", valuetype = "regex")
char_select(mykeywords, c("natur*", "other"))
char_select(mykeywords, c("natur*", "other"), selection = "remove")

character removal
char_remove(letters[1:5], c("a", "c", "x"))
words <- c("any", "and", "Anna", "as", "announce", "but")
char_remove(words, "an*")
char_remove(words, "an*", case_insensitive = FALSE)
char_remove(words, "^.n.+$", valuetype = "regex")

remove some of the system stopwords
stopwords("en", source = "snowball")[1:6]
stopwords("en", source = "snowball")[1:6] %>%

char_remove(c("me", "my*"))

character keep
char_keep(letters[1:5], c("a", "c", "x"))

char_tolower Convert the case of character objects

Description

char_tolower and char_toupper are replacements for base::tolower() and base::tolower() based
on the stringi package. The stringi functions for case conversion are superior to the base functions
because they correctly handle case conversion for Unicode. In addition, the *_tolower() functions
provide an option for preserving acronyms.

Usage

char_tolower(x, keep_acronyms = FALSE)

char_toupper(x)

Arguments

x the input object whose character/tokens/feature elements will be case-converted

keep_acronyms logical; if TRUE, do not lowercase any all-uppercase words (applies only to
*_tolower() functions)

convert 15

Examples

txt1 <- c(txt1 = "b A A", txt2 = "C C a b B")
char_tolower(txt1)
char_toupper(txt1)

with acronym preservation
txt2 <- c(text1 = "England and France are members of NATO and UNESCO",

text2 = "NASA sent a rocket into space.")
char_tolower(txt2)
char_tolower(txt2, keep_acronyms = TRUE)
char_toupper(txt2)

convert Convert quanteda objects to non-quanteda formats

Description

Convert a quanteda dfm or corpus object to a format useable by other packages. The general func-
tion convert provides easy conversion from a dfm to the document-term representations used in
all other text analysis packages for which conversions are defined. For corpus objects, convert
provides an easy way to make a corpus and its document variables into a data.frame.

Usage

convert(x, to, ...)

S3 method for class 'dfm'
convert(
x,
to = c("lda", "tm", "stm", "austin", "topicmodels", "lsa", "matrix", "data.frame",

"tripletlist"),
docvars = NULL,
omit_empty = TRUE,
docid_field = "doc_id",
...

)

S3 method for class 'corpus'
convert(x, to = c("data.frame", "json"), pretty = FALSE, ...)

Arguments

x a dfm or corpus to be converted

to target conversion format, one of:

"lda" a list with components "documents" and "vocab" as needed by the func-
tion lda.collapsed.gibbs.sampler from the lda package

16 convert

"tm" a DocumentTermMatrix from the tm package. Note: The tm package ver-
sion of as.TermDocumentMatrix() allows a weighting argument, which
supplies a weighting function for TermDocumentMatrix(). Here the de-
fault is for term frequency weighting. If you want a different weighting,
apply the weights after converting using one of the tm functions. For other
available weighting functions from the tm package, see TermDocument-
Matrix.

"stm" the format for the stm package
"austin" the wfm format from the austin package
"topicmodels" the "dtm" format as used by the topicmodels package
"lsa" the "textmatrix" format as used by the lsa package
"data.frame" a data.frame of without row.names, in which documents are

rows, and each feature is a variable (for a dfm), or each text and its doc-
ument variables form a row (for a corpus)

"json" (corpus only) convert a corpus and its document variables into JSON
format, using the format described in jsonlite::toJSON()

"tripletlist" a named "triplet" format list consisting of document, feature,
and frequency

... unused directly

docvars optional data.frame of document variables used as the meta information in con-
version to the stm package format. This aids in selecting the document variables
only corresponding to the documents with non-zero counts. Only affects the
"stm" format.

omit_empty logical; if TRUE, omit empty documents and features from the converted dfm.
This is required for some formats (such as STM) that do not accept empty doc-
uments. Only used when to = "lda" or to = "topicmodels". For to = "stm"
format, omit_empty is always TRUE.

docid_field character; the name of the column containing document names used when to =
"data.frame". Unused for other conversions.

pretty adds indentation whitespace to JSON output. Can be TRUE/FALSE or a number
specifying the number of spaces to indent. See prettify()

Value

A converted object determined by the value of to (see above). See conversion target package
documentation for more detailed descriptions of the return formats.

Examples

convert a dfm

toks <- corpus_subset(data_corpus_inaugural, Year > 1970) %>%
tokens()

dfmat1 <- dfm(toks)

austin's wfm format
identical(dim(dfmat1), dim(convert(dfmat1, to = "austin")))

corpus 17

stm package format
stmmat <- convert(dfmat1, to = "stm")
str(stmmat)

triplet
tripletmat <- convert(dfmat1, to = "tripletlist")
str(tripletmat)

Not run:
tm's DocumentTermMatrix format
tmdfm <- convert(dfmat1, to = "tm")
str(tmdfm)

topicmodels package format
str(convert(dfmat1, to = "topicmodels"))

lda package format
str(convert(dfmat1, to = "lda"))

End(Not run)

convert a corpus into a data.frame

corp <- corpus(c(d1 = "Text one.", d2 = "Text two."),
docvars = data.frame(dvar1 = 1:2, dvar2 = c("one", "two"),

stringsAsFactors = FALSE))
convert(corp, to = "data.frame")
convert(corp, to = "json")

corpus Construct a corpus object

Description

Creates a corpus object from available sources. The currently available sources are:

• a character vector, consisting of one document per element; if the elements are named, these
names will be used as document names.

• a data.frame (or a tibble tbl_df), whose default document id is a variable identified by
docid_field; the text of the document is a variable identified by text_field; and other
variables are imported as document-level meta-data. This matches the format of data.frames
constructed by the the readtext package.

• a kwic object constructed by kwic().

• a tm VCorpus or SimpleCorpus class object, with the fixed metadata fields imported as doc-
vars and corpus-level metadata imported as meta information.

• a corpus object.

18 corpus

Usage

corpus(x, ...)

S3 method for class 'corpus'
corpus(
x,
docnames = quanteda::docnames(x),
docvars = quanteda::docvars(x),
meta = quanteda::meta(x),
...

)

S3 method for class 'character'
corpus(
x,
docnames = NULL,
docvars = NULL,
meta = list(),
unique_docnames = TRUE,
...

)

S3 method for class 'data.frame'
corpus(
x,
docid_field = "doc_id",
text_field = "text",
meta = list(),
unique_docnames = TRUE,
...

)

S3 method for class 'kwic'
corpus(x, split_context = TRUE, extract_keyword = TRUE, meta = list(), ...)

S3 method for class 'Corpus'
corpus(x, ...)

Arguments

x a valid corpus source object

... not used directly

docnames Names to be assigned to the texts. Defaults to the names of the character vector
(if any); doc_id for a data.frame; the document names in a tm corpus; or a
vector of user-supplied labels equal in length to the number of documents. If
none of these are round, then "text1", "text2", etc. are assigned automatically.

docvars a data.frame of document-level variables associated with each text

corpus 19

meta a named list that will be added to the corpus as corpus-level, user meta-data.
This can later be accessed or updated using meta().

unique_docnames

logical; if TRUE, enforce strict uniqueness in docnames; otherwise, rename du-
plicated docnames using an added serial number, and treat them as segments of
the same document.

docid_field optional column index of a document identifier; defaults to "doc_id", but if this
is not found, then will use the rownames of the data.frame; if the rownames are
not set, it will use the default sequence based on ([quanteda_options]("base_docname").

text_field the character name or numeric index of the source data.frame indicating the
variable to be read in as text, which must be a character vector. All other vari-
ables in the data.frame will be imported as docvars. This argument is only used
for data.frame objects (including those created by readtext).

split_context logical; if TRUE, split each kwic row into two "documents", one for "pre" and
one for "post", with this designation saved in a new docvar context and with
the new number of documents therefore being twice the number of rows in the
kwic.

extract_keyword

logical; if TRUE, save the keyword matching pattern as a new docvar keyword

Details

The texts and document variables of corpus objects can also be accessed using index notation and
the $ operator for accessing or assigning docvars. For details, see [.corpus().

Value

A corpus class object containing the original texts, document-level variables, document-level meta-
data, corpus-level metadata, and default settings for subsequent processing of the corpus.

For quanteda >= 2.0, this is a specially classed character vector. It has many additional attributes
but you should not access these attributes directly, especially if you are another package author.
Use the extractor and replacement functions instead, or else your code is not only going to be uglier,
but also likely to break should the internal structure of a corpus object change. Using the accessor
and replacement functions ensures that future code to manipulate corpus objects will continue to
work.

See Also

corpus, docvars(), meta(), as.character.corpus(), ndoc(), docnames()

Examples

create a corpus from texts
corpus(data_char_ukimmig2010)

create a corpus from texts and assign meta-data and document variables
summary(corpus(data_char_ukimmig2010,

docvars = data.frame(party = names(data_char_ukimmig2010))), 5)

20 corpus_group

import a tm VCorpus
if (requireNamespace("tm", quietly = TRUE)) {

data(crude, package = "tm") # load in a tm example VCorpus
vcorp <- corpus(crude)
summary(vcorp)

data(acq, package = "tm")
summary(corpus(acq), 5)

vcorp2 <- tm::VCorpus(tm::VectorSource(data_char_ukimmig2010))
corp <- corpus(vcorp2)
summary(corp)

}

construct a corpus from a data.frame
dat <- data.frame(letter_factor = factor(rep(letters[1:3], each = 2)),

some_ints = 1L:6L,
some_text = paste0("This is text number ", 1:6, "."),
stringsAsFactors = FALSE,
row.names = paste0("fromDf_", 1:6))

dat
summary(corpus(dat, text_field = "some_text",

meta = list(source = "From a data.frame called mydf.")))

from a kwic
kw <- kwic(tokens(data_char_sampletext, remove_separators = FALSE),

pattern = "econom*", separator = "")
summary(corpus(kw))
summary(corpus(kw, split_context = FALSE))
as.character(corpus(kw, split_context = FALSE))

corpus_group Combine documents in corpus by a grouping variable

Description

Combine documents in a corpus object by a grouping variable, by concatenating their texts in the
order of the documents within each grouping variable.

Usage

corpus_group(x, groups = docid(x), fill = FALSE, concatenator = " ")

Arguments

x corpus object

corpus_reshape 21

groups grouping variable for sampling, equal in length to the number of documents.
This will be evaluated in the docvars data.frame, so that docvars may be referred
to by name without quoting. This also changes previous behaviours for groups.
See news(Version >= "3.0", package = "quanteda") for details.

fill logical; if TRUE and groups is a factor, then use all levels of the factor when
forming the new documents of the grouped object. This will result in a new
"document" with empty content for levels not observed, but for which an empty
document may be needed. If groups is a factor of dates, for instance, then fill
= TRUE ensures that the new object will consist of one new "document" by date,
regardless of whether any documents previously existed with that date. Has no
effect if the groups variable(s) are not factors.

concatenator the concatenation character that will connect the grouped documents.

Value

a corpus object whose documents are equal to the unique group combinations, and whose texts are
the concatenations of the texts by group. Document-level variables that have no variation within
groups are saved in docvars. Document-level variables that are lists are dropped from grouping,
even when these exhibit no variation within groups.

Examples

corp <- corpus(c("a a b", "a b c c", "a c d d", "a c c d"),
docvars = data.frame(grp = c("grp1", "grp1", "grp2", "grp2")))

corpus_group(corp, groups = grp)
corpus_group(corp, groups = c(1, 1, 2, 2))
corpus_group(corp, groups = factor(c(1, 1, 2, 2), levels = 1:3))

with fill
corpus_group(corp, groups = factor(c(1, 1, 2, 2), levels = 1:3), fill = TRUE)

corpus_reshape Recast the document units of a corpus

Description

For a corpus, reshape (or recast) the documents to a different level of aggregation. Units of aggre-
gation can be defined as documents, paragraphs, or sentences. Because the corpus object records
its current "units" status, it is possible to move from recast units back to original units, for example
from documents, to sentences, and then back to documents (possibly after modifying the sentences).

Usage

corpus_reshape(
x,
to = c("sentences", "paragraphs", "documents"),
use_docvars = TRUE,
...

)

22 corpus_sample

Arguments

x corpus whose document units will be reshaped

to new document units in which the corpus will be recast

use_docvars if TRUE, repeat the docvar values for each segmented text; if FALSE, drop the
docvars in the segmented corpus. Dropping the docvars might be useful in order
to conserve space or if these are not desired for the segmented corpus.

... additional arguments passed to tokens(), since the syntactic segmenter uses
this function)

Value

A corpus object with the documents defined as the new units, including document-level meta-data
identifying the original documents.

Examples

simple example
corp1 <- corpus(c(textone = "This is a sentence. Another sentence. Yet another.",

textwo = "Premiere phrase. Deuxieme phrase."),
docvars = data.frame(country=c("UK", "USA"), year=c(1990, 2000)))

summary(corp1)
summary(corpus_reshape(corp1, to = "sentences"))

example with inaugural corpus speeches
(corp2 <- corpus_subset(data_corpus_inaugural, Year>2004))
corp2para <- corpus_reshape(corp2, to = "paragraphs")
corp2para
summary(corp2para, 50, showmeta = TRUE)
Note that Bush 2005 is recorded as a single paragraph because that text
used a single \n to mark the end of a paragraph.

corpus_sample Randomly sample documents from a corpus

Description

Take a random sample of documents of the specified size from a corpus, with or without replace-
ment, optionally by grouping variables or with probability weights.

Usage

corpus_sample(x, size = ndoc(x), replace = FALSE, prob = NULL, by = NULL)

corpus_sample 23

Arguments

x a corpus object whose documents will be sampled

size a positive number, the number of documents to select; when used with by, the
number to select from each group or a vector equal in length to the number of
groups defining the samples to be chosen in each category of by. By defining
a size larger than the number of documents, it is possible to oversample when
replace = TRUE.

replace if TRUE, sample with replacement

prob a vector of probability weights for obtaining the elements of the vector being
sampled. May not be applied when by is used.

by optional grouping variable for sampling. This will be evaluated in the doc-
vars data.frame, so that docvars may be referred to by name without quoting.
This also changes previous behaviours for by. See news(Version >= "2.9",
package = "quanteda") for details.

Value

a corpus object (re)sampled on the documents, containing the document variables for the documents
sampled.

Examples

set.seed(123)
sampling from a corpus
summary(corpus_sample(data_corpus_inaugural, size = 5))
summary(corpus_sample(data_corpus_inaugural, size = 10, replace = TRUE))

sampling with by
corp <- data_corpus_inaugural
corp$century <- paste(floor(corp$Year / 100) + 1)
corp$century <- paste0(corp$century, ifelse(corp$century < 21, "th", "st"))
corpus_sample(corp, size = 2, by = century) %>% summary()
needs drop = TRUE to avoid empty interactions
corpus_sample(corp, size = 1, by = interaction(Party, century, drop = TRUE), replace = TRUE) %>%

summary()

sampling sentences by document
corp <- corpus(c(one = "Sentence one. Sentence two. Third sentence.",

two = "First sentence, doc2. Second sentence, doc2."),
docvars = data.frame(var1 = c("a", "a"), var2 = c(1, 2)))

corpus_reshape(corp, to = "sentences") %>%
corpus_sample(replace = TRUE, by = docid(.))

oversampling
corpus_sample(corp, size = 5, replace = TRUE)

24 corpus_segment

corpus_segment Segment texts on a pattern match

Description

Segment corpus text(s) or a character vector, splitting on a pattern match. This is useful for break-
ing the texts into smaller documents based on a regular pattern (such as a speaker identifier in a
transcript) or a user-supplied annotation.

Usage

corpus_segment(
x,
pattern = "##*",
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
extract_pattern = TRUE,
pattern_position = c("before", "after"),
use_docvars = TRUE

)

char_segment(
x,
pattern = "##*",
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
remove_pattern = TRUE,
pattern_position = c("before", "after")

)

Arguments

x character or corpus object whose texts will be segmented

pattern a character vector, list of character vectors, dictionary, or collocations object.
See pattern for details.

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values
extract_pattern

extracts matched patterns from the texts and save in docvars if TRUE
pattern_position

either "before" or "after", depending on whether the pattern precedes the text
(as with a user-supplied tag, such as ##INTRO in the examples below) or follows
the text (as with punctuation delimiters)

corpus_segment 25

use_docvars if TRUE, repeat the docvar values for each segmented text; if FALSE, drop the
docvars in the segmented corpus. Dropping the docvars might be useful in order
to conserve space or if these are not desired for the segmented corpus.

remove_pattern removes matched patterns from the texts if TRUE

Details

For segmentation into syntactic units defined by the locale (such as sentences), use corpus_reshape()
instead. In cases where more fine-grained segmentation is needed, such as that based on commas or
semi-colons (phrase delimiters within a sentence), corpus_segment() offers greater user control
than corpus_reshape().

Value

corpus_segment returns a corpus of segmented texts

char_segment returns a character vector of segmented texts

Boundaries and segmentation explained

The pattern acts as a boundary delimiter that defines the segmentation points for splitting a text
into new "document" units. Boundaries are always defined as the pattern matches, plus the end and
beginnings of each document. The new "documents" that are created following the segmentation
will then be the texts found between boundaries.

The pattern itself will be saved as a new document variable named pattern. This is most useful
when segmenting a text according to tags such as names in a transcript, section titles, or user-
supplied annotations. If the beginning of the file precedes a pattern match, then the extracted
text will have a NA for the extracted pattern document variable (or when pattern_position =
"after", this will be true for the text split between the last pattern match and the end of the docu-
ment).

To extract syntactically defined sub-document units such as sentences and paragraphs, use corpus_reshape()
instead.

Using patterns

One of the most common uses for corpus_segment is to partition a corpus into sub-documents
using tags. The default pattern value is designed for a user-annotated tag that is a term beginning
with double "hash" signs, followed by a whitespace, for instance as ##INTRODUCTION The text.

Glob and fixed pattern types use a whitespace character to signal the end of the pattern.

For more advanced pattern matches that could include whitespace or newlines, a regex pattern type
can be used, for instance a text such as
Mr. Smith: Text
Mrs. Jones: More text

could have as pattern = "\\b[A-Z].+\\.\\s[A-Z][a-z]+:", which would catch the title, the
name, and the colon.

For custom boundary delimitation using punctuation characters that come come at the end of a
clause or sentence (such as , and., these can be specified manually and pattern_position set
to "after". To keep the punctuation characters in the text (as with sentence segmentation), set

26 corpus_subset

extract_pattern = FALSE. (With most tag applications, users will want to remove the patterns
from the text, as they are annotations rather than parts of the text itself.)

See Also

corpus_reshape(), for segmenting texts into pre-defined syntactic units such as sentences, para-
graphs, or fixed-length chunks

Examples

segmenting a corpus

segmenting a corpus using tags
corp1 <- corpus(c("##INTRO This is the introduction.

##DOC1 This is the first document. Second sentence in Doc 1.
##DOC3 Third document starts here. End of third document.",
"##INTRO Document ##NUMBER Two starts before ##NUMBER Three."))

corpseg1 <- corpus_segment(corp1, pattern = "##*")
cbind(corpseg1, docvars(corpseg1))

segmenting a transcript based on speaker identifiers
corp2 <- corpus("Mr. Smith: Text.\nMrs. Jones: More text.\nMr. Smith: I'm speaking, again.")
corpseg2 <- corpus_segment(corp2, pattern = "\\b[A-Z].+\\s[A-Z][a-z]+:",

valuetype = "regex")
cbind(corpseg2, docvars(corpseg2))

segmenting a corpus using crude end-of-sentence segmentation
corpseg3 <- corpus_segment(corp1, pattern = ".", valuetype = "fixed",

pattern_position = "after", extract_pattern = FALSE)
cbind(corpseg3, docvars(corpseg3))

segmenting a character vector

segment into paragraphs and removing the "- " bullet points
cat(data_char_ukimmig2010[4])
char_segment(data_char_ukimmig2010[4],

pattern = "\\n\\n(-\\s){0,1}", valuetype = "regex",
remove_pattern = TRUE)

segment a text into clauses
txt <- c(d1 = "This, is a sentence? You: come here.", d2 = "Yes, yes okay.")
char_segment(txt, pattern = "\\p{P}", valuetype = "regex",

pattern_position = "after", remove_pattern = FALSE)

corpus_subset Extract a subset of a corpus

corpus_trim 27

Description

Returns subsets of a corpus that meet certain conditions, including direct logical operations on doc-
vars (document-level variables). corpus_subset functions identically to subset.data.frame(),
using non-standard evaluation to evaluate conditions based on the docvars in the corpus.

Usage

corpus_subset(x, subset, drop_docid = TRUE, ...)

Arguments

x corpus object to be subsetted

subset logical expression indicating the documents to keep: missing values are taken
as false

drop_docid if TRUE, docid for documents are removed as the result of subsetting.

... not used

Value

corpus object, with a subset of documents (and docvars) selected according to arguments

See Also

subset.data.frame()

Examples

summary(corpus_subset(data_corpus_inaugural, Year > 1980))
summary(corpus_subset(data_corpus_inaugural, Year > 1930 & President == "Roosevelt"))

corpus_trim Remove sentences based on their token lengths or a pattern match

Description

Removes sentences from a corpus or a character vector shorter than a specified length.

Usage

corpus_trim(
x,
what = c("sentences", "paragraphs", "documents"),
min_ntoken = 1,
max_ntoken = NULL,
exclude_pattern = NULL

)

28 data_char_sampletext

char_trim(
x,
what = c("sentences", "paragraphs", "documents"),
min_ntoken = 1,
max_ntoken = NULL,
exclude_pattern = NULL

)

Arguments

x corpus or character object whose sentences will be selected.

what units of trimming, "sentences" or "paragraphs", or "documents"
min_ntoken, max_ntoken

minimum and maximum lengths in word tokens (excluding punctuation)
exclude_pattern

a stringi regular expression whose match (at the sentence level) will be used to
exclude sentences

Value

a corpus or character vector equal in length to the input. If the input was a corpus, then the all
docvars and metadata are preserved. For documents whose sentences have been removed entirely,
a null string ("") will be returned.

Examples

txt <- c("PAGE 1. This is a single sentence. Short sentence. Three word sentence.",
"PAGE 2. Very short! Shorter.",
"Very long sentence, with multiple parts, separated by commas. PAGE 3.")

corp <- corpus(txt, docvars = data.frame(serial = 1:3))
corp

exclude sentences shorter than 3 tokens
corpus_trim(corp, min_ntoken = 3)
exclude sentences that start with "PAGE <digit(s)>"
corpus_trim(corp, exclude_pattern = "^PAGE \\d+")

trimming character objects
char_trim(txt, "sentences", min_ntoken = 3)
char_trim(txt, "sentences", exclude_pattern = "sentence\\.")

data_char_sampletext A paragraph of text for testing various text-based functions

Description

This is a long paragraph (2,914 characters) of text taken from a debate on Joe Higgins, delivered
December 8, 2011.

data_char_ukimmig2010 29

Usage

data_char_sampletext

Format

character vector with one element

Source

Dáil Éireann Debate, Financial Resolution No. 13: General (Resumed). 7 December 2011. vol.
749, no. 1.

Examples

tokens(data_char_sampletext, remove_punct = TRUE)

data_char_ukimmig2010 Immigration-related sections of 2010 UK party manifestos

Description

Extracts from the election manifestos of 9 UK political parties from 2010, related to immigration
or asylum-seekers.

Usage

data_char_ukimmig2010

Format

A named character vector of plain ASCII texts

Examples

data_corpus_ukimmig2010 <-
corpus(data_char_ukimmig2010,

docvars = data.frame(party = names(data_char_ukimmig2010)))
summary(data_corpus_ukimmig2010, showmeta = TRUE)

https://www.oireachtas.ie/en/debates/find/

30 data_corpus_inaugural

data_corpus_inaugural US presidential inaugural address texts

Description

US presidential inaugural address texts, and metadata (for the corpus), from 1789 to present.

Usage

data_corpus_inaugural

Format

a corpus object with the following docvars:

• Year a four-digit integer year

• President character; President’s last name

• FirstName character; President’s first name (and possibly middle initial)

• Party factor; name of the President’s political party

Details

data_corpus_inaugural is the quanteda-package corpus object of US presidents’ inaugural ad-
dresses since 1789. Document variables contain the year of the address and the last name of the
president.

Source

https://archive.org/details/Inaugural-Address-Corpus-1789-2009 and https://www.
presidency.ucsb.edu/documents/presidential-documents-archive-guidebook/inaugural-addresses.

Examples

some operations on the inaugural corpus
summary(data_corpus_inaugural)
head(docvars(data_corpus_inaugural), 10)

https://archive.org/details/Inaugural-Address-Corpus-1789-2009
https://www.presidency.ucsb.edu/documents/presidential-documents-archive-guidebook/inaugural-addresses
https://www.presidency.ucsb.edu/documents/presidential-documents-archive-guidebook/inaugural-addresses

data_dfm_lbgexample 31

data_dfm_lbgexample dfm from data in Table 1 of Laver, Benoit, and Garry (2003)

Description

Constructed example data to demonstrate the Wordscores algorithm, from Laver Benoit and Garry
(2003), Table 1.

Usage

data_dfm_lbgexample

Format

A dfm object with 6 documents and 37 features.

Details

This is the example word count data from Laver, Benoit and Garry’s (2003) Table 1. Documents
R1 to R5 are assumed to have known positions: -1.5, -0.75, 0, 0.75, 1.5. Document V1 is assumed
unknown, and will have a raw text score of approximately -0.45 when computed as per LBG (2003).

References

Laver, M., Benoit, K.R., & Garry, J. (2003). Estimating Policy Positions from Political Text using
Words as Data. American Political Science Review, 97(2), 311–331.

data_dictionary_LSD2015

Lexicoder Sentiment Dictionary (2015)

Description

The 2015 Lexicoder Sentiment Dictionary in quanteda dictionary format.

Usage

data_dictionary_LSD2015

https://kenbenoit.net/pdfs/WORDSCORESAPSR.pdf
https://kenbenoit.net/pdfs/WORDSCORESAPSR.pdf

32 data_dictionary_LSD2015

Format

A dictionary of four keys containing glob-style pattern matches.

negative 2,858 word patterns indicating negative sentiment

positive 1,709 word patterns indicating positive sentiment

neg_positive 1,721 word patterns indicating a positive word preceded by a negation (used to
convey negative sentiment)

neg_negative 2,860 word patterns indicating a negative word preceded by a negation (used to
convey positive sentiment)

Details

The dictionary consists of 2,858 "negative" sentiment words and 1,709 "positive" sentiment words.
A further set of 2,860 and 1,721 negations of negative and positive words, respectively, is also
included. While many users will find the non-negation sentiment forms of the LSD adequate for
sentiment analysis, Young and Soroka (2012) did find a small, but non-negligible increase in per-
formance when accounting for negations. Users wishing to test this or include the negations are
encouraged to subtract negated positive words from the count of positive words, and subtract the
negated negative words from the negative count.

Young and Soroka (2012) also suggest the use of a pre-processing script to remove specific cases
of some words (i.e., "good bye", or "nobody better", which should not be counted as positive).
Pre-processing scripts are available at https://www.snsoroka.com/data-lexicoder/.

License and Conditions

The LSD is available for non-commercial academic purposes only. By using data_dictionary_LSD2015,
you accept these terms.

Please cite the references below when using the dictionary.

References

The objectives, development and reliability of the dictionary are discussed in detail in Young and
Soroka (2012). Please cite this article when using the Lexicoder Sentiment Dictionary and related
resources. Young, L. & Soroka, S. (2012). Lexicoder Sentiment Dictionary. Available at https:
//www.snsoroka.com/data-lexicoder/.

Young, L. & Soroka, S. (2012). Affective News: The Automated Coding of Sentiment in Political
Texts]. doi:10.1080/10584609.2012.671234. Political Communication, 29(2), 205–231.

Examples

simple example
txt <- "This aggressive policy will not win friends."

tokens_lookup(tokens(txt), dictionary = data_dictionary_LSD2015, exclusive = FALSE)
tokens from 1 document.
text1 :
[1] "This" "NEGATIVE" "policy" "will" "NEG_POSITIVE" "POSITIVE" "POSITIVE" "."

https://www.snsoroka.com/data-lexicoder/
https://www.snsoroka.com/data-lexicoder/
https://www.snsoroka.com/data-lexicoder/
https://doi.org/10.1080/10584609.2012.671234

dfm 33

notice that double-counting of negated and non-negated terms is avoided
when using nested_scope = "dictionary"
tokens_lookup(tokens(txt), dictionary = data_dictionary_LSD2015,

exclusive = FALSE, nested_scope = "dictionary")
tokens from 1 document.
text1 :
[1] "This" "NEGATIVE" "policy" "will" "NEG_POSITIVE" "POSITIVE."

on larger examples - notice that few negations are used
dfm(data_char_ukimmig2010[1:5], dictionary = data_dictionary_LSD2015)

compound neg_negative and neg_positive tokens before creating a dfm object
toks <- tokens_compound(tokens(txt), data_dictionary_LSD2015)

dfm_lookup(dfm(toks), data_dictionary_LSD2015)

dfm Create a document-feature matrix

Description

Construct a sparse document-feature matrix, from a character, corpus, tokens, or even other dfm
object.

Usage

dfm(
x,
tolower = TRUE,
remove_padding = FALSE,
verbose = quanteda_options("verbose"),
...

)

Arguments

x a tokens or dfm object

tolower convert all features to lowercase

remove_padding logical; if TRUE, remove the "pads" left as empty tokens after calling tokens()
or tokens_remove() with padding = TRUE

verbose display messages if TRUE

... not used directly

Value

a dfm object

34 dfm_compress

Changes in version 3

In quanteda v3, many convenience functions formerly available in dfm() were deprecated. For-
merly, dfm() could be called directly on a character or corpus object, but we now steer users
to tokenise their inputs first using tokens(). Other convenience arguments to dfm() were also re-
moved, such as select, dictionary, thesaurus, and groups. All of these functions are available
elsewhere, e.g. through dfm_group(). See news(Version >= "2.9", package = "quanteda") for
details.

See Also

dfm_select(), dfm

Examples

for a corpus
toks <- data_corpus_inaugural %>%

corpus_subset(Year > 1980) %>%
tokens()

dfm(toks)

removal options
toks <- tokens(c("a b c", "A B C D")) %>%

tokens_remove("b", padding = TRUE)
toks
dfm(toks)
dfm(toks) %>%
dfm_remove(pattern = "") # remove "pads"

preserving case
dfm(toks, tolower = FALSE)

dfm_compress Recombine a dfm or fcm by combining identical dimension elements

Description

"Compresses" or groups a dfm or fcm whose dimension names are the same, for either documents
or features. This may happen, for instance, if features are made equivalent through application of a
thesaurus. It could also be needed after a cbind.dfm() or rbind.dfm() operation. In most cases,
you will not need to call dfm_compress, since it is called automatically by functions that change
the dimensions of the dfm, e.g. dfm_tolower().

Usage

dfm_compress(x, margin = c("both", "documents", "features"))

fcm_compress(x)

dfm_compress 35

Arguments

x input object, a dfm or fcm

margin character indicating on which margin to compress a dfm, either "documents",
"features", or "both" (default). For fcm objects, "documents" has no effect.

Value

dfm_compress returns a dfm whose dimensions have been recombined by summing the cells across
identical dimension names (docnames or featnames). The docvars will be preserved for combining
by features but not when documents are combined.

fcm_compress returns an fcm whose features have been recombined by combining counts of iden-
tical features, summing their counts.

Note

fcm_compress works only when the fcm was created with a document context.

Examples

dfm_compress examples
dfmat <- rbind(dfm(tokens(c("b A A", "C C a b B")), tolower = FALSE),

dfm(tokens("A C C C C C"), tolower = FALSE))
colnames(dfmat) <- char_tolower(featnames(dfmat))
dfmat
dfm_compress(dfmat, margin = "documents")
dfm_compress(dfmat, margin = "features")
dfm_compress(dfmat)

no effect if no compression needed
dfmatsubset <- dfm(tokens(data_corpus_inaugural[1:5]))
dim(dfmatsubset)
dim(dfm_compress(dfmatsubset))

compress an fcm
fcmat1 <- fcm(tokens("A D a C E a d F e B A C E D"),

context = "window", window = 3)
this will produce an error:
fcm_compress(fcmat1)

txt <- c("The fox JUMPED over the dog.",
"The dog jumped over the fox.")

toks <- tokens(txt, remove_punct = TRUE)
fcmat2 <- fcm(toks, context = "document")
colnames(fcmat2) <- rownames(fcmat2) <- tolower(colnames(fcmat2))
colnames(fcmat2)[5] <- rownames(fcmat2)[5] <- "fox"
fcmat2
fcm_compress(fcmat2)

36 dfm_group

dfm_group Combine documents in a dfm by a grouping variable

Description

Combine documents in a dfm by a grouping variable, by summing the cell frequencies within group
and creating new "documents" with the group labels.

Usage

dfm_group(x, groups = docid(x), fill = FALSE, force = FALSE)

Arguments

x a dfm

groups grouping variable for sampling, equal in length to the number of documents.
This will be evaluated in the docvars data.frame, so that docvars may be referred
to by name without quoting. This also changes previous behaviours for groups.
See news(Version >= "3.0", package = "quanteda") for details.

fill logical; if TRUE and groups is a factor, then use all levels of the factor when
forming the new documents of the grouped object. This will result in a new
"document" with empty content for levels not observed, but for which an empty
document may be needed. If groups is a factor of dates, for instance, then fill
= TRUE ensures that the new object will consist of one new "document" by date,
regardless of whether any documents previously existed with that date. Has no
effect if the groups variable(s) are not factors.

force logical; if TRUE, group by summing existing counts, even if the dfm has been
weighted. This can result in invalid sums, such as adding log counts (when a
dfm has been weighted by "logcount" for instance using dfm_weight()). Not
needed when the term weight schemes "count" and "prop".

Value

dfm_group returns a dfm whose documents are equal to the unique group combinations, and whose
cell values are the sums of the previous values summed by group. Document-level variables that
have no variation within groups are saved in docvars. Document-level variables that are lists are
dropped from grouping, even when these exhibit no variation within groups.

Examples

corp <- corpus(c("a a b", "a b c c", "a c d d", "a c c d"),
docvars = data.frame(grp = c("grp1", "grp1", "grp2", "grp2")))

dfmat <- dfm(tokens(corp))
dfm_group(dfmat, groups = grp)
dfm_group(dfmat, groups = c(1, 1, 2, 2))

with fill = TRUE

dfm_lookup 37

dfm_group(dfmat, fill = TRUE,
groups = factor(c("A", "A", "B", "C"), levels = LETTERS[1:4]))

dfm_lookup Apply a dictionary to a dfm

Description

Apply a dictionary to a dfm by looking up all dfm features for matches in a a set of dictionary
values, and replace those features with a count of the dictionary’s keys. If exclusive = FALSE
then the behaviour is to apply a "thesaurus", where each value match is replaced by the dictionary
key, converted to capitals if capkeys = TRUE (so that the replacements are easily distinguished from
features that were terms found originally in the document).

Usage

dfm_lookup(
x,
dictionary,
levels = 1:5,
exclusive = TRUE,
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
capkeys = !exclusive,
nomatch = NULL,
verbose = quanteda_options("verbose")

)

Arguments

x the dfm to which the dictionary will be applied

dictionary a dictionary-class object

levels levels of entries in a hierarchical dictionary that will be applied

exclusive if TRUE, remove all features not in dictionary, otherwise, replace values in dic-
tionary with keys while leaving other features unaffected

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

capkeys if TRUE, convert dictionary keys to uppercase to distinguish them from other
features

nomatch an optional character naming a new feature that will contain the counts of fea-
tures of x not matched to a dictionary key. If NULL (default), do not tabulate
unmatched features.

verbose print status messages if TRUE

38 dfm_match

Note

If using dfm_lookup with dictionaries containing multi-word values, matches will only occur if the
features themselves are multi-word or formed from n-grams. A better way to match dictionary val-
ues that include multi-word patterns is to apply tokens_lookup() to the tokens, and then construct
the dfm.

See Also

dfm_replace

Examples

dict <- dictionary(list(christmas = c("Christmas", "Santa", "holiday"),
opposition = c("Opposition", "reject", "notincorpus"),
taxglob = "tax*",
taxregex = "tax.+$",
country = c("United_States", "Sweden")))

dfmat <- dfm(tokens(c("My Christmas was ruined by your opposition tax plan.",
"Does the United_States or Sweden have more progressive taxation?")),

remove = stopwords("english"))
dfmat

glob format
dfm_lookup(dfmat, dict, valuetype = "glob")
dfm_lookup(dfmat, dict, valuetype = "glob", case_insensitive = FALSE)

regex v. glob format: note that "united_states" is a regex match for "tax*"
dfm_lookup(dfmat, dict, valuetype = "glob")
dfm_lookup(dfmat, dict, valuetype = "regex", case_insensitive = TRUE)

fixed format: no pattern matching
dfm_lookup(dfmat, dict, valuetype = "fixed")
dfm_lookup(dfmat, dict, valuetype = "fixed", case_insensitive = FALSE)

show unmatched tokens
dfm_lookup(dfmat, dict, nomatch = "_UNMATCHED")

dfm_match Match the feature set of a dfm to given feature names

Description

Match the feature set of a dfm to a specified vector of feature names. For existing features in x for
which there is an exact match for an element of features, these will be included. Any features in
x not features will be discarded, and any feature names specified in features but not found in x
will be added with all zero counts.

dfm_replace 39

Usage

dfm_match(x, features)

Arguments

x a dfm

features character; the feature names to be matched in the output dfm

Details

Selecting on another dfm’s featnames() is useful when you have trained a model on one dfm, and
need to project this onto a test set whose features must be identical. It is also used in bootstrap_dfm().

Value

A dfm whose features are identical to those specified in features.

Note

Unlike dfm_select(), this function will add feature names not already present in x. It also provides
only fixed, case-sensitive matches. For more flexible feature selection, see dfm_select().

See Also

dfm_select()

Examples

matching a dfm to a feature vector
dfm_match(dfm(""), letters[1:5])
dfm_match(data_dfm_lbgexample, c("A", "B", "Z"))
dfm_match(data_dfm_lbgexample, c("B", "newfeat1", "A", "newfeat2"))

matching one dfm to another
txt <- c("This is text one", "The second text", "This is text three")
(dfmat1 <- dfm(tokens(txt[1:2])))
(dfmat2 <- dfm(tokens(txt[2:3])))
(dfmat3 <- dfm_match(dfmat1, featnames(dfmat2)))
setequal(featnames(dfmat2), featnames(dfmat3))

dfm_replace Replace features in dfm

Description

Substitute features based on vectorized one-to-one matching for lemmatization or user-defined
stemming.

40 dfm_sample

Usage

dfm_replace(
x,
pattern,
replacement,
case_insensitive = TRUE,
verbose = quanteda_options("verbose")

)

Arguments

x dfm whose features will be replaced

pattern a character vector. See pattern for more details.

replacement if pattern is a character vector, then replacement must be character vector of
equal length, for a 1:1 match.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

verbose print status messages if TRUE

Examples

dfmat1 <- dfm(data_corpus_inaugural)

lemmatization
taxwords <- c("tax", "taxing", "taxed", "taxed", "taxation")
lemma <- rep("TAX", length(taxwords))
featnames(dfm_select(dfmat1, pattern = taxwords))
dfmat2 <- dfm_replace(dfmat1, pattern = taxwords, replacement = lemma)
featnames(dfm_select(dfmat2, pattern = taxwords))

stemming
feat <- featnames(dfmat1)
featstem <- char_wordstem(feat, "porter")
dfmat3 <- dfm_replace(dfmat1, pattern = feat, replacement = featstem, case_insensitive = FALSE)
identical(dfmat3, dfm_wordstem(dfmat1, "porter"))

dfm_sample Randomly sample documents from a dfm

Description

Take a random sample of documents of the specified size from a dfm, with or without replacement,
optionally by grouping variables or with probability weights.

Usage

dfm_sample(x, size = NULL, replace = FALSE, prob = NULL, by = NULL)

dfm_select 41

Arguments

x the dfm object whose documents will be sampled

size a positive number, the number of documents to select; when used with by, the
number to select from each group or a vector equal in length to the number of
groups defining the samples to be chosen in each category of by. By defining
a size larger than the number of documents, it is possible to oversample when
replace = TRUE.

replace if TRUE, sample with replacement

prob a vector of probability weights for obtaining the elements of the vector being
sampled. May not be applied when by is used.

by optional grouping variable for sampling. This will be evaluated in the doc-
vars data.frame, so that docvars may be referred to by name without quoting.
This also changes previous behaviours for by. See news(Version >= "2.9",
package = "quanteda") for details.

Value

a dfm object (re)sampled on the documents, containing the document variables for the documents
sampled.

See Also

sample

Examples

set.seed(10)
dfmat <- dfm(tokens(c("a b c c d", "a a c c d d d", "a b b c")))
dfmat
dfm_sample(dfmat)
dfm_sample(dfmat, replace = TRUE)

by groups
dfmat <- dfm(tokens(data_corpus_inaugural[50:58]))
dfm_sample(dfmat, by = Party, size = 2)

dfm_select Select features from a dfm or fcm

Description

This function selects or removes features from a dfm or fcm, based on feature name matches with
pattern. The most common usages are to eliminate features from a dfm already constructed, such
as stopwords, or to select only terms of interest from a dictionary.

42 dfm_select

Usage

dfm_select(
x,
pattern = NULL,
selection = c("keep", "remove"),
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
min_nchar = NULL,
max_nchar = NULL,
padding = FALSE,
verbose = quanteda_options("verbose")

)

dfm_remove(x, ...)

dfm_keep(x, ...)

fcm_select(
x,
pattern = NULL,
selection = c("keep", "remove"),
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
verbose = quanteda_options("verbose"),
...

)

fcm_remove(x, ...)

fcm_keep(x, ...)

Arguments

x the dfm or fcm object whose features will be selected

pattern a character vector, list of character vectors, dictionary, or collocations object.
See pattern for details.

selection whether to keep or remove the features

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values
min_nchar, max_nchar

optional numerics specifying the minimum and maximum length in characters
for tokens to be removed or kept; defaults are NULL for no limits. These are
applied after (and hence, in addition to) any selection based on pattern matches.

padding if TRUE, record the number of removed tokens in the first column.

dfm_select 43

verbose if TRUE, print message about how many pattern were removed

... used only for passing arguments from dfm_remove or dfm_keep to dfm_select.
Cannot include selection.

Details

dfm_remove and fcm_remove are simply a convenience wrappers to calling dfm_select and fcm_select
with selection = "remove".

dfm_keep and fcm_keep are simply a convenience wrappers to calling dfm_select and fcm_select
with selection = "keep".

Value

A dfm or fcm object, after the feature selection has been applied.

For compatibility with earlier versions, when pattern is a dfm object and selection = "keep",
then this will be equivalent to calling dfm_match(). In this case, the following settings are always
used: case_insensitive = FALSE, and valuetype = "fixed". This functionality is deprecated,
however, and you should use dfm_match() instead.

Note

This function selects features based on their labels. To select features based on the values of the
document-feature matrix, use dfm_trim().

See Also

dfm_match()

Examples

dfmat <- tokens(c("My Christmas was ruined by your opposition tax plan.",
"Does the United_States or Sweden have more progressive taxation?")) %>%

dfm(tolower = FALSE)
dict <- dictionary(list(countries = c("United_States", "Sweden", "France"),

wordsEndingInY = c("by", "my"),
notintext = "blahblah"))

dfm_select(dfmat, pattern = dict)
dfm_select(dfmat, pattern = dict, case_insensitive = FALSE)
dfm_select(dfmat, pattern = c("s$", ".y"), selection = "keep", valuetype = "regex")
dfm_select(dfmat, pattern = c("s$", ".y"), selection = "remove", valuetype = "regex")
dfm_select(dfmat, pattern = stopwords("english"), selection = "keep", valuetype = "fixed")
dfm_select(dfmat, pattern = stopwords("english"), selection = "remove", valuetype = "fixed")

select based on character length
dfm_select(dfmat, min_nchar = 5)

dfmat <- dfm(tokens(c("This is a document with lots of stopwords.",
"No if, and, or but about it: lots of stopwords.")))

dfmat
dfm_remove(dfmat, stopwords("english"))

44 dfm_sort

toks <- tokens(c("this contains lots of stopwords",
"no if, and, or but about it: lots"),

remove_punct = TRUE)
fcmat <- fcm(toks)
fcmat
fcm_remove(fcmat, stopwords("english"))

dfm_sort Sort a dfm by frequency of one or more margins

Description

Sorts a dfm by descending frequency of total features, total features in documents, or both.

Usage

dfm_sort(x, decreasing = TRUE, margin = c("features", "documents", "both"))

Arguments

x Document-feature matrix created by dfm()

decreasing logical; if TRUE, the sort will be in descending order, otherwise sort in increasing
order

margin which margin to sort on features to sort by frequency of features, documents
to sort by total feature counts in documents, and both to sort by both

Value

A sorted dfm matrix object

Author(s)

Ken Benoit

Examples

dfmat <- dfm(data_corpus_inaugural)
head(dfmat)
head(dfm_sort(dfmat))
head(dfm_sort(dfmat, decreasing = FALSE, "both"))

dfm_subset 45

dfm_subset Extract a subset of a dfm

Description

Returns document subsets of a dfm that meet certain conditions, including direct logical operations
on docvars (document-level variables). dfm_subset functions identically to subset.data.frame(),
using non-standard evaluation to evaluate conditions based on the docvars in the dfm.

Usage

dfm_subset(x, subset, drop_docid = TRUE, ...)

Arguments

x dfm object to be subsetted

subset logical expression indicating the documents to keep: missing values are taken
as false

drop_docid if TRUE, docid for documents are removed as the result of subsetting.

... not used

Details

To select or subset features, see dfm_select() instead.

When select is a dfm, then the returned dfm will be equal in document dimension and order to the
dfm used for selection. This is the document-level version of using dfm_select() where pattern
is a dfm: that function matches features, while dfm_subset will match documents.

Value

dfm object, with a subset of documents (and docvars) selected according to arguments

See Also

subset.data.frame()

Examples

corp <- corpus(c(d1 = "a b c d", d2 = "a a b e",
d3 = "b b c e", d4 = "e e f a b"),

docvars = data.frame(grp = c(1, 1, 2, 3)))
dfmat <- dfm(tokens(corp))
selecting on a docvars condition
dfm_subset(dfmat, grp > 1)
selecting on a supplied vector
dfm_subset(dfmat, c(TRUE, FALSE, TRUE, FALSE))

46 dfm_tfidf

dfm_tfidf Weight a dfm by tf-idf

Description

Weight a dfm by term frequency-inverse document frequency (tf-idf), with full control over options.
Uses fully sparse methods for efficiency.

Usage

dfm_tfidf(
x,
scheme_tf = "count",
scheme_df = "inverse",
base = 10,
force = FALSE,
...

)

Arguments

x object for which idf or tf-idf will be computed (a document-feature matrix)

scheme_tf scheme for dfm_weight(); defaults to "count"

scheme_df scheme for docfreq(); defaults to "inverse".

base the base for the logarithms in the dfm_weight() and docfreq() calls; default
is 10

force logical; if TRUE, apply weighting scheme even if the dfm has been weighted
before. This can result in invalid weights, such as as weighting by "prop" after
applying "logcount", or after having grouped a dfm using dfm_group().

... additional arguments passed to docfreq.

Details

dfm_tfidf computes term frequency-inverse document frequency weighting. The default is to use
counts instead of normalized term frequency (the relative term frequency within document), but this
can be overridden using scheme_tf = "prop".

References

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cam-
bridge: Cambridge University Press. https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.
pdf

https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

dfm_tolower 47

Examples

dfmat1 <- as.dfm(data_dfm_lbgexample)
head(dfmat1[, 5:10])
head(dfm_tfidf(dfmat1)[, 5:10])
docfreq(dfmat1)[5:15]
head(dfm_weight(dfmat1)[, 5:10])

replication of worked example from
https://en.wikipedia.org/wiki/Tf-idf#Example_of_tf.E2.80.93idf
dfmat2 <-

matrix(c(1,1,2,1,0,0, 1,1,0,0,2,3),
byrow = TRUE, nrow = 2,
dimnames = list(docs = c("document1", "document2"),

features = c("this", "is", "a", "sample",
"another", "example"))) %>%

as.dfm()
dfmat2
docfreq(dfmat2)
dfm_tfidf(dfmat2, scheme_tf = "prop") %>% round(digits = 2)

Not run:
comparison with tm
if (requireNamespace("tm")) {

convert(dfmat2, to = "tm") %>% tm::weightTfIdf() %>% as.matrix()
same as:
dfm_tfidf(dfmat2, base = 2, scheme_tf = "prop")

}

End(Not run)

dfm_tolower Convert the case of the features of a dfm and combine

Description

dfm_tolower() and dfm_toupper() convert the features of the dfm or fcm to lower and upper
case, respectively, and then recombine the counts.

Usage

dfm_tolower(x, keep_acronyms = FALSE)

dfm_toupper(x)

fcm_tolower(x, keep_acronyms = FALSE)

fcm_toupper(x)

48 dfm_trim

Arguments

x the input object whose character/tokens/feature elements will be case-converted

keep_acronyms logical; if TRUE, do not lowercase any all-uppercase words (applies only to
*_tolower() functions)

Details

fcm_tolower() and fcm_toupper() convert both dimensions of the fcm to lower and upper case,
respectively, and then recombine the counts. This works only on fcm objects created with context
= "document".

Examples

for a document-feature matrix
dfmat <- dfm(tokens(c("b A A", "C C a b B")), tolower = FALSE)
dfmat
dfm_tolower(dfmat)
dfm_toupper(dfmat)

for a feature co-occurrence matrix
fcmat <- fcm(tokens(c("b A A d", "C C a b B e")),

context = "document")
fcmat
fcm_tolower(fcmat)
fcm_toupper(fcmat)

dfm_trim Trim a dfm using frequency threshold-based feature selection

Description

Returns a document by feature matrix reduced in size based on document and term frequency,
usually in terms of a minimum frequency, but may also be in terms of maximum frequencies.
Setting a combination of minimum and maximum frequencies will select features based on a range.

Feature selection is implemented by considering features across all documents, by summing them
for term frequency, or counting the documents in which they occur for document frequency. Rank
and quantile versions of these are also implemented, for taking the first n features in terms of de-
scending order of overall global counts or document frequencies, or as a quantile of all frequencies.

Usage

dfm_trim(
x,
min_termfreq = NULL,
max_termfreq = NULL,
termfreq_type = c("count", "prop", "rank", "quantile"),
min_docfreq = NULL,

dfm_trim 49

max_docfreq = NULL,
docfreq_type = c("count", "prop", "rank", "quantile"),
sparsity = NULL,
verbose = quanteda_options("verbose"),
...

)

Arguments

x a dfm object
min_termfreq, max_termfreq

minimum/maximum values of feature frequencies across all documents, be-
low/above which features will be removed

termfreq_type how min_termfreq and max_termfreq are interpreted. "count" sums the fre-
quencies; "prop" divides the term frequencies by the total sum; "rank" is
matched against the inverted ranking of features in terms of overall frequency,
so that 1, 2, ... are the highest and second highest frequency features, and so
on; "quantile" sets the cutoffs according to the quantiles (see quantile()) of
term frequencies.

min_docfreq, max_docfreq

minimum/maximum values of a feature’s document frequency, below/above which
features will be removed

docfreq_type specify how min_docfreq and max_docfreq are interpreted. "count" is the
same as [docfreq](x, scheme = "count"); "prop" divides the document
frequencies by the total sum; "rank" is matched against the inverted ranking of
document frequency, so that 1, 2, ... are the features with the highest and second
highest document frequencies, and so on; "quantile" sets the cutoffs according
to the quantiles (see quantile()) of document frequencies.

sparsity equivalent to 1 - min_docfreq, included for comparison with tm

verbose print messages

... not used

Value

A dfm reduced in features (with the same number of documents)

Note

Trimming a dfm object is an operation based on the values in the document-feature matrix. To select
subsets of a dfm based on the features themselves (meaning the feature labels from featnames())
– such as those matching a regular expression, or removing features matching a stopword list, use
dfm_select().

See Also

dfm_select(), dfm_sample()

50 dfm_weight

Examples

(dfmat <- dfm(data_corpus_inaugural[1:5]))

keep only words occurring >= 10 times and in >= 2 documents
dfm_trim(dfmat, min_termfreq = 10, min_docfreq = 2)

keep only words occurring >= 10 times and in at least 0.4 of the documents
dfm_trim(dfmat, min_termfreq = 10, min_docfreq = 0.4)

keep only words occurring <= 10 times and in <=2 documents
dfm_trim(dfmat, max_termfreq = 10, max_docfreq = 2)

keep only words occurring <= 10 times and in at most 3/4 of the documents
dfm_trim(dfmat, max_termfreq = 10, max_docfreq = 0.75)

keep only words occurring 5 times in 1000, and in 2 of 5 of documents
dfm_trim(dfmat, min_docfreq = 0.4, min_termfreq = 0.005, termfreq_type = "prop")

keep only words occurring frequently (top 20%) and in <=2 documents
dfm_trim(dfmat, min_termfreq = 0.2, max_docfreq = 2, termfreq_type = "quantile")

Not run:
compare to removeSparseTerms from the tm package
(dfmattm <- convert(dfmat, "tm"))
tm::removeSparseTerms(dfmattm, 0.7)
dfm_trim(dfmat, min_docfreq = 0.3)
dfm_trim(dfmat, sparsity = 0.7)

End(Not run)

dfm_weight Weight the feature frequencies in a dfm

Description

Weight the feature frequencies in a dfm

Usage

dfm_weight(
x,
scheme = c("count", "prop", "propmax", "logcount", "boolean", "augmented", "logave"),
weights = NULL,
base = 10,
k = 0.5,
smoothing = 0.5,
force = FALSE

)

dfm_weight 51

dfm_smooth(x, smoothing = 1)

Arguments

x document-feature matrix created by dfm

scheme a label of the weight type:

count tfij , an integer feature count (default when a dfm is created)
prop the proportion of the feature counts of total feature counts (aka relative

frequency), calculated as tfij/
∑

j tfij

propmax the proportion of the feature counts of the highest feature count in a
document, tfij/maxjtfij

logcount take the 1 + the logarithm of each count, for the given base, or 0 if
the count was zero: 1 + logbase(tfij) if tfij > 0, or 0 otherwise.

boolean recode all non-zero counts as 1
augmented equivalent to k + (1− k)∗ dfm_weight(x, "propmax")

logave (1 + the log of the counts) / (1 + log of the average count within docu-
ment), or

1 + logbasetfij
1 + logbase(

∑
j tfij/Ni)

logsmooth log of the counts + smooth, or tfij + s

weights if scheme is unused, then weights can be a named numeric vector of weights
to be applied to the dfm, where the names of the vector correspond to feature
labels of the dfm, and the weights will be applied as multipliers to the existing
feature counts for the corresponding named features. Any features not named
will be assigned a weight of 1.0 (meaning they will be unchanged).

base base for the logarithm when scheme is "logcount" or logave

k the k for the augmentation when scheme = "augmented"

smoothing constant added to the dfm cells for smoothing, default is 1 for dfm_smooth()
and 0.5 for dfm_weight()

force logical; if TRUE, apply weighting scheme even if the dfm has been weighted
before. This can result in invalid weights, such as as weighting by "prop" after
applying "logcount", or after having grouped a dfm using dfm_group().

Value

dfm_weight returns the dfm with weighted values. Note the because the default weighting scheme
is "count", simply calling this function on an unweighted dfm will return the same object. Many
users will want the normalized dfm consisting of the proportions of the feature counts within each
document, which requires setting scheme = "prop".

dfm_smooth returns a dfm whose values have been smoothed by adding the smoothing amount.
Note that this effectively converts a matrix from sparse to dense format, so may exceed memory
requirements depending on the size of your input matrix.

52 dictionary

References

Manning, C.D., Raghavan, P., & Schütze, H. (2008). An Introduction to Information Retrieval.
Cambridge: Cambridge University Press. https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.
pdf

See Also

docfreq()

Examples

dfmat1 <- dfm(data_corpus_inaugural)

dfmat2 <- dfm_weight(dfmat1, scheme = "prop")
topfeatures(dfmat2)
dfmat3 <- dfm_weight(dfmat1)
topfeatures(dfmat3)
dfmat4 <- dfm_weight(dfmat1, scheme = "logcount")
topfeatures(dfmat4)
dfmat5 <- dfm_weight(dfmat1, scheme = "logave")
topfeatures(dfmat5)

combine these methods for more complex dfm_weightings, e.g. as in Section 6.4
of Introduction to Information Retrieval
head(dfm_tfidf(dfmat1, scheme_tf = "logcount"))

apply numeric weights
str <- c("apple is better than banana", "banana banana apple much better")
(dfmat6 <- dfm(str, remove = stopwords("english")))
dfm_weight(dfmat6, weights = c(apple = 5, banana = 3, much = 0.5))

smooth the dfm
dfmat <- dfm(data_corpus_inaugural)
dfm_smooth(dfmat, 0.5)

dictionary Create a dictionary

Description

Create a quanteda dictionary class object, either from a list or by importing from a foreign for-
mat. Currently supported input file formats are the WordStat, LIWC, Lexicoder v2 and v3, and
Yoshikoder formats. The import using the LIWC format works with all currently available dictio-
nary files supplied as part of the LIWC 2001, 2007, and 2015 software (see References).

https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

dictionary 53

Usage

dictionary(
x,
file = NULL,
format = NULL,
separator = " ",
tolower = TRUE,
encoding = "utf-8"

)

Arguments

x a named list of character vector dictionary entries, including valuetype pattern
matches, and including multi-word expressions separated by concatenator.
See examples. This argument may be omitted if the dictionary is read from
file.

file file identifier for a foreign dictionary

format character identifier for the format of the foreign dictionary. If not supplied, the
format is guessed from the dictionary file’s extension. Available options are:

"wordstat" format used by Provalis Research’s WordStat software
"LIWC" format used by the Linguistic Inquiry and Word Count software
"yoshikoder" format used by Yoshikoder software
"lexicoder" format used by Lexicoder
"YAML" the standard YAML format

separator the character in between multi-word dictionary values. This defaults to " ".

tolower if TRUE, convert all dictionary values to lowercase

encoding additional optional encoding value for reading in imported dictionaries. This
uses the iconv labels for encoding. See the "Encoding" section of the help for
file.

Details

Dictionaries can be subsetted using [and [[, operating the same as the equivalent list operators.

Dictionaries can be coerced from lists using as.dictionary(), coerced to named lists of characters
using as.list(), and checked using is.dictionary().

Value

A dictionary class object, essentially a specially classed named list of characters.

References

WordStat dictionaries page, from Provalis Research https://provalisresearch.com/products/
content-analysis-software/wordstat-dictionary/.

https://provalisresearch.com/products/content-analysis-software/wordstat-dictionary/
https://provalisresearch.com/products/content-analysis-software/wordstat-dictionary/

54 docfreq

Pennebaker, J.W., Chung, C.K., Ireland, M., Gonzales, A., & Booth, R.J. (2007). The development
and psychometric properties of LIWC2007. [Software manual]. Austin, TX (https://www.liwc.
app/).

Yoshikoder page, from Will Lowe https://conjugateprior.org/software/yoshikoder/.

Lexicoder format, https://www.snsoroka.com/data-lexicoder/

See Also

dfm, as.dictionary(), as.list(), is.dictionary()

Examples

corp <- corpus_subset(data_corpus_inaugural, Year>1900)
dict <- dictionary(list(christmas = c("Christmas", "Santa", "holiday"),

opposition = c("Opposition", "reject", "notincorpus"),
taxing = "taxing",
taxation = "taxation",
taxregex = "tax*",
country = "america"))

head(dfm(tokens(corp), dictionary = dict))

subset a dictionary
dict[1:2]
dict[c("christmas", "opposition")]
dict[["opposition"]]

combine dictionaries
c(dict["christmas"], dict["country"])

Not run:
import the Laver-Garry dictionary from Provalis Research
dictfile <- tempfile()
download.file("https://provalisresearch.com/Download/LaverGarry.zip",

dictfile, mode = "wb")
unzip(dictfile, exdir = (td <- tempdir()))
dictlg <- dictionary(file = paste(td, "LaverGarry.cat", sep = "/"))
head(dfm(data_corpus_inaugural, dictionary = dictlg))

import a LIWC formatted dictionary from http://www.moralfoundations.org
download.file("http://bit.ly/37cV95h", tf <- tempfile())
dictliwc <- dictionary(file = tf, format = "LIWC")
head(dfm(data_corpus_inaugural, dictionary = dictliwc))

End(Not run)

docfreq Compute the (weighted) document frequency of a feature

https://www.liwc.app/
https://www.liwc.app/
https://conjugateprior.org/software/yoshikoder/
https://www.snsoroka.com/data-lexicoder/

docfreq 55

Description

For a dfm object, returns a (weighted) document frequency for each term. The default is a simple
count of the number of documents in which a feature occurs more than a given frequency threshold.
(The default threshold is zero, meaning that any feature occurring at least once in a document will
be counted.)

Usage

docfreq(
x,
scheme = c("count", "inverse", "inversemax", "inverseprob", "unary"),
base = 10,
smoothing = 0,
k = 0,
threshold = 0

)

Arguments

x a dfm
scheme type of document frequency weighting, computed as follows, where N is de-

fined as the number of documents in the dfm and s is the smoothing constant:
count dfj , the number of documents for which nij > threshold

inverse

logbase

(
s+

N

k + dfj

)
inversemax

logbase

(
s+

max(dfj)
k + dfj

)
inverseprob

logbase

(
N − dfj
k + dfj

)
unary 1 for each feature

base the base with respect to which logarithms in the inverse document frequency
weightings are computed; default is 10 (see Manning, Raghavan, and Schütze
2008, p123).

smoothing added to the quotient before taking the logarithm
k added to the denominator in the "inverse" weighting types, to prevent a zero

document count for a term
threshold numeric value of the threshold above which a feature will considered in the

computation of document frequency. The default is 0, meaning that a feature’s
document frequency will be the number of documents in which it occurs greater
than zero times.

Value

a numeric vector of document frequencies for each feature

56 docnames

References

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cam-
bridge: Cambridge University Press. https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.
pdf

Examples

dfmat1 <- dfm(data_corpus_inaugural[1:2])
docfreq(dfmat1[, 1:20])

replication of worked example from
https://en.wikipedia.org/wiki/Tf-idf#Example_of_tf.E2.80.93idf
dfmat2 <-

matrix(c(1,1,2,1,0,0, 1,1,0,0,2,3),
byrow = TRUE, nrow = 2,
dimnames = list(docs = c("document1", "document2"),

features = c("this", "is", "a", "sample",
"another", "example"))) %>%

as.dfm()
dfmat2
docfreq(dfmat2)
docfreq(dfmat2, scheme = "inverse")
docfreq(dfmat2, scheme = "inverse", k = 1, smoothing = 1)
docfreq(dfmat2, scheme = "unary")
docfreq(dfmat2, scheme = "inversemax")
docfreq(dfmat2, scheme = "inverseprob")

docnames Get or set document names

Description

Get or set the document names of a corpus, tokens, or dfm object.

Usage

docnames(x)

docnames(x) <- value

docid(x)

Arguments

x the object with docnames

value a character vector of the same length as x

https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

docnames 57

Value

docnames returns a character vector of the document names
docnames <- assigns new values to the document names of an object. docnames can only be
character, so any non-character value assigned to be a docname will be coerced to mode character.

docid returns an internal variable denoting the original "docname" from which a document came.
Unless an object has been reshaped (e.g. corpus_reshape(), split (e.g.tokens_split()), or seg-
mented (e.g. corpus_segment()), docid(x) will return the docnames.

Note

docid is designed primarily for developers, not for end users. In most cases, you will want
docnames instead. It is, however, the default for groups, so that documents that have been previously
reshaped (e.g. corpus_reshape(), split (e.g.tokens_split()), or segmented (e.g. corpus_segment())
will be regrouped into their original docnames when groups = docid(x).

See Also

featnames()

Examples

get and set doument names to a corpus
corp <- data_corpus_inaugural
docnames(corp) <- char_tolower(docnames(corp))

get and set doument names to a tokens
toks <- tokens(data_corpus_inaugural)
docnames(toks) <- char_tolower(docnames(toks))

get and set doument names to a dfm
dfmat <- dfm(data_corpus_inaugural[1:5])
docnames(dfmat) <- char_tolower(docnames(dfmat))

reassign the document names of the inaugural speech corpus
docnames(data_corpus_inaugural) <- paste("Speech", 1:ndoc(data_corpus_inaugural), sep="")

docid
corp <- corpus(c(textone = "This is a sentence. Another sentence. Yet another.",

textwo = "Sentence 1. Sentence 2."))
corpsent <- corp %>%

corpus_reshape(to = "sentences")
docnames(corpsent)
docid(corpsent)
docid(tokens(corpsent))
docid(dfm(tokens(corpsent)))

58 docvars

docvars Get or set document-level variables

Description

Get or set variables associated with a document in a corpus, tokens or dfm object.

Usage

docvars(x, field = NULL)

docvars(x, field = NULL) <- value

S3 method for class 'corpus'
x$name

S3 replacement method for class 'corpus'
x$name <- value

S3 method for class 'tokens'
x$name

S3 replacement method for class 'tokens'
x$name <- value

S3 method for class 'dfm'
x$name

S3 replacement method for class 'dfm'
x$name <- value

Arguments

x corpus, tokens, or dfm object whose document-level variables will be read or set

field string containing the document-level variable name

value a vector of document variable values to be assigned to name

name a literal character string specifying a single docvars name

Value

docvars returns a data.frame of the document-level variables, dropping the second dimension to
form a vector if a single docvar is returned.
docvars<- assigns value to the named field

Accessing or assigning docvars using the $ operator

As of quanteda v2, it is possible to access and assign a docvar using the $ operator. See Examples.

fcm 59

Note

Reassigning document variables for a tokens or dfm object is allowed, but discouraged. A better,
more reproducible workflow is to create your docvars as desired in the corpus, and let these continue
to be attached "downstream" after tokenization and forming a document-feature matrix. Recogniz-
ing that in some cases, you may need to modify or add document variables to downstream objects,
the assignment operator is defined for tokens or dfm objects as well. Use with caution.

Examples

retrieving docvars from a corpus
head(docvars(data_corpus_inaugural))
tail(docvars(data_corpus_inaugural, "President"), 10)
head(data_corpus_inaugural$President)

assigning document variables to a corpus
corp <- data_corpus_inaugural
docvars(corp, "President") <- paste("prez", 1:ndoc(corp), sep = "")
head(docvars(corp))
corp$fullname <- paste(data_corpus_inaugural$FirstName,

data_corpus_inaugural$President)
tail(corp$fullname)

accessing or assigning docvars for a corpus using "$"
data_corpus_inaugural$Year
data_corpus_inaugural$century <- floor(data_corpus_inaugural$Year / 100)
data_corpus_inaugural$century

accessing or assigning docvars for tokens using "$"
toks <- tokens(corpus_subset(data_corpus_inaugural, Year <= 1805))
toks$Year
toks$Year <- 1991:1995
toks$Year
toks$nonexistent <- TRUE
docvars(toks)

accessing or assigning docvars for a dfm using "$"
dfmat <- dfm(toks)
dfmat$Year
dfmat$Year <- 1991:1995
dfmat$Year
dfmat$nonexistent <- TRUE
docvars(dfmat)

fcm Create a feature co-occurrence matrix

60 fcm

Description

Create a sparse feature co-occurrence matrix, measuring co-occurrences of features within a user-
defined context. The context can be defined as a document or a window within a collection of
documents, with an optional vector of weights applied to the co-occurrence counts.

Usage

fcm(
x,
context = c("document", "window"),
count = c("frequency", "boolean", "weighted"),
window = 5L,
weights = NULL,
ordered = FALSE,
tri = TRUE,
...

)

Arguments

x a tokens, or dfm object from which to generate the feature co-occurrence matrix

context the context in which to consider term co-occurrence: "document" for co-occurrence
counts within document; "window" for co-occurrence within a defined window
of words, which requires a positive integer value for window. Note: if x is a dfm
object, then context can only be "document".

count how to count co-occurrences:

"frequency" count the number of co-occurrences within the context

"boolean" count only the co-occurrence or not within the context, irrespective
of how many times it occurs.

"weighted" count a weighted function of counts, typically as a function of dis-
tance from the target feature. Only makes sense for context = "window".

window positive integer value for the size of a window on either side of the target feature,
default is 5, meaning 5 words before and after the target feature

weights a vector of weights applied to each distance from 1:window, strictly decreasing
by default; can be a custom-defined vector of the same length as window

ordered if TRUE, count only the forward co-occurrences for each target token for bigram
models, so that the i, j cell of the fcm is the number of times that token j occurs
before the target token i within the window. Only makes sense for context =
"window", and when ordered = TRUE, the argument tri has no effect.

tri if TRUE return only upper triangle (including diagonal). Ignored if ordered =
TRUE.

... not used here

fcm 61

Details

The function fcm() provides a very general implementation of a "context-feature" matrix, consist-
ing of a count of feature co-occurrence within a defined context. This context, following Momtazi
et. al. (2010), can be defined as the document, sentences within documents, syntactic relationships
between features (nouns within a sentence, for instance), or according to a window. When the con-
text is a window, a weighting function is typically applied that is a function of distance from the
target word (see Jurafsky and Martin 2015, Ch. 16) and ordered co-occurrence of the two features
is considered (see Church & Hanks 1990).

fcm provides all of this functionality, returning a V ∗ V matrix (where V is the vocabulary size,
returned by nfeat()). The tri = TRUE option will only return the upper part of the matrix.

Unlike some implementations of co-occurrences, fcm counts feature co-occurrences with them-
selves, meaning that the diagonal will not be zero.

fcm also provides "boolean" counting within the context of "window", which differs from the count-
ing within "document".

is.fcm(x) returns TRUE if and only if its x is an object of type fcm.

Author(s)

Kenneth Benoit (R), Haiyan Wang (R, C++), Kohei Watanabe (C++)

References

Momtazi, S., Khudanpur, S., & Klakow, D. (2010). "A comparative study of word co-occurrence
for term clustering in language model-based sentence retrieval. Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of the ACL, Los Angeles, California,
June 2010, 325-328. https://aclanthology.org/N10-1046/

Jurafsky, D. & Martin, J.H. (2018). From Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition. Draft of
September 23, 2018 (Chapter 6, Vector Semantics). Available at https://web.stanford.edu/
~jurafsky/slp3/.

Church, K. W. & P. Hanks (1990). Word association norms, mutual information, and lexicography.
Computational Linguistics, 16(1), 22-29.

Examples

see http://bit.ly/29b2zOA
toks1 <- tokens(c("A D A C E A D F E B A C E D"))
fcm(toks1, context = "window", window = 2)
fcm(toks1, context = "window", count = "weighted", window = 3)
fcm(toks1, context = "window", count = "weighted", window = 3,

weights = c(3, 2, 1), ordered = TRUE, tri = FALSE)

with multiple documents
toks2 <- tokens(c("a a a b b c", "a a c e", "a c e f g"))
fcm(toks2, context = "document", count = "frequency")
fcm(toks2, context = "document", count = "boolean")
fcm(toks2, context = "window", window = 2)

https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://dl.acm.org/doi/10.5555/89086.89095

62 fcm_sort

txt3 <- c("The quick brown fox jumped over the lazy dog.",
"The dog jumped and ate the fox.")

toks3 <- tokens(char_tolower(txt3), remove_punct = TRUE)
fcm(toks3, context = "document")
fcm(toks3, context = "window", window = 3)

fcm_sort Sort an fcm in alphabetical order of the features

Description

Sorts an fcm in alphabetical order of the features.

Usage

fcm_sort(x)

Arguments

x fcm object

Value

A fcm object whose features have been alphabetically sorted. Differs from fcm_sort() in that this
function sorts the fcm by the feature labels, not the counts of the features.

Author(s)

Kenneth Benoit

Examples

with tri = FALSE
fcmat1 <- fcm(tokens(c("A X Y C B A", "X Y C A B B")), tri = FALSE)
rownames(fcmat1)[3] <- colnames(fcmat1)[3] <- "Z"
fcmat1
fcm_sort(fcmat1)

with tri = TRUE
fcmat2 <- fcm(tokens(c("A X Y C B A", "X Y C A B B")), tri = TRUE)
rownames(fcmat2)[3] <- colnames(fcmat2)[3] <- "Z"
fcmat2
fcm_sort(fcmat2)

featfreq 63

featfreq Compute the frequencies of features

Description

For a dfm object, returns a frequency for each feature, computed across all documents in the dfm.
This is equivalent to colSums(x).

Usage

featfreq(x)

Arguments

x a dfm

Value

a (named) numeric vector of feature frequencies

See Also

dfm_tfidf(), dfm_weight()

Examples

dfmat <- dfm(data_char_sampletext)
featfreq(dfmat)

featnames Get the feature labels from a dfm

Description

Get the features from a document-feature matrix, which are stored as the column names of the dfm
object.

Usage

featnames(x)

Arguments

x the dfm whose features will be extracted

64 index

Value

character vector of the feature labels

Examples

dfmat <- dfm(data_corpus_inaugural)

first 50 features (in original text order)
head(featnames(dfmat), 50)

first 50 features alphabetically
head(sort(featnames(dfmat)), 50)

contrast with descending total frequency order from topfeatures()
names(topfeatures(dfmat, 50))

index Locate a pattern in a tokens object

Description

Locates a pattern within a tokens object, returning the index positions of the beginning and ending
tokens in the pattern.

Usage

index(
x,
pattern,
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE

)

is.index(x)

Arguments

x an input tokens object

pattern a character vector, list of character vectors, dictionary, or collocations object.
See pattern for details.

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

is.collocations 65

Value

a data.frame consisting of one row per pattern match, with columns for the document name, index
positions from and to, and the pattern matched.

is.index returns TRUE if the object was created by index(); FALSE otherwise.

Examples

toks <- tokens(data_corpus_inaugural[1:8])
index(toks, pattern = "secure*")
index(toks, pattern = c("secure*", phrase("united states"))) %>% head()

is.collocations Check if an object is collocations

Description

Function to check if an object is a collocations object, created by quanteda.textstats::textstat_collocations().

Usage

is.collocations(x)

Arguments

x object to be checked

Value

TRUE if the object is of class collocations, FALSE otherwise

kwic Locate keywords-in-context

Description

For a text or a collection of texts (in a quanteda corpus object), return a list of a keyword supplied
by the user in its immediate context, identifying the source text and the word index number within
the source text. (Not the line number, since the text may or may not be segmented using end-of-line
delimiters.)

66 kwic

Usage

kwic(
x,
pattern,
window = 5,
valuetype = c("glob", "regex", "fixed"),
separator = " ",
case_insensitive = TRUE,
index = NULL,
...

)

is.kwic(x)

S3 method for class 'kwic'
as.data.frame(x, ...)

Arguments

x a character, corpus, or tokens object

pattern a character vector, list of character vectors, dictionary, or collocations object.
See pattern for details.

window the number of context words to be displayed around the keyword

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

separator a character to separate words in the output
case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

index an index object to specify keywords

... unused

Value

A kwic classed data.frame, with the document name (docname) and the token index positions (from
and to, which will be the same for single-word patterns, or a sequence equal in length to the number
of elements for multi-word phrases).

Note

pattern will be a keyword pattern or phrase, possibly multiple patterns, that may include punc-
tuation. If a pattern contains whitespace, it is best to wrap it in phrase() to make this explicit.
However if pattern is a collocations or dictionary object, then the collocations or multi-word dic-
tionary keys will automatically be considered phrases where each whitespace-separated element
matches a token in sequence.

meta 67

See Also

print-methods

Examples

single token matching
toks <- tokens(data_corpus_inaugural[1:8])
kwic(toks, pattern = "secure*", valuetype = "glob", window = 3)
kwic(toks, pattern = "secur", valuetype = "regex", window = 3)
kwic(toks, pattern = "security", valuetype = "fixed", window = 3)

phrase matching
kwic(toks, pattern = phrase("secur* against"), window = 2)
kwic(toks, pattern = phrase("war against"), valuetype = "regex", window = 2)

use index
idx <- index(toks, phrase("secur* against"))
kwic(toks, index = idx, window = 2)
kw <- kwic(tokens(data_corpus_inaugural[1:20]), "provident*")
is.kwic(kw)
is.kwic("Not a kwic")
is.kwic(kw[, c("pre", "post")])

toks <- tokens(data_corpus_inaugural[1:8])
kw <- kwic(toks, pattern = "secure*", valuetype = "glob", window = 3)
as.data.frame(kw)

meta Get or set object metadata

Description

Get or set the object metadata in a corpus, tokens, dfm, or dictionary object. With the exception of
dictionaries, this will be corpus-level metadata.

Usage

meta(x, field = NULL, type = c("user", "object", "system", "all"))

meta(x, field = NULL) <- value

Arguments

x an object for which the metadata will be read or set
field metadata field name(s); if NULL (default), return all metadata names
type "user" for user-provided corpus-level metadata; "system" for metadata set au-

tomatically when the corpus is created; or "all" for all metadata.
value new value of the metadata field

68 ndoc

Value

For meta, a named list of the metadata fields in the corpus.

For meta <-, the corpus with the updated user-level metadata. Only user-level metadata may be
assigned.

Examples

meta(data_corpus_inaugural)
meta(data_corpus_inaugural, "source")
meta(data_corpus_inaugural, "citation") <- "Presidential Speeches Online Project (2014)."
meta(data_corpus_inaugural, "citation")

ndoc Count the number of documents or features

Description

Get the number of documents or features in an object.

Usage

ndoc(x)

nfeat(x)

Arguments

x a quanteda object: a corpus, dfm, or tokens object, or a readtext object from the
readtext package.

Details

ndoc returns the number of documents in an object whose texts are organized as "documents" (a
corpus, dfm, or tokens object, a readtext object from the readtext package).

nfeat returns the number of features from a dfm; it is an alias for ntype when applied to dfm
objects. This function is only defined for dfm objects because only these have "features". (To count
tokens, see ntoken().)

Value

an integer (count) of the number of documents or features

See Also

ntoken()

nsentence 69

Examples

number of documents
ndoc(data_corpus_inaugural)
ndoc(corpus_subset(data_corpus_inaugural, Year > 1980))
ndoc(tokens(data_corpus_inaugural))
ndoc(dfm(tokens(corpus_subset(data_corpus_inaugural, Year > 1980))))

number of features
toks1 <- tokens(corpus_subset(data_corpus_inaugural, Year > 1980), remove_punct = FALSE)
toks2 <- tokens(corpus_subset(data_corpus_inaugural, Year > 1980), remove_punct = TRUE)
nfeat(dfm(toks1))
nfeat(dfm(toks2))

nsentence Count the number of sentences

Description

Return the count of sentences in a corpus or character object.

Usage

nsentence(x)

Arguments

x a character or corpus whose sentences will be counted

Value

count(s) of the total sentences per text

Note

nsentence() relies on the boundaries definitions in the stringi package (see stri_opts_brkiter). It
does not count sentences correctly if the text has been transformed to lower case, and for this reason
nsentence() will issue a warning if it detects all lower-cased text.

Examples

simple example
txt <- c(text1 = "This is a sentence: second part of first sentence.",

text2 = "A word. Repeated repeated.",
text3 = "Mr. Jones has a PhD from the LSE. Second sentence.")

nsentence(txt)

70 ntoken

ntoken Count the number of tokens or types

Description

Get the count of tokens (total features) or types (unique tokens).

Usage

ntoken(x, ...)

ntype(x, ...)

Arguments

x a quanteda object: a character, corpus, tokens, or dfm object

... additional arguments passed to tokens()

Details

The precise definition of "tokens" for objects not yet tokenized (e.g. character or corpus objects)
can be controlled through optional arguments passed to tokens() through

For dfm objects, ntype will only return the count of features that occur more than zero times in the
dfm.

Value

named integer vector of the counts of the total tokens or types

Note

Due to differences between raw text tokens and features that have been defined for a dfm, the
counts may be different for dfm objects and the texts from which the dfm was generated. Because
the method tokenizes the text in order to count the tokens, your results will depend on the options
passed through to tokens().

Examples

simple example
txt <- c(text1 = "This is a sentence, this.", text2 = "A word. Repeated repeated.")
ntoken(txt)
ntype(txt)
ntoken(char_tolower(txt)) # same
ntype(char_tolower(txt)) # fewer types
ntoken(char_tolower(txt), remove_punct = TRUE)
ntype(char_tolower(txt), remove_punct = TRUE)

with some real texts

phrase 71

ntoken(corpus_subset(data_corpus_inaugural, Year < 1806), remove_punct = TRUE)
ntype(corpus_subset(data_corpus_inaugural, Year < 1806), remove_punct = TRUE)
ntoken(dfm(tokens(corpus_subset(data_corpus_inaugural, Year < 1800))))
ntype(dfm(tokens(corpus_subset(data_corpus_inaugural, Year < 1800))))

phrase Declare a pattern to be a sequence of separate patterns

Description

Declares that a character expression consists of multiple patterns, separated by an element such as
whitespace. This is typically used as a wrapper around pattern() to make it explicit that the pattern
elements are to be used for matches to multi-word sequences, rather than individual, unordered
matches to single words.

Usage

phrase(x, separator = " ")

as.phrase(x)

is.phrase(x)

Arguments

x character, dictionary, list, collocations, or tokens object; the compound patterns
to be treated as a sequence separated by separator. For list, collocations, or
tokens objects, use as.phrase().

separator character; the character in between the patterns. This defaults to " ". For
phrase() only.

Value

phrase() and as.phrase() return a specially classed list whose elements have been split into
separate character (pattern) elements.

is.phrase returns TRUE if the object was created by phrase(); FALSE otherwise.

See Also

as.phrase()

72 print-methods

Examples

make phrases from characters
phrase(c("natural language processing"))
phrase(c("natural_language_processing", "text_analysis"), separator = "_")

from a dictionary
phrase(dictionary(list(catone = c("a b"), cattwo = "c d e", catthree = "f")))

from a list
as.phrase(list(c("natural", "language", "processing")))

from tokens
as.phrase(tokens("natural language processing"))

print-methods Print methods for quanteda core objects

Description

Print method for quanteda objects. In each max_n* option, 0 shows none, and -1 shows all.

Usage

S3 method for class 'corpus'
print(
x,
max_ndoc = quanteda_options("print_corpus_max_ndoc"),
max_nchar = quanteda_options("print_corpus_max_nchar"),
show_summary = quanteda_options("print_corpus_summary"),
...

)

S4 method for signature 'dfm'
print(
x,
max_ndoc = quanteda_options("print_dfm_max_ndoc"),
max_nfeat = quanteda_options("print_dfm_max_nfeat"),
show_summary = quanteda_options("print_dfm_summary"),
...

)

S4 method for signature 'dictionary2'
print(
x,
max_nkey = quanteda_options("print_dictionary_max_nkey"),
max_nval = quanteda_options("print_dictionary_max_nval"),
show_summary = quanteda_options("print_dictionary_summary"),

print-methods 73

...
)

S4 method for signature 'fcm'
print(
x,
max_nfeat = quanteda_options("print_dfm_max_nfeat"),
show_summary = TRUE,
...

)

S3 method for class 'kwic'
print(
x,
max_nrow = quanteda_options("print_kwic_max_nrow"),
show_summary = quanteda_options("print_kwic_summary"),
...

)

S3 method for class 'tokens'
print(
x,
max_ndoc = quanteda_options("print_tokens_max_ndoc"),
max_ntoken = quanteda_options("print_tokens_max_ntoken"),
show_summary = quanteda_options("print_tokens_summary"),
...

)

Arguments

x the object to be printed

max_ndoc max number of documents to print; default is from the print_*_max_ndoc set-
ting of quanteda_options()

max_nchar max number of tokens to print; default is from the print_corpus_max_nchar
setting of quanteda_options()

show_summary print a brief summary indicating the number of documents and other character-
istics of the object, such as docvars or sparsity.

... not used

max_nfeat max number of features to print; default is from the print_dfm_max_nfeat
setting of quanteda_options()

max_nkey max number of keys to print; default is from the print_dictionary_max_max_nkey
setting of quanteda_options()

max_nval max number of values to print; default is from the print_dictionary_max_nval
setting of quanteda_options()

max_nrow max number of documents to print; default is from the print_kwic_max_nrow
setting of quanteda_options()

74 quanteda_options

max_ntoken max number of tokens to print; default is from the print_tokens_max_ntoken
setting of quanteda_options()

See Also

quanteda_options()

Examples

corp <- corpus(data_char_ukimmig2010)
print(corp, max_ndoc = 3, max_nchar = 40)

toks <- tokens(corp)
print(toks, max_ndoc = 3, max_ntoken = 6)

dfmat <- dfm(toks)
print(dfmat, max_ndoc = 3, max_nfeat = 10)

quanteda_options Get or set package options for quanteda

Description

Get or set global options affecting functions across quanteda.

Usage

quanteda_options(..., reset = FALSE, initialize = FALSE)

Arguments

... options to be set, as key-value pair, same as options(). This may be a list of
valid key-value pairs, useful for setting a group of options at once (see exam-
ples).

reset logical; if TRUE, reset all quanteda options to their default values

initialize logical; if TRUE, reset only the quanteda options that are not already defined.
Used for setting initial values when some have been defined previously, such as
in .Rprofile.

Details

Currently available options are:

verbose logical; if TRUE then use this as the default for all functions with a verbose argument

threads integer; specifies the number of threads to use in parallelized functions; defaults to RcppParallel::defaultNumThreads();
the number of threads can be changed only once in a session

print_dfm_max_ndoc integer; specifies the number of documents to display when using the de-
faults for printing a dfm

quanteda_options 75

print_dfm_max_nfeat integer; specifies the number of features to display when using the defaults
for printing a dfm

base_docname character; stem name for documents that are unnamed when a corpus, tokens, or
dfm are created or when a dfm is converted from another object

base_featname character; stem name for features that are unnamed when they are added, for
whatever reason, to a dfm through an operation that adds features

base_compname character; stem name for components that are created by matrix factorization

language_stemmer character; language option for char_wordstem(), tokens_wordstem(), and
dfm_wordstem()

pattern_hashtag, pattern_username character; regex patterns for (social media) hashtags and
usernames respectively, used to avoid segmenting these in the default internal "word" tok-
enizer

tokens_block_size integer; specifies the number of documents to be tokenized at a time in
blocked tokenization. When the number is large, tokenization becomes faster but also memory-
intensive.

tokens_locale character; specify locale in stringi boundary detection in tokenization and corpus
reshaping. See stringi::stri_opts_brkiter().

Value

When called using a key = value pair (where key can be a label or quoted character name)), the
option is set and TRUE is returned invisibly.

When called with no arguments, a named list of the package options is returned.

When called with reset = TRUE as an argument, all arguments are options are reset to their default
values, and TRUE is returned invisibly.

Examples

(opt <- quanteda_options())

quanteda_options(verbose = TRUE)
quanteda_options("verbose" = FALSE)
quanteda_options("threads")
quanteda_options(print_dfm_max_ndoc = 50L)
reset to defaults
quanteda_options(reset = TRUE)
reset to saved options
quanteda_options(opt)

76 spacyr-methods

readtext-methods Extensions for readtext objects

Description

These functions provide quanteda methods for readtext objects.

Arguments

x an object returned by spacy_parse, or (for spacy_parse) a corpus object

... not used for these functions

Details

texts(x) returns the texts from a readtext object

docnames(x) returns the document names from a readtext object

docvars(x, field = NULL) returns a data.frame of the document variables from a readtext object

ndoc(x) returns the number of documents from a readtext object

spacyr-methods Extensions for and from spacy_parse objects

Description

These functions provide quanteda methods for spacyr objects, and also extend spacy_parse and
spacy_tokenize to work directly with corpus objects.

Arguments

x an object returned by spacy_parse, or (for spacy_parse) a corpus object

... not used for these functions

Details

spacy_parse(x, ...) and spacy_tokenize(x, ...) work directly on quanteda corpus objects.

docnames(x) returns the document names

ndoc(x) returns the number of documents

ntoken(x, ...) returns the number of tokens by document

ntype(x, ...) returns the number of types (unique tokens) by document

nsentence(x) returns the number of sentences by document

sparsity 77

Examples

Not run:
library("spacyr")
spacy_initialize()

corp <- corpus(c(doc1 = "And now, now, now for something completely different.",
doc2 = "Jack and Jill are children."))

spacy_tokenize(corp)
(parsed <- spacy_parse(corp))

ntype(parsed)
ntoken(parsed)
ndoc(parsed)
docnames(parsed)

End(Not run)

sparsity Compute the sparsity of a document-feature matrix

Description

Return the proportion of sparseness of a document-feature matrix, equal to the proportion of cells
that have zero counts.

Usage

sparsity(x)

Arguments

x the document-feature matrix

Examples

dfmat <- dfm(data_corpus_inaugural)
sparsity(dfmat)
sparsity(dfm_trim(dfmat, min_termfreq = 5))

78 textstats

textmodels Models for scaling and classification of textual data

Description

The textmodel_*() functions formerly in quanteda have now been moved to the quanteda.textmodels
package.

See Also

quanteda.textmodels::quanteda.textmodels-package

textplots Plots for textual data

Description

The textplot_*() functions formerly in quanteda have now been moved to the quanteda.textplots
package.

See Also

quanteda.textplots::quanteda.textplots-package

textstats Statistics for textual data

Description

The textstat_*() functions formerly in quanteda have now been moved to the quanteda.textstats
package.

See Also

quanteda.textstats::quanteda.textstats-package

tokens 79

tokens Construct a tokens object

Description

Construct a tokens object, either by importing a named list of characters from an external tokenizer,
or by calling the internal quanteda tokenizer.

Usage

tokens(
x,
what = "word",
remove_punct = FALSE,
remove_symbols = FALSE,
remove_numbers = FALSE,
remove_url = FALSE,
remove_separators = TRUE,
split_hyphens = FALSE,
split_tags = FALSE,
include_docvars = TRUE,
padding = FALSE,
verbose = quanteda_options("verbose"),
...

)

Arguments

x the input object to the tokens constructor, one of: a (uniquely) named list of
characters; a tokens object; or a corpus or character object that will be tokenized

what character; which tokenizer to use. The default what = "word" is the version 2
quanteda tokenizer. Legacy tokenizers (version < 2) are also supported, in-
cluding the default what = "word1". See the Details and quanteda Tokenizers
below.

remove_punct logical; if TRUE remove all characters in the Unicode "Punctuation" [P] class,
with exceptions for those used as prefixes for valid social media tags if preserve_tags
= TRUE

remove_symbols logical; if TRUE remove all characters in the Unicode "Symbol" [S] class

remove_numbers logical; if TRUE remove tokens that consist only of numbers, but not words that
start with digits, e.g. 2day

remove_url logical; if TRUE find and eliminate URLs beginning with http(s)
remove_separators

logical; if TRUE remove separators and separator characters (Unicode "Separa-
tor" [Z] and "Control" [C] categories)

80 tokens

split_hyphens logical; if FALSE, do not split words that are connected by hyphenation and
hyphenation-like characters in between words, e.g. "self-aware" becomes
c("self", "-", "aware")

split_tags logical; if FALSE, do not split social media tags defined in quanteda_options().
The default patterns are pattern_hashtag = "#\\w+#?" and pattern_username
= "@[a-zA-Z0-9_]+".

include_docvars

if TRUE, pass docvars through to the tokens object. Does not apply when the
input is a character data or a list of characters.

padding if TRUE, leave an empty string where the removed tokens previously existed.
This is useful if a positional match is needed between the pre- and post-selected
tokens, for instance if a window of adjacency needs to be computed.

verbose if TRUE, print timing messages to the console

... used to pass arguments among the functions

Details

tokens() works on tokens class objects, which means that the removal rules can be applied post-
tokenization, although it should be noted that it will not be possible to remove things that are not
present. For instance, if the tokens object has already had punctuation removed, then tokens(x,
remove_punct = TRUE) will have no additional effect.

Value

quanteda tokens class object, by default a serialized list of integers corresponding to a vector of
types.

Details

As of version 2, the choice of tokenizer is left more to the user, and tokens() is treated more as
a constructor (from a named list) than a tokenizer. This allows users to use any other tokenizer
that returns a named list, and to use this as an input to tokens(), with removal and splitting rules
applied after this has been constructed (passed as arguments). These removal and splitting rules are
conservative and will not remove or split anything, however, unless the user requests it.

You usually do not want to split hyphenated words or social media tags, but extra steps required
to preserve such special tokens. If there are many random characters in your texts, you should
split_hyphens = TRUE and split_tags = TRUE to avoid a slowdown in tokenization.

Using external tokenizers is best done by piping the output from these other tokenizers into the
tokens() constructor, with additional removal and splitting options applied at the construction
stage. These will only have an effect, however, if the tokens exist for which removal is specified
at in the tokens() call. For instance, it is impossible to remove punctuation if the input list to
tokens() already had its punctuation tokens removed at the external tokenization stage.

To construct a tokens object from a list with no additional processing, call as.tokens() instead of
tokens().

Recommended tokenizers are those from the tokenizers package, which are generally faster than
the default (built-in) tokenizer but always splits infix hyphens, or spacyr.

tokens 81

quanteda Tokenizers

The default word tokenizer what = "word" splits tokens using stri_split_boundaries(x, type = "word")
but by default preserves infix hyphens (e.g. "self-funding"), URLs, and social media "tag" char-
acters (#hashtags and @usernames), and email addresses. The rules defining a valid "tag" can
be found at https://www.hashtags.org/featured/what-characters-can-a-hashtag-include/ for hashtags
and at https://help.twitter.com/en/managing-your-account/twitter-username-rules for usernames.

In versions < 2, the argument remove_twitter controlled whether social media tags were preserved
or removed, even when remove_punct = TRUE. This argument is not longer functional in versions
>= 2. If greater control over social media tags is desired, you should user an alternative tokenizer,
including non-quanteda options.

For backward compatibility, the following older tokenizers are also supported through what:

"word1" (legacy) implements similar behaviour to the version of what = "word" found in pre-
version 2. (It preserves social media tags and infix hyphens, but splits URLs.) "word1" is also
slower than "word".

"fasterword" (legacy) splits on whitespace and control characters, using stringi::stri_split_charclass(x,
"[\\p{Z}\\p{C}]+")

"fastestword" (legacy) splits on the space character, using stringi::stri_split_fixed(x, "
")

"character" tokenization into individual characters

"sentence" sentence segmenter based on stri_split_boundaries, but with additional rules to avoid
splits on words like "Mr." that would otherwise incorrectly be detected as sentence boundaries.
For better sentence tokenization, consider using spacyr.

See Also

tokens_ngrams(), tokens_skipgrams(), as.list.tokens(), as.tokens()

Examples

txt <- c(doc1 = "A sentence, showing how tokens() works.",
doc2 = "@quantedainit and #textanalysis https://example.com?p=123.",
doc3 = "Self-documenting code??",
doc4 = "£1,000,000 for 50¢ is gr8 4ever \U0001f600")

tokens(txt)
tokens(txt, what = "word1")

removing punctuation marks but keeping tags and URLs
tokens(txt[1:2], remove_punct = TRUE)

splitting hyphenated words
tokens(txt[3])
tokens(txt[3], split_hyphens = TRUE)

symbols and numbers
tokens(txt[4])
tokens(txt[4], remove_numbers = TRUE)
tokens(txt[4], remove_numbers = TRUE, remove_symbols = TRUE)

82 tokens_chunk

Not run: # using other tokenizers
tokens(tokenizers::tokenize_words(txt[4]), remove_symbols = TRUE)
tokenizers::tokenize_words(txt, lowercase = FALSE, strip_punct = FALSE) %>%

tokens(remove_symbols = TRUE)
tokenizers::tokenize_characters(txt[3], strip_non_alphanum = FALSE) %>%

tokens(remove_punct = TRUE)
tokenizers::tokenize_sentences(

"The quick brown fox. It jumped over the lazy dog.") %>%
tokens()

End(Not run)

tokens_chunk Segment tokens object by chunks of a given size

Description

Segment tokens into new documents of equally sized token lengths, with the possibility of overlap-
ping the chunks.

Usage

tokens_chunk(x, size, overlap = 0, use_docvars = TRUE)

Arguments

x tokens object whose token elements will be segmented into chunks

size integer; the token length of the chunks

overlap integer; the number of tokens in a chunk to be taken from the last overlap
tokens from the preceding chunk

use_docvars if TRUE, repeat the docvar values for each chunk; if FALSE, drop the docvars in
the chunked tokens

Value

A tokens object whose documents have been split into chunks of length size.

See Also

tokens_segment()

tokens_compound 83

Examples

txts <- c(doc1 = "Fellow citizens, I am again called upon by the voice of
my country to execute the functions of its Chief Magistrate.",

doc2 = "When the occasion proper for it shall arrive, I shall
endeavor to express the high sense I entertain of this
distinguished honor.")

toks <- tokens(txts)
tokens_chunk(toks, size = 5)
tokens_chunk(toks, size = 5, overlap = 4)

tokens_compound Convert token sequences into compound tokens

Description

Replace multi-token sequences with a multi-word, or "compound" token. The resulting compound
tokens will represent a phrase or multi-word expression, concatenated with concatenator (by de-
fault, the "_" character) to form a single "token". This ensures that the sequences will be processed
subsequently as single tokens, for instance in constructing a dfm.

Usage

tokens_compound(
x,
pattern,
valuetype = c("glob", "regex", "fixed"),
concatenator = "_",
window = 0L,
case_insensitive = TRUE,
join = TRUE

)

Arguments

x an input tokens object

pattern a character vector, list of character vectors, dictionary, or collocations object.
See pattern for details.

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

concatenator the concatenation character that will connect the words making up the multi-
word sequences. The default _ is recommended since it will not be removed
during normal cleaning and tokenization (while nearly all other punctuation
characters, at least those in the Unicode punctuation class [P] will be removed).

84 tokens_compound

window integer; a vector of length 1 or 2 that specifies size of the window of tokens
adjacent to pattern that will be compounded with matches to pattern. The
window can be asymmetric if two elements are specified, with the first giving the
window size before pattern and the second the window size after. If paddings
(empty "" tokens) are found, window will be shrunk to exclude them.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

join logical; if TRUE, join overlapping compounds into a single compound; otherwise,
form these separately. See examples.

Value

A tokens object in which the token sequences matching pattern have been replaced by new com-
pounded "tokens" joined by the concatenator.

Note

Patterns to be compounded (naturally) consist of multi-word sequences, and how these are expected
in pattern is very specific. If the elements to be compounded are supplied as space-delimited
elements of a character vector, wrap the vector in phrase(). If the elements to be compounded are
separate elements of a character vector, supply it as a list where each list element is the sequence of
character elements.

See the examples below.

Examples

txt <- "The United Kingdom is leaving the European Union."
toks <- tokens(txt, remove_punct = TRUE)

character vector - not compounded
tokens_compound(toks, c("United", "Kingdom", "European", "Union"))

elements separated by spaces - not compounded
tokens_compound(toks, c("United Kingdom", "European Union"))

list of characters - is compounded
tokens_compound(toks, list(c("United", "Kingdom"), c("European", "Union")))

elements separated by spaces, wrapped in phrase() - is compounded
tokens_compound(toks, phrase(c("United Kingdom", "European Union")))

supplied as values in a dictionary (same as list) - is compounded
(keys do not matter)
tokens_compound(toks, dictionary(list(key1 = "United Kingdom",

key2 = "European Union")))
pattern as dictionaries with glob matches
tokens_compound(toks, dictionary(list(key1 = c("U* K*"))), valuetype = "glob")

note the differences caused by join = FALSE
compounds <- list(c("the", "European"), c("European", "Union"))

tokens_group 85

tokens_compound(toks, pattern = compounds, join = TRUE)
tokens_compound(toks, pattern = compounds, join = FALSE)

use window to form ngrams
tokens_remove(toks, pattern = stopwords("en")) %>%

tokens_compound(pattern = "leav*", join = FALSE, window = c(0, 3))

tokens_group Combine documents in a tokens object by a grouping variable

Description

Combine documents in a tokens object by a grouping variable, by concatenating the tokens in the
order of the documents within each grouping variable.

Usage

tokens_group(x, groups = docid(x), fill = FALSE)

Arguments

x tokens object

groups grouping variable for sampling, equal in length to the number of documents.
This will be evaluated in the docvars data.frame, so that docvars may be referred
to by name without quoting. This also changes previous behaviours for groups.
See news(Version >= "3.0", package = "quanteda") for details.

fill logical; if TRUE and groups is a factor, then use all levels of the factor when
forming the new documents of the grouped object. This will result in a new
"document" with empty content for levels not observed, but for which an empty
document may be needed. If groups is a factor of dates, for instance, then fill
= TRUE ensures that the new object will consist of one new "document" by date,
regardless of whether any documents previously existed with that date. Has no
effect if the groups variable(s) are not factors.

Value

a tokens object whose documents are equal to the unique group combinations, and whose tokens are
the concatenations of the tokens by group. Document-level variables that have no variation within
groups are saved in docvars. Document-level variables that are lists are dropped from grouping,
even when these exhibit no variation within groups.

86 tokens_lookup

Examples

corp <- corpus(c("a a b", "a b c c", "a c d d", "a c c d"),
docvars = data.frame(grp = c("grp1", "grp1", "grp2", "grp2")))

toks <- tokens(corp)
tokens_group(toks, groups = grp)
tokens_group(toks, groups = c(1, 1, 2, 2))

with fill
tokens_group(toks, groups = factor(c(1, 1, 2, 2), levels = 1:3))
tokens_group(toks, groups = factor(c(1, 1, 2, 2), levels = 1:3), fill = TRUE)

tokens_lookup Apply a dictionary to a tokens object

Description

Convert tokens into equivalence classes defined by values of a dictionary object.

Usage

tokens_lookup(
x,
dictionary,
levels = 1:5,
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
capkeys = !exclusive,
exclusive = TRUE,
nomatch = NULL,
nested_scope = c("key", "dictionary"),
verbose = quanteda_options("verbose")

)

Arguments

x tokens object to which dictionary or thesaurus will be supplied

dictionary the dictionary-class object that will be applied to x

levels integers specifying the levels of entries in a hierarchical dictionary that will be
applied. The top level is 1, and subsequent levels describe lower nesting levels.
Values may be combined, even if these levels are not contiguous, e.g. levels =
c(1:3) will collapse the second level into the first, but record the third level (if
present) collapsed below the first (see examples).

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

tokens_lookup 87

capkeys if TRUE, convert dictionary keys to uppercase to distinguish them from other
features

exclusive if TRUE, remove all features not in dictionary, otherwise, replace values in dic-
tionary with keys while leaving other features unaffected

nomatch an optional character naming a new key for tokens that do not matched to a
dictionary values If NULL (default), do not record unmatched tokens.

nested_scope how to treat matches from different dictionary keys that are nested. When
one value is nested within another, such as "a b" being nested within "a b
c", the tokens_lookup()will match the longer. Whennested_scope =
"key", this longer-match priority is applied only within the key, while "dic-
tionary"‘ applies it across keys, matching only the key with the longer pattern,
not the matches nested within that longer pattern from other keys. See Details.

verbose print status messages if TRUE

Details

Dictionary values may consist of sequences, and there are different methods of counting key matches
based on values that are nested or that overlap.

When two different keys in a dictionary are nested matches of one another, the nested_scope
options provide the choice of matching each key’s values independently (the "key") option, or just
counting the longest match (the "dictionary" option). Values that are nested within the same key
are always counted as a single match. See the last example below comparing the New York and New
York Times for these two different behaviours.

Overlapping values, such as "a b" and "b a" are currently always considered as separate matches
if they are in different keys, or as one match if the overlap is within the same key. Overlapped

See Also

tokens_replace

Examples

toks1 <- tokens(data_corpus_inaugural)
dict1 <- dictionary(list(country = "united states",

law=c("law*", "constitution"),
freedom=c("free*", "libert*")))

dfm(tokens_lookup(toks1, dict1, valuetype = "glob", verbose = TRUE))
dfm(tokens_lookup(toks1, dict1, valuetype = "glob", verbose = TRUE, nomatch = "NONE"))

dict2 <- dictionary(list(country = "united states",
law = c("law", "constitution"),
freedom = c("freedom", "liberty")))

dfm(applyDictionary(toks1, dict2, valuetype = "fixed"))
dfm(tokens_lookup(toks1, dict2, valuetype = "fixed"))

hierarchical dictionary example
txt <- c(d1 = "The United States has the Atlantic Ocean and the Pacific Ocean.",

d2 = "Britain and Ireland have the Irish Sea and the English Channel.")
toks2 <- tokens(txt)

88 tokens_ngrams

dict3 <- dictionary(list(US = list(Countries = c("States"),
oceans = c("Atlantic", "Pacific")),

Europe = list(Countries = c("Britain", "Ireland"),
oceans = list(west = "Irish Sea",

east = "English Channel"))))
tokens_lookup(toks2, dict3, levels = 1)
tokens_lookup(toks2, dict3, levels = 2)
tokens_lookup(toks2, dict3, levels = 1:2)
tokens_lookup(toks2, dict3, levels = 3)
tokens_lookup(toks2, dict3, levels = c(1,3))
tokens_lookup(toks2, dict3, levels = c(2,3))

show unmatched tokens
tokens_lookup(toks2, dict3, nomatch = "_UNMATCHED")

nested matching differences
dict4 <- dictionary(list(paper = "New York Times", city = "New York"))
toks4 <- tokens("The New York Times is a New York paper.")
tokens_lookup(toks4, dict4, nested_scope = "key", exclusive = FALSE)
tokens_lookup(toks4, dict4, nested_scope = "dictionary", exclusive = FALSE)

tokens_ngrams Create n-grams and skip-grams from tokens

Description

Create a set of n-grams (tokens in sequence) from already tokenized text objects, with an optional
skip argument to form skip-grams. Both the n-gram length and the skip lengths take vectors of
arguments to form multiple lengths or skips in one pass. Implemented in C++ for efficiency.

Usage

tokens_ngrams(x, n = 2L, skip = 0L, concatenator = "_")

char_ngrams(x, n = 2L, skip = 0L, concatenator = "_")

tokens_skipgrams(x, n, skip, concatenator = "_")

Arguments

x a tokens object, or a character vector, or a list of characters

n integer vector specifying the number of elements to be concatenated in each
n-gram. Each element of this vector will define a n in the n-gram(s) that are
produced.

skip integer vector specifying the adjacency skip size for tokens forming the n-grams,
default is 0 for only immediately neighbouring words. For skipgrams, skip can
be a vector of integers, as the "classic" approach to forming skip-grams is to set

tokens_ngrams 89

skip = k where k is the distance for which k or fewer skips are used to construct
the n-gram. Thus a "4-skip-n-gram" defined as skip = 0:4 produces results that
include 4 skips, 3 skips, 2 skips, 1 skip, and 0 skips (where 0 skips are typical
n-grams formed from adjacent words). See Guthrie et al (2006).

concatenator character for combining words, default is _ (underscore) character

Details

Normally, these functions will be called through [tokens](x, ngrams = , ...), but these
functions are provided in case a user wants to perform lower-level n-gram construction on tokenized
texts.

tokens_skipgrams() is a wrapper to tokens_ngrams() that requires arguments to be supplied for
both n and skip. For k-skip skip-grams, set skip to 0:k, in order to conform to the definition of
skip-grams found in Guthrie et al (2006): A k skip-gram is an n-gram which is a superset of all
n-grams and each (k − i) skip-gram until (k − i) == 0 (which includes 0 skip-grams).

Value

a tokens object consisting a list of character vectors of n-grams, one list element per text, or a
character vector if called on a simple character vector

Note

char_ngrams is a convenience wrapper for a (non-list) vector of characters, so named to be consis-
tent with quanteda’s naming scheme.

References

Guthrie, David, Ben Allison, Wei Liu, Louise Guthrie, and Yorick Wilks. 2006. "A Closer Look at
Skip-Gram Modelling." https://aclanthology.org/L06-1210/

Examples

ngrams
tokens_ngrams(tokens(c("a b c d e", "c d e f g")), n = 2:3)

toks <- tokens(c(text1 = "the quick brown fox jumped over the lazy dog"))
tokens_ngrams(toks, n = 1:3)
tokens_ngrams(toks, n = c(2,4), concatenator = " ")
tokens_ngrams(toks, n = c(2,4), skip = 1, concatenator = " ")
on character
char_ngrams(letters[1:3], n = 1:3)

skipgrams
toks <- tokens("insurgents killed in ongoing fighting")
tokens_skipgrams(toks, n = 2, skip = 0:1, concatenator = " ")
tokens_skipgrams(toks, n = 2, skip = 0:2, concatenator = " ")
tokens_skipgrams(toks, n = 3, skip = 0:2, concatenator = " ")

90 tokens_replace

tokens_replace Replace tokens in a tokens object

Description

Substitute token types based on vectorized one-to-one matching. Since this function is created for
lemmatization or user-defined stemming. It supports substitution of multi-word features by multi-
word features, but substitution is fastest when pattern and replacement are character vectors and
valuetype = "fixed" as the function only substitute types of tokens. Please use tokens_lookup()
with exclusive = FALSE to replace dictionary values.

Usage

tokens_replace(
x,
pattern,
replacement,
valuetype = "glob",
case_insensitive = TRUE,
verbose = quanteda_options("verbose")

)

Arguments

x tokens object whose token elements will be replaced

pattern a character vector or list of character vectors. See pattern for more details.

replacement a character vector or (if pattern is a list) list of character vectors of the same
length as pattern

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

verbose print status messages if TRUE

See Also

tokens_lookup

Examples

toks1 <- tokens(data_corpus_inaugural, remove_punct = TRUE)

lemmatization
taxwords <- c("tax", "taxing", "taxed", "taxed", "taxation")
lemma <- rep("TAX", length(taxwords))

tokens_sample 91

toks2 <- tokens_replace(toks1, taxwords, lemma, valuetype = "fixed")
kwic(toks2, "TAX") %>%

tail(10)

stemming
type <- types(toks1)
stem <- char_wordstem(type, "porter")
toks3 <- tokens_replace(toks1, type, stem, valuetype = "fixed", case_insensitive = FALSE)
identical(toks3, tokens_wordstem(toks1, "porter"))

multi-multi substitution
toks4 <- tokens_replace(toks1, phrase(c("Supreme Court")),

phrase(c("Supreme Court of the United States")))
kwic(toks4, phrase(c("Supreme Court of the United States")))

tokens_sample Randomly sample documents from a tokens object

Description

Take a random sample of documents of the specified size from a corpus, with or without replace-
ment, optionally by grouping variables or with probability weights.

Usage

tokens_sample(x, size = NULL, replace = FALSE, prob = NULL, by = NULL)

Arguments

x a tokens object whose documents will be sampled

size a positive number, the number of documents to select; when used with by, the
number to select from each group or a vector equal in length to the number of
groups defining the samples to be chosen in each category of by. By defining
a size larger than the number of documents, it is possible to oversample when
replace = TRUE.

replace if TRUE, sample with replacement

prob a vector of probability weights for obtaining the elements of the vector being
sampled. May not be applied when by is used.

by optional grouping variable for sampling. This will be evaluated in the doc-
vars data.frame, so that docvars may be referred to by name without quoting.
This also changes previous behaviours for by. See news(Version >= "2.9",
package = "quanteda") for details.

Value

a tokens object (re)sampled on the documents, containing the document variables for the documents
sampled.

92 tokens_select

See Also

sample

Examples

set.seed(123)
toks <- tokens(data_corpus_inaugural[1:6])
toks
tokens_sample(toks)
tokens_sample(toks, replace = TRUE) %>% docnames()
tokens_sample(toks, size = 3, replace = TRUE) %>% docnames()

sampling using by
docvars(toks)
tokens_sample(toks, size = 2, replace = TRUE, by = Party) %>% docnames()

tokens_select Select or remove tokens from a tokens object

Description

These function select or discard tokens from a tokens object. For convenience, the functions
tokens_remove and tokens_keep are defined as shortcuts for tokens_select(x, pattern, selection
= "remove") and tokens_select(x, pattern, selection = "keep"), respectively. The most
common usage for tokens_remove will be to eliminate stop words from a text or text-based object,
while the most common use of tokens_select will be to select tokens with only positive pattern
matches from a list of regular expressions, including a dictionary. startpos and endpos determine
the positions of tokens searched for pattern and areas affected are expanded by window.

Usage

tokens_select(
x,
pattern,
selection = c("keep", "remove"),
valuetype = c("glob", "regex", "fixed"),
case_insensitive = TRUE,
padding = FALSE,
window = 0,
min_nchar = NULL,
max_nchar = NULL,
startpos = 1L,
endpos = -1L,
verbose = quanteda_options("verbose")

)

tokens_remove(x, ...)

tokens_select 93

tokens_keep(x, ...)

Arguments

x tokens object whose token elements will be removed or kept

pattern a character vector, list of character vectors, dictionary, or collocations object.
See pattern for details.

selection whether to "keep" or "remove" the tokens matching pattern

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

case_insensitive

logical; if TRUE, ignore case when matching a pattern or dictionary values

padding if TRUE, leave an empty string where the removed tokens previously existed.
This is useful if a positional match is needed between the pre- and post-selected
tokens, for instance if a window of adjacency needs to be computed.

window integer of length 1 or 2; the size of the window of tokens adjacent to pattern
that will be selected. The window is symmetric unless a vector of two elements
is supplied, in which case the first element will be the token length of the window
before pattern, and the second will be the token length of the window after
pattern. The default is 0, meaning that only the pattern matched token(s) are
selected, with no adjacent terms.
Terms from overlapping windows are never double-counted, but simply returned
in the pattern match. This is because tokens_select never redefines the docu-
ment units; for this, see kwic().

min_nchar, max_nchar

optional numerics specifying the minimum and maximum length in characters
for tokens to be removed or kept; defaults are NULL for no limits. These are
applied after (and hence, in addition to) any selection based on pattern matches.

startpos, endpos

integer; position of tokens in documents where pattern matching starts and ends,
where 1 is the first token in a document. For negative indexes, counting starts
at the ending token of the document, so that -1 denotes the last token in the
document, -2 the second to last, etc. When the length of the vector is equal to
ndoc, tokens in corresponding positions will be selected; when it is less than
ndoc, values are repeated to make them equal in length.

verbose if TRUE print messages about how many tokens were selected or removed

... additional arguments passed by tokens_remove and tokens_keep to tokens_select.
Cannot include selection.

Value

a tokens object with tokens selected or removed based on their match to pattern

94 tokens_split

Examples

tokens_select with simple examples
toks <- as.tokens(list(letters, LETTERS))
tokens_select(toks, c("b", "e", "f"), selection = "keep", padding = FALSE)
tokens_select(toks, c("b", "e", "f"), selection = "keep", padding = TRUE)
tokens_select(toks, c("b", "e", "f"), selection = "remove", padding = FALSE)
tokens_select(toks, c("b", "e", "f"), selection = "remove", padding = TRUE)

how case_insensitive works
tokens_select(toks, c("b", "e", "f"), selection = "remove", case_insensitive = TRUE)
tokens_select(toks, c("b", "e", "f"), selection = "remove", case_insensitive = FALSE)

use window
tokens_select(toks, c("b", "f"), selection = "keep", window = 1)
tokens_select(toks, c("b", "f"), selection = "remove", window = 1)
tokens_remove(toks, c("b", "f"), window = c(0, 1))
tokens_select(toks, pattern = c("e", "g"), window = c(1, 2))

tokens_remove example: remove stopwords
txt <- c(wash1 <- "Fellow citizens, I am again called upon by the voice of my

country to execute the functions of its Chief Magistrate.",
wash2 <- "When the occasion proper for it shall arrive, I shall

endeavor to express the high sense I entertain of this
distinguished honor.")

tokens_remove(tokens(txt, remove_punct = TRUE), stopwords("english"))

token_keep example: keep two-letter words
tokens_keep(tokens(txt, remove_punct = TRUE), "??")

tokens_split Split tokens by a separator pattern

Description

Replaces tokens by multiple replacements consisting of elements split by a separator pattern, with
the option of retaining the separator. This function effectively reverses the operation of tokens_compound().

Usage

tokens_split(
x,
separator = " ",
valuetype = c("fixed", "regex"),
remove_separator = TRUE

)

tokens_subset 95

Arguments

x a tokens object

separator a single-character pattern match by which tokens are separated

valuetype the type of pattern matching: "glob" for "glob"-style wildcard expressions;
"regex" for regular expressions; or "fixed" for exact matching. See value-
type for details.

remove_separator

if TRUE, remove separator from new tokens

Examples

undo tokens_compound()
toks1 <- tokens("pork barrel is an idiomatic multi-word expression")
tokens_compound(toks1, phrase("pork barrel"))
tokens_compound(toks1, phrase("pork barrel")) %>%

tokens_split(separator = "_")

similar to tokens(x, remove_hyphen = TRUE) but post-tokenization
toks2 <- tokens("UK-EU negotiation is not going anywhere as of 2018-12-24.")
tokens_split(toks2, separator = "-", remove_separator = FALSE)

tokens_subset Extract a subset of a tokens

Description

Returns document subsets of a tokens that meet certain conditions, including direct logical opera-
tions on docvars (document-level variables). tokens_subset() functions identically to subset.data.frame(),
using non-standard evaluation to evaluate conditions based on the docvars in the tokens.

Usage

tokens_subset(x, subset, drop_docid = TRUE, ...)

Arguments

x tokens object to be subsetted

subset logical expression indicating the documents to keep: missing values are taken
as false

drop_docid if TRUE, docid for documents are removed as the result of subsetting.

... not used

Value

tokens object, with a subset of documents (and docvars) selected according to arguments

96 tokens_tolower

See Also

subset.data.frame()

Examples

corp <- corpus(c(d1 = "a b c d", d2 = "a a b e",
d3 = "b b c e", d4 = "e e f a b"),
docvars = data.frame(grp = c(1, 1, 2, 3)))

toks <- tokens(corp)
selecting on a docvars condition
tokens_subset(toks, grp > 1)
selecting on a supplied vector
tokens_subset(toks, c(TRUE, FALSE, TRUE, FALSE))

tokens_tolower Convert the case of tokens

Description

tokens_tolower() and tokens_toupper() convert the features of a tokens object and re-index
the types.

Usage

tokens_tolower(x, keep_acronyms = FALSE)

tokens_toupper(x)

Arguments

x the input object whose character/tokens/feature elements will be case-converted

keep_acronyms logical; if TRUE, do not lowercase any all-uppercase words (applies only to
*_tolower() functions)

Examples

for a document-feature matrix
toks <- tokens(c(txt1 = "b A A", txt2 = "C C a b B"))
tokens_tolower(toks)
tokens_toupper(toks)

tokens_wordstem 97

tokens_wordstem Stem the terms in an object

Description

Apply a stemmer to words. This is a wrapper to wordStem designed to allow this function to be
called without loading the entire SnowballC package. wordStem uses Martin Porter’s stemming
algorithm and the C libstemmer library generated by Snowball.

Usage

tokens_wordstem(x, language = quanteda_options("language_stemmer"))

char_wordstem(
x,
language = quanteda_options("language_stemmer"),
check_whitespace = TRUE

)

dfm_wordstem(x, language = quanteda_options("language_stemmer"))

Arguments

x a character, tokens, or dfm object whose word stems are to be removed. If
tokenized texts, the tokenization must be word-based.

language the name of a recognized language, as returned by getStemLanguages, or a two-
or three-letter ISO-639 code corresponding to one of these languages (see refer-
ences for the list of codes)

check_whitespace

logical; if TRUE, stop with a warning when trying to stem inputs containing
whitespace

Value

tokens_wordstem returns a tokens object whose word types have been stemmed.

char_wordstem returns a character object whose word types have been stemmed.

dfm_wordstem returns a dfm object whose word types (features) have been stemmed, and recom-
bined to consolidate features made equivalent because of stemming.

References

http://snowball.tartarus.org/

http://www.iso.org/iso/home/standards/language_codes.htm for the ISO-639 language codes

See Also

wordStem

http://snowball.tartarus.org/
http://www.iso.org/iso/home/standards/language_codes.htm

98 topfeatures

Examples

example applied to tokens
txt <- c(one = "eating eater eaters eats ate",

two = "taxing taxes taxed my tax return")
th <- tokens(txt)
tokens_wordstem(th)

simple example
char_wordstem(c("win", "winning", "wins", "won", "winner"))

example applied to a dfm
(origdfm <- dfm(tokens(txt)))
dfm_wordstem(origdfm)

topfeatures Identify the most frequent features in a dfm

Description

List the most (or least) frequently occurring features in a dfm, either as a whole or separated by
document.

Usage

topfeatures(
x,
n = 10,
decreasing = TRUE,
scheme = c("count", "docfreq"),
groups = NULL

)

Arguments

x the object whose features will be returned

n how many top features should be returned

decreasing If TRUE, return the n most frequent features; otherwise return the n least frequent
features

scheme one of count for total feature frequency (within group if applicable), or docfreq
for the document frequencies of features

groups grouping variable for sampling, equal in length to the number of documents.
This will be evaluated in the docvars data.frame, so that docvars may be referred
to by name without quoting. This also changes previous behaviours for groups.
See news(Version >= "3.0", package = "quanteda") for details.

types 99

Value

A named numeric vector of feature counts, where the names are the feature labels, or a list of these
if groups is given.

Examples

dfmat1 <- corpus_subset(data_corpus_inaugural, Year > 1980) %>%
tokens(remove_punct = TRUE) %>%
dfm()

dfmat2 <- dfm_remove(dfmat1, stopwords("en"))

most frequent features
topfeatures(dfmat1)
topfeatures(dfmat2)

least frequent features
topfeatures(dfmat2, decreasing = FALSE)

top features of individual documents
topfeatures(dfmat2, n = 5, groups = docnames(dfmat2))

grouping by president last name
topfeatures(dfmat2, n = 5, groups = President)

features by document frequencies
tail(topfeatures(dfmat1, scheme = "docfreq", n = 200))

types Get word types from a tokens object

Description

Get unique types of tokens from a tokens object.

Usage

types(x)

Arguments

x a tokens object

See Also

featnames

Examples

toks <- tokens(data_corpus_inaugural)
types(toks)

Index

∗ bootstrap
bootstrap_dfm, 12

∗ character
corpus_segment, 24
corpus_trim, 27

∗ corpus
corpus, 17
corpus_group, 20
corpus_reshape, 21
corpus_sample, 22
corpus_segment, 24
corpus_subset, 26
corpus_trim, 27
docnames, 56
docvars, 58
meta, 67

∗ data
data_char_sampletext, 28
data_char_ukimmig2010, 29
data_corpus_inaugural, 30
data_dfm_lbgexample, 31
data_dictionary_LSD2015, 31

∗ dfm
as.matrix.dfm, 11
bootstrap_dfm, 12
dfm, 33
dfm_lookup, 37
dfm_match, 38
dfm_sample, 40
dfm_select, 41
dfm_subset, 45
dfm_tfidf, 46
dfm_weight, 50
docfreq, 54
docnames, 56
featfreq, 63
print-methods, 72

∗ experimental
bootstrap_dfm, 12

∗ tokens
tokens, 79
tokens_chunk, 82
tokens_group, 85
tokens_lookup, 86
tokens_sample, 91
tokens_split, 94
tokens_subset, 95

∗ weighting
dfm_tfidf, 46
docfreq, 54
featfreq, 63

[, 53
[.corpus(), 19
[[, 53
$.corpus (docvars), 58
$.dfm (docvars), 58
$.tokens (docvars), 58
$<-.corpus (docvars), 58
$<-.dfm (docvars), 58
$<-.tokens (docvars), 58

as.character.corpus, 6
as.character.corpus(), 19
as.character.tokens (as.list.tokens), 9
as.corpus (as.character.corpus), 6
as.data.frame.dfm(), 7
as.data.frame.kwic (kwic), 65
as.dfm, 7
as.dictionary, 7
as.dictionary(), 53, 54
as.fcm, 9
as.list(), 53, 54
as.list.tokens, 9
as.list.tokens(), 81
as.matrix.dfm, 11
as.matrix.dfm(), 7
as.phrase (phrase), 71
as.phrase(), 71
as.tokens (as.list.tokens), 9

100

INDEX 101

as.tokens(), 80, 81
as.yaml, 11

base::tolower(), 14
bootstrap_dfm, 12
bootstrap_dfm(), 39

c.tokens, 10
cbind.dfm(), 34
char_keep (char_select), 13
char_ngrams (tokens_ngrams), 88
char_remove (char_select), 13
char_segment (corpus_segment), 24
char_select, 13
char_tolower, 14
char_toupper (char_tolower), 14
char_trim (corpus_trim), 27
char_wordstem (tokens_wordstem), 97
char_wordstem(), 75
character, 6, 13, 14, 17, 70, 79, 97
collocations, 66
convert, 15
convert(), 7
corpus, 6, 12, 15, 17, 17, 19–21, 23, 24, 27,

28, 30, 33, 56, 58, 59, 66–70, 76, 79
corpus_group, 20
corpus_reshape, 21
corpus_reshape(), 25, 26, 57
corpus_sample, 22
corpus_segment, 24
corpus_segment(), 25, 57
corpus_subset, 26
corpus_trim, 27

data.frame, 7, 17
data_char_sampletext, 28
data_char_ukimmig2010, 29
data_corpus_inaugural, 30
data_dfm_lbgexample, 31
data_dictionary_LSD2015, 31
descriptive statistics on text, 5
dfm, 5, 7, 9, 11, 12, 15, 31, 33, 33, 34–36,

38–45, 49, 51, 54–56, 58–60, 63, 67,
68, 70, 83, 97, 98

dfm(), 12, 44
dfm_compress, 34
dfm_group, 36
dfm_group(), 34, 46, 51
dfm_keep (dfm_select), 41

dfm_lookup, 37
dfm_lookup(), 10
dfm_match, 38
dfm_match(), 43
dfm_remove (dfm_select), 41
dfm_replace, 39
dfm_sample, 40
dfm_sample(), 49
dfm_select, 41
dfm_select(), 34, 39, 45, 49
dfm_smooth (dfm_weight), 50
dfm_sort, 44
dfm_subset, 45
dfm_tfidf, 46
dfm_tfidf(), 63
dfm_tolower, 47
dfm_tolower(), 34
dfm_toupper (dfm_tolower), 47
dfm_trim, 48
dfm_trim(), 43
dfm_weight, 50
dfm_weight(), 36, 46, 63
dfm_wordstem (tokens_wordstem), 97
dfm_wordstem(), 75
dictionaries, 5
dictionary, 8, 11, 13, 24, 31, 32, 37, 40, 42,

52, 64, 66, 67, 71, 83, 84, 86, 90, 93
dictionary(), 8
docfreq, 46, 54
docfreq(), 46, 52
docid (docnames), 56
docnames, 35, 56
docnames(), 19
docnames<- (docnames), 56
DocumentTermMatrix, 7, 16
docvars, 17, 21, 27, 35, 36, 45, 58, 58, 85, 95
docvars(), 19
docvars<- (docvars), 58

fcm, 9, 34, 35, 41–43, 48, 59, 61, 62
fcm(), 61
fcm_compress (dfm_compress), 34
fcm_keep (dfm_select), 41
fcm_remove (dfm_select), 41
fcm_select (dfm_select), 41
fcm_sort, 62
fcm_sort(), 62
fcm_tolower (dfm_tolower), 47
fcm_toupper (dfm_tolower), 47

102 INDEX

featfreq, 63
featnames, 35, 63, 99
featnames(), 39, 49, 57
file, 53

getStemLanguages, 97
groups, 57

iconv, 53
index, 64, 66
index(), 65
is.collocations, 65
is.corpus (as.character.corpus), 6
is.dfm (as.dfm), 7
is.dictionary (as.dictionary), 7
is.dictionary(), 53, 54
is.fcm (fcm), 59
is.index (index), 64
is.kwic (kwic), 65
is.phrase (phrase), 71
is.tokens (as.list.tokens), 9

jsonlite::toJSON(), 16

key-words-in-context, 5
keywords, 5
kwic, 17, 65
kwic(), 17, 93

lda.collapsed.gibbs.sampler, 15
list, 53

Matrix, 7, 9
matrix, 7, 9
meta, 17, 67
meta(), 19
meta<- (meta), 67

ndoc, 68
ndoc(), 19
nfeat (ndoc), 68
nfeat(), 61
nsentence, 69
ntoken, 70
ntoken(), 68
ntype (ntoken), 70

options(), 74

pattern, 13, 24, 40, 42, 64, 66, 83, 90, 93

pattern matches, 32
pattern(), 71
phrase, 71
phrase(), 66, 71, 84
prettify(), 16
print,dfm-method (print-methods), 72
print,dictionary2-method

(print-methods), 72
print,fcm-method (print-methods), 72
print-methods, 67, 72
print.corpus (print-methods), 72
print.dfm (print-methods), 72
print.dictionary (print-methods), 72
print.kwic (print-methods), 72
print.tokens (print-methods), 72

quanteda (quanteda-package), 4
quanteda-package, 4, 30
quanteda.textstats::textstat_collocations(),

65
quanteda_options, 74
quanteda_options(), 73, 74
quantile(), 49

rbind.dfm(), 34
readtext-methods, 76

sample, 41, 92
similarities, 5
SimpleCorpus, 17
spacy_parse, 76
spacy_tokenize, 76
spacyr-methods, 76
sparsity, 77
stri_opts_brkiter, 69
stri_split_boundaries, 81
stri_split_boundaries(x, type = word),

81
stringi::stri_opts_brkiter(), 75
subset.data.frame(), 27, 45, 95, 96

TermDocumentMatrix, 7, 16
TermDocumentMatrix(), 16
textmodels, 78
textplots, 78
textstats, 78
tokens, 9, 10, 33, 56, 58–60, 64, 66–68, 70,

79, 79, 82–85, 90–93, 95–97, 99
tokens(), 22, 33, 34, 70

INDEX 103

tokens_chunk, 82
tokens_compound, 83
tokens_compound(), 94
tokens_group, 85
tokens_keep (tokens_select), 92
tokens_lookup, 86
tokens_lookup(), 10, 38, 90
tokens_ngrams, 88
tokens_ngrams(), 81, 89
tokens_remove (tokens_select), 92
tokens_remove(), 33
tokens_replace, 90
tokens_sample, 91
tokens_segment(), 82
tokens_select, 92
tokens_skipgrams (tokens_ngrams), 88
tokens_skipgrams(), 81, 89
tokens_split, 94
tokens_split(), 57
tokens_subset, 95
tokens_tolower, 96
tokens_toupper (tokens_tolower), 96
tokens_wordstem, 97
tokens_wordstem(), 75
topfeatures, 98
types, 99

valuetype, 13, 24, 37, 42, 53, 64, 66, 83, 86,
90, 93, 95

VCorpus, 17

wordStem, 97

	quanteda-package
	as.character.corpus
	as.dfm
	as.dictionary
	as.fcm
	as.list.tokens
	as.matrix.dfm
	as.yaml
	bootstrap_dfm
	char_select
	char_tolower
	convert
	corpus
	corpus_group
	corpus_reshape
	corpus_sample
	corpus_segment
	corpus_subset
	corpus_trim
	data_char_sampletext
	data_char_ukimmig2010
	data_corpus_inaugural
	data_dfm_lbgexample
	data_dictionary_LSD2015
	dfm
	dfm_compress
	dfm_group
	dfm_lookup
	dfm_match
	dfm_replace
	dfm_sample
	dfm_select
	dfm_sort
	dfm_subset
	dfm_tfidf
	dfm_tolower
	dfm_trim
	dfm_weight
	dictionary
	docfreq
	docnames
	docvars
	fcm
	fcm_sort
	featfreq
	featnames
	index
	is.collocations
	kwic
	meta
	ndoc
	nsentence
	ntoken
	phrase
	print-methods
	quanteda_options
	readtext-methods
	spacyr-methods
	sparsity
	textmodels
	textplots
	textstats
	tokens
	tokens_chunk
	tokens_compound
	tokens_group
	tokens_lookup
	tokens_ngrams
	tokens_replace
	tokens_sample
	tokens_select
	tokens_split
	tokens_subset
	tokens_tolower
	tokens_wordstem
	topfeatures
	types
	Index

