Package ‘restlos’

February 20, 2015

Type Package
Title Robust Estimation of Location and Scatter
Version 0.1-3
Date 2014-10-13
Author Steffen Liebscher and Thomas Kirschstein
Maintainer Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>
Description The restlos package provides algorithms for robust estimation of location and scatter based on minimum spanning trees (pMST), self-organizing maps (Flood Algorithm), and Delaunay triangulations (RDELA). The functions are also suitable for outlier detection.
Depends som, rgl, geometry, igraph
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2014-10-20 10:31:00

R topics documented:

restlos-package .. 2
flood ... 2
halle ... 4
plot.flood ... 4
plot.pMST ... 5
plot.r dela .. 6
pMST ... 7
r dela ... 8

Index 10
Description

The restlos package provides algorithms for robust estimation of location and scatter based on minimum spanning trees (pMST), self-organizing maps (Flood Algorithm), and Delaunay triangulations (RDELA). The functions are also suitable for outlier detection.

Details

Package: restlos
Type: Package
Version: 0.1-3
Date: 2014-10-13
License: GPL (>= 2)
LazyLoad: yes

Author(s)

Steffen Liebscher and Thomas Kirschstein
Maintainer: Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>

References

flood

The Flood Algorithm

Description

The function determines a robust subsample utilizing self-organizing maps (SOM).
Usage

flood(data, Nx=10, Ny=10, rlen=2000)

Arguments

data At least a two-dimensional data matrix is required. Number of observations needs to be greater than number of dimensions.

Nx Size of the SOM-net in x direction. Default is 10.

Ny Size of the SOM-net in y direction. Default is 10.

rlen Number of iterations during SOM learn process. Default is 2000.

Details

The function first calls the som function within the som-package. The results are subsequently used to determine a robust subsample. Arguments Nx, Ny and rlen are passed to som. These arguments should be selected depending on the size of the data set (number of observations/dimensions). The larger the data set the larger the net size and the number of iterations should be. Note: At the moment only rectangular and quadratic SOM nets are supported.

Value

som.results SOM results as delivered by som.
som.neigh A matrix showing for every neuron (first column) the index of the neighboring neurons (columns 2-5).

umatrix The U-matrix shows the U-value for every neuron.

winneuron Vector of length n giving the index of the nearest neuron (Euclidean distance).

lib List of all basins found. Index of neurons. Smallest subsample of size (n+d+1)/2.

lin List of all neighboring neurons per basin. Index of neurons. Smallest subsample of size (n+d+1)/2.

gleb Number of associated data points per basin. Smallest subsample of size (n+d+1)/2.

l Internal value necessary for plotting.

fafh Data for plotting the flood area flood height curve.

fafh.lib Internal data necessary for plotting extented flooding.

fafh.drin Internal data necessary for plotting extented flooding.

drin Robust subsample of minimal size.

Author(s)

Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>

References

Examples

#flood(halle)

halle halle data set

Description

Artificial data set containing a total of 1600 observations in two dimensions (in three groups with 100, 1000, 500 obs. from top to bottom). Central cluster is quadratically transformed leading to a U-shaped main part of the data.

Usage

halle

Examples

#plot(halle)

plot.flood Plot function for objects of class flood

Description

Function to plot the results obtained by function flood

Usage

S3 method for class 'flood'
plot(x,..., level = 0)

Arguments

x Object of class flood.
level Flood level. Numeric value between 0 and 1. Default is 0 (i.e. all plots are based on the smallest robust subsample).
... Further graphical parameters.

Details

The resulting plots depend on the dimensionality of the data set. For d=2 and d=3 the data set and the superimposed SOM net are plotted. For d>3 a Mahalanobis distance plot is generated instead. The U-landscape and the Flood-Area-Flood-Height-curve are always plotted.
plot.pMST

Note
At the moment no additional graphical parameters can be passed.

Author(s)
Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>

References

Examples
```r
#plot(flood(halle))
```

plot.pMST

Plot function for objects of class pMST

Description
Function to plot the results obtained by the functions pMST.

Usage
```r
## S3 method for class 'pMST'
plot(x, ...)
```

Arguments
- `x` Object of class pMST.
- `...` Further graphical parameters.

Details
The resulting plots display the LC- and the AL-plot to support the decision on the size of the robust subsample, see references. Moreover, if data set has dimension 2 or 3 the data set is plotted where the chosen robust subset is superimposed as red points.

Author(s)
Thomas Kirschstein <thomas.kirschstein@wiwi.uni-halle.de>

References
plot.r dela

Plot function for objects of class r dela

Description

Function to plot the results obtained by function r dela

Usage

S3 method for class 'r dela'
plot(x,...)

Arguments

x Object of class r dela.
...
Further graphical parameters.

Details

The resulting plots depend on the dimensionality of the data set. For d=2 and d=3 the data set and the selected robust subsample are plotted. For d>3 a Mahalanobis distance plot is generated instead.

Note

At the moment no additional graphical parameters can be passed.

Author(s)

Steffen Liebscher <stefen.liebscher@wiwi.uni-halle.de>

References

Examples

#plot(r dela(halle))
Description

The function determines a robust subsample and computes estimates of location and scatter on the subset.

Usage

\[
\text{pmst}(\text{data}, N = \text{floor}((\text{dim(data)}[1] + \text{dim(data)}[2] + 1)/2), lmax = \text{dim(data)}[1] * 100)
\]

Arguments

- **data**: data set to be analyzed, at least a 2-dimensional matrix whose number of rows (i.e. observations \(n\)) is greater than the number of columns (i.e. dimension \(d\))
- **N**: Size of the (robust) subsample to be determined. Default is \((n+d+1)/2\)
- **lmax**: Numerical option: determines the maximal number pruning steps, see details.

Details

The function uses the \texttt{mstree} function from the \texttt{ade4}-package to determine the minimum spanning tree (MST) of the data. The resulting MST is iteratively pruned by deleting edges (starting with the longest edge in the MST) until a connected subset with sufficient size (\(N\)) remains. Based on the robust subsample location and scatter are estimated.

Value

- **loc**: Location estimate based on the robust subsample
- **cov**: Covariance estimate based on the robust subsample
- **sample**: Index of the observations in the robust subsample
- **data**: The input data set

Author(s)

Thomas Kirschstein <thomas.kirschstein@wiwi.uni-halle.de>

References

Examples

```r
dela <- deltic(halle)
```

determine subsample of size
```
dela <- deltic(halle, N=900)
```

rdela
The RDELA Algorithm

Description

The function determines a robust subsample utilizing the Delaunay triangulation.

Usage

```
rdela(data, N)
```

Arguments

- `data`: At least a two-dimensional data matrix is required. Number of observations need to be greater than number of dimensions. No degenerated (i.e. collinear) data sets allowed.
- `N`: Size of the identified subsample. Default is \((n+d+1)/2\).

Details

The function first calls the `delaunayn` function within the `geometry`-package. The results are subsequently used to determine a robust subsample.

Value

- `data`: The input data set.
- `tri`: Vertices of all simplices of the Delaunay triangulation. Each row represents a simplex.
- `neigh`: Lists for every simplex the adjacent/neighboring simplices. Each list entry represents a simplex.
- `radii`: Circum-(hypersphere-)radius of each simplex.
- `center`: Center coordinates of all simplices.
- `Lib`: List of all basins found. Index of simplices. Smallest subsample of size \((n+d+1)/2\).
- `Lin`: List of all neighboring simplices per basin. Index of simplices. Smallest subsample of size \((n+d+1)/2\).
- `GeB`: Number of associated data points per basin. Smallest subsample of size \((n+d+1)/2\).
- `drin`: Robust subsample of minimal size.
Author(s)

Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>

References

Examples

#rdela(halle)
Index

*Topic **datasets**
 - halle, 4

*Topic **robust**
 - flood, 2
 - plot.flood, 4
 - plot.pMST, 5
 - plot.rdela, 6
 - pMST, 7
 - rdela, 8
 - restlos-package, 2

flood, 2

halle, 4

plot.flood, 4
plot.pMST, 5
plot.rdela, 6
pMST, 7

rdela, 8
restlos(restlos-package), 2
restlos-package, 2