saeRobust: Robust Small Area Estimation

Methods to fit robust alternatives to commonly used models used in Small Area Estimation. The methods here used are based on best linear unbiased predictions and linear mixed models. At this time available models include area level models incorporating spatial and temporal correlation in the random effects.

Version: 0.1.0
Depends: R (≥ 3.3), methods, aoos
Imports: assertthat, ggplot2, Matrix, magrittr, MASS, modules, memoise, Rcpp, spdep
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown, sae, saeSim, testthat
Published: 2016-05-16
Author: Sebastian Warnholz [aut, cre]
Maintainer: Sebastian Warnholz <Sebastian.Warnholz at>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: NEWS
CRAN checks: saeRobust results


Reference manual: saeRobust.pdf
Vignettes: fixedPoint
Package source: saeRobust_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: saeRobust_0.1.0.tgz
OS X Mavericks binaries: r-oldrel: saeRobust_0.1.0.tgz


Please use the canonical form to link to this page.