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Abstract

The R package saeTrafo provides new statistical methodology for the estimation of small area
means using unit-level models under transformations. The method of Würz et al. (2022) enables
the use of unit-level models dealing with both limited auxiliary data (often the only source of data
due to confidentiality agreements) and skewed distributed dependent variables like income (by us-
ing transformations such as the log or data-driven log-shift). In addition to the implementation of
the new methodology, saeTrafo provides established methods for unit-level models under transfor-
mations, allowing further applications and comparisons. It is of advantage that the most suitable
method is automatically selected and uncertainty estimates are easily offered. In addition, tools for
creating plots (model validation and estimator evaluation), visualisation on maps and exporting to
Excel and OpenDocument Spreadsheets are provided. The functionalities of the package are
demonstrated with exemplary data based on Austrian income and living conditions.

Keywords: official statistics, survey statistics, small area estimation, nested error regression model,
transformations

1 Introduction

For evidence-based policymaking, reliable knowledge of the spatial distribution of important variables
like income is essential. As sample sizes are small at a high-resolution spatial scale of interest, direct
estimates from surveys at this scale are likely to be unreliable. Small area estimation (SAE) methods are
a promising and widely used approach to overcome this problem (Pfeffermann, 2013; Rao and Molina,
2015; Tzavidis et al., 2018). One predominant approach - for estimating the averages in small areas - is
the nested error regression (NER) model proposed by Battese et al. (1988) that borrows strength by using
auxiliary information from a census. The starting point for this model is the availability of survey data
at the individual-level. For the census data, aggregates at the spatial scale of interest are sufficient. As
small area models often rely on linear mixed models, the normality assumption for the error terms has to
be satisfied. However, in a variety of real-world examples, this assumption is hard to meet. Especially
skewed variables, like income and consumption, can often not be adequately described by the available
auxiliary variables and lead to error terms where normality assumptions are rejected. One promising
approach satisfying the assumptions of the NER model is to use fixed logarithmic (Molina and Martı́n,
2018) or data-driven (Sugasawa and Kubokawa, 2019; Rojas-Perilla et al., 2020) transformations for the
dependent variable. When a back-transformation to the original scale is needed, a general problem is
the bias-correction. Berg and Chandra (2014) suggest an estimator with minimal mean squared error
(MSE). For this estimator, Molina and Martı́n (2018) develop an analytical MSE estimator. It requires
auxiliary information from population micro-data to correct the bias caused by the back-transformation,
which is a strong limitation for data analysts. Especially in countries with high data confidentiality stan-
dards, access to individual data from the census is usually not possible. For this need, Würz et al. (2022)
proposed methodology for estimating small area means based on the transformed NER model, if only
aggregate population-level auxiliary information is available. Their approach presents an appropriate
bias-correction that is necessary due to the back-transformation in the absence of population micro-data.
It abstains from any parametric assumptions about the auxiliary variables and instead uses aggregate
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statistics (means and covariances) and kernel density estimation (KDE) to resolve the issue of not hav-
ing access to population micro-data. The authors introduce a parametric bootstrap MSE estimator that
captures the uncertainty caused by the use of transformations and KDE. Alternatively, Li et al. (2019)
propose another method relying on the smearing approach of Duan (1983) but without introducing an
MSE estimator. For the second major class of small area models for estimating means - the area-level
models (Fay and Herriot, 1979) - aggregated survey and population data are sufficient to determine small
area means. In addition, considerable research has been done for area-level models on the application
of transformations: Slud and Maiti (2006) present an estimator for small area means and its analytical
MSE estimator under a log transformed Fay-Herriot model. Sugasawa and Kubokawa (2017) discuss
area-level models for the data-driven dual power transformations. However, this model class only em-
ploys aggregates from survey data. If the user has access to individual survey data, it would be desirable
to account for this finer level of survey information by applying unit-level models.

For the estimation of small area means and indicators, several software packages exist. In the fol-
lowing, the R software packages (R Core Team, 2020) for estimating unit-level SAE models are briefly
described: the package rsae (Schoch, 2014) focuses on robust estimation for both unit- and area-level
SAE models but do not offer transformations. Both models are also available in the R package JoSAE
(Breidenbach, 2018) or rhnerm (Sugasawa, 2016). They focus on the estimation under heteroscedas-
ticity. The R package hbsae (Boonstra, 2022) fits both models by maximum likelihood or hierarchical
Bayesian approaches. Like the previously listed R packages, mcmcsae (Boonstra, 2021) also does not
provide the possibility for the use of transformations. It deals with correlated random effects for both
unit- and area-level models and uses markov chain monte carlo simulations. The R package sae (Molina
and Marhuenda, 2015) offers unit-level models together with a variety of area-level models. On the
one hand, it provides the classic NER model (function: eblupBHF). On the other hand, a NER model
with transformations (box-cox and power transformation (Box and Cox, 1964)) is available, but micro-
population auxiliary data is required (function: ebBHF). For both models, bootstrap MSEs are avail-
able. To the best of my knowledge, sae is currently the only R package providing unit-level small area
models under transformations. However, it is important to emphasise that ebBHF requires population
micro-data, which is a strict limitation for data analysts. A package providing transformations for SAE
methods is the emdi package (Kreutzmann et al., 2019). However, it offers the area-level model and the
method of Molina and Rao (2010), which requires individual census data.

The structure of saeTrafo is closely oriented on that of the R package emdi (Kreutzmann et al.,
2019). This means that saeTrafo offers similar input arguments and generic functions. The main focus
of saeTrafo lies on making the new methodology by Würz et al. (2022) publicly available to enable
the use of transformations (log transformation and data-driven log-shift transformation) under limited
auxiliary data for unit-level small area models. The relevance is justified by data confidentiality because
in developed countries like Germany, population micro-data are not publicly available, and access to such
data is even challenging within gatekeeper organizations. Instead, population-level auxiliary data are
often only available at some aggregate level. Furthermore, the use of transformations is essential to meet
the assumptions on the error terms. Additionally, saeTrafo offers further methodology in a user-friendly
way: the well-known model from Battese et al. (1988) (without transformations), the bias-corrected
estimator from Molina and Martı́n (2018) (which requires population micro-data), and a first-order bias-
corrected estimator in the presence of aggregated population data. Depending on the used data and
transformation saeTrafo automatically selects the appropriate method. Furthermore, the user benefits
from the simple determination of the uncertainty via the main function. Some uncertainty estimates rely
on bootstrap procedures. For that, saeTrafo supplies a parallelization option to reduce running time.
Moreover, it offers well-known and SAE-specific generic functions enabling the automatic generation
of plots for model diagnostics, the comparison to a direct estimator via plots, the visualization of the
estimates on a map, and the easy export of the results. As the relevant graphics are generated directly
within the package and personalisation options exist, it simplifies the work flow for the user.

The rest of the paper is structured as follows: Section 2 introduces the estimation methods. In
Section 3, the Austrian dataset which is used to illustrate the package is described. The functionalities
of saeTrafo are presented in Section 4. This section gives a general overview on the main function
NER Trafo, demonstrate this function on exemplary Austrian data, and presents generic functions for
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the corresponding S3 object. Section 5 outlines further potential extensions.

2 Statistical methods

The package saeTrafo focuses on the NER model of Battese et al. (1988), which uses unit-level sample
data and aggregated population-level auxiliary information. For a general overview on SAE, we refer
to Rao and Molina (2015) or Tzavidis et al. (2018). This section presents the theoretical background
starting from the classical NER model to the methodology from Würz et al. (2022).

2.1 The nested error regression model

Throughout the paper, a finite population U of size N is divided into D areas U1, U2, ..., UD consisting
of N1, N2, ..., ND units. The index i = 1, ..., D indicates the respective area and j = 1, ..., Ni the
corresponding units. The response yij is available for every unit in the sample s which consists of n
units partitioned into sample sizes n1, n2, ..., nD for each area. With si / si we refer to the in-sample/out-
of-sample units in area i. The vector xij = (1, x1, x2, ..., xp)

T contains the intercept and p explanatory
variables for every unit j in the sample. These vectors are combined within the matrix Xs. The NER
model of Battese et al. (1988) models the relationship between xij and yij as follows:

yij = xTijβ + ui + eij , ui
iid∼ N (0, σ2u) and eij

iid∼ N (0, σ2e), (1)

where β = (β0, β1, β2, ..., βp)
T is the vector of regression coefficients. ui denotes the area-specific

random effect and eij is the unit-level error. They are assumed to be independent and σ2u and σ2e denote
their variances. An out-of-sample unit is estimated as best linear unbiased prediction by µij = xTijβ +

ui = xTijβ + γi

(∑
j∈si

(
yij − xTijβ

))
, where γi =

σ2
u

σ2
u+σ

2
e/ni

denotes the shrinkage factor. The target
parameter is the population mean for each area i and it is estimated as the empirical best linear unbiased
predictor (EBLUP) for the population area mean (yi) by

Ŷ
BHF

i =
1

Ni

(∑
j∈si

yij +
∑

j∈si
µ̂ij

)
= γ̂i

 1

ni

∑
j∈si

yij +

xi −
1

ni

∑
j∈si

xij

T

β̂

+ (1− γ̂i)xTi β̂, (2)

where γ̂i = σ̂2
u

σ̂2
u+σ̂

2
e/ni

. The vector xTi = 1
Ni

∑
j∈Ui

xTij contains means for the p covariates within
i. saeTrafo uses the restricted maximum likelihood (REML) theory to estimate fixed effects and the
variance components. As in the package emdi (Kreutzmann et al., 2019), it is implemented based on the
lme function of the package nlme (Pinheiro et al., 2022). Note that the estimator of Battese et al. (1988)

(Ŷ
BHF

i , (2)) requires only population-level aggregates and a unit-level survey.

To estimate the uncertainty of Ŷ
BHF

i (2), Prasad and Rao (1990) propose an analytical MSE which
saeTrafo supplies. A second possibility for determining the uncertainty are bootstrap methods offered
by R packages such as sae (Molina and Marhuenda, 2015).

2.2 Small area estimation under the nested error regression model and transformations

One-to-one transformations of the response h(yij) = y∗ij are a common tool to prevent violations of
the model assumptions. For skewed variables, like income, this problem is typical. In order to adapt
better to the data, data-driven transformations are promising for SAE (Gurka et al., 2006; Rojas-Perilla
et al., 2020). For instance, the log-shift transformation (Yang, 1995) extends the log transformation by
including a transformation parameter λ: y∗ij = h(yij) = log(yij + λ), which is estimated from the
sample. In saeTrafo, the transformation parameter λ is estimated from the sample data using the REML
method as Rojas-Perilla et al. (2020) proposed.
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Using a transformation on the response results in a model on the transformed scale:

h(yij) = y∗ij = xTijβ + ui + eij , ui
iid∼ N (0, σ2u) and eij

iid∼ N (0, σ2e). (3)

The BLUP on the transformed scale for out-of-sample units is µ∗ij = xTijβ + ui. However, in SAE
applications there is interest in prediction, so the aim is to estimate the mean on the original scale.

Due to Jensen’s inequality, the naive back-transformation of real convex or concave functions h()
don’t lead to the same result as the best prediction on the original scale (Jensen et al., 1906):

µtrans, naive
ij = h−1

(
µ∗ij
)︸ ︷︷ ︸

naive back-transformation of the BLUP

6= E[h−1(y∗ij)|ys,Xs].︸ ︷︷ ︸
best prediction on original scale

For the log and log-shift transformation, the back-transformation h−1() = exp() or h−1() = exp()−λ is
convex and hence µtrans, naive

ij underestimatesE[h−1(y∗ij)|ys,Xs]. In order to get bias-corrected estimates,
the best prediction on the original scale is needed.

In the case of a log-transformation, Berg and Chandra (2014) and Molina and Martı́n (2018) pro-
pose an analytical bias-correction. The best predictor for the out-of-sample units is defined for general
transformations via an integral which can be solved analytically for h() = log() by using y∗ij |ys,Xs ∼
N
(
µ∗ij , σ

2
u(1− γi) + σ2e

)
- with corresponding density fy∗ij |ys,Xs

- which comes directly from model
(3),

µtrans, bc
ij = E[h−1(y∗ij)|ys,Xs] =

∫ +∞

−∞
h−1(x)fy∗ij |ys,Xs

(x)dx

h−1()=exp()
= exp

(
µ∗ij +

σ2u(1− γi) + σ2e
2︸ ︷︷ ︸

=αi (bias-correction)

)
.

To the BLUP on the transformed scale (µ∗ij) a bias-correction (αi) is added before applying the back-
transformation. µtrans, bc

ij can be used to determine the bias-corrected estimator of the small area mean:

Ŷ
trans, bc

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

µ̂trans, bc
ij

 =
1

Ni

∑
j∈si

yij +
∑
j∈si

exp
(
xTij β̂ + ûi + α̂i

) . (4)

Molina and Martı́n (2018) propose for the MSE of Ŷ
trans, bc

i (4) both an analytical and a parametric
bootstrap estimator. The package saeTrafo provides (4) and its bootstrap MSE estimator.

For Ŷ
trans, bc

i (4), out-of-sample population micro-data are needed which often causes problems with
data confidentiality. Again, due to the Jensen’s inequality a (second-order) bias is introduced if we
use a naive back-transformation of the synthetic part (i.e., exp

(
xTi β̂

)
instead of

∑
j∈si exp

(
xTij β̂

)
).

The estimator with first-order bias-correction (αi) and naive back-transformation of the population-level
aggregates is denoted by

Ŷ
trans, bc-naive-agg

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

exp
(
xTi β̂ + ûi + α̂i

) . (5)

Due to the use of aggregated auxiliary data, this estimator has a second-order bias. To the best of my

knowledge, no MSE estimator is existing for Ŷ
trans, bc-naive-agg

i (5).
The next subsection presents small area means under the transformed NER model if only aggregated

population-level auxiliary information is available. Therefore, it addresses the problem of limited data
access and simultaneous transformation.
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2.3 Small area means under limited auxiliary information

As emphasized in the previous subsection, the estimator Ŷ
trans, bc

i (4) requires population-level auxiliary

data, which often leads to confidentiality constraints. In Ŷ
trans, bc-naive-agg

i (5), a second order bias remains
because aggregated auxiliary data is used instead of individual data. In contrast to this, the method of
Würz et al. (2022) aims to reduce the second-order bias due to the back-transformation of the synthetic
part. Therefore, it offers a solution to deal with bias under limited auxiliary information while using log
or log-shift transformation. This method approximates xTij β̂ in the absence of population micro-data to
reduce the second-order bias and combines this with the first-order bias-correction (αi) for small area
means.

Kernel density estimation for the synthetic part Due to limited auxiliary information, it is not pos-

sible to obtain
(∑

j∈si exp
(
xTij β̂

))
necessary for computing Ŷ

trans, bc

i (4). Würz et al. (2022) propose

an estimation method for the unknown synthetic part (xTij β̂) under limited auxiliary information. They
employ a KDE approach to estimate the distribution of xTij β̂. This approach has two main advantages:

firstly, the method of Würz et al. (2022) uses univariate KDE for the synthetic part
(
xTij β̂

)
instead of

multivariate KDE to estimate the joint multivariate distribution of the auxiliary variables. Since current
implementations of multivariate KDEs in R are restricted to a maximum number of auxiliary variables
(cf. the widely used package ks (Duong, 2022) only allows for up to 6 covariates), many applications
especially those with categorical data very quickly reach this limit. In contrasts, univariate KDE for the
synthetic part avoids this restriction. Simulation studies in Würz et al. (2022) show that the estimation
of the synthetic part is sufficient to reduce the second-order bias. Secondly, this method does not impose
any parametric assumptions on the covariates and only require aggregated population-level auxiliary
information.

KDE was first mentioned by Rosenblatt (1956) and Parzen (1962). Formally, KDE estimates the
density f of a sample X = {X1, ..., Xn} by

f̂h(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
, (6)

where the function k() is the kernel and h is the bandwidth. For more details on KDE, see for example
Scott (2015). saeTrafo employs the Epanechnikov kernel (Epanechnikov, 1969), which is implemented
using the density function of the stats package. Moreover, saeTrafo uses the method from Sheather
and Jones (1991) for bandwidth selection.

As a first step, saeTrafo standardizes the predictions of the synthetic part from the NER model. For
area i and individual j, the standardized predicted values zij are computed by

zij =
xTij β̂ − 1

ni

∑
j∈si x

T
ij β̂√

1
ni

∑
j∈si

(
xTij β̂ −

1
ni

∑
j∈si x

T
ij β̂
)2 .

This formula employs the mean and the standard deviation from the sample data predictions of the
synthetic part.

Second, the package adjusts the predictions with the help of aggregated population-level auxiliary

data. It uses the mean xTi β̂ and the empirical variation σi,XT β̂ =
√∑p

k=0

∑p
l=0 β̂kβ̂lCov[xik,xil],

where Cov[xik,xil] is the known covariance between the k-th and l-th explanatory variable for area
i. This step incorporates the aggregated information from the census, which adds the SAE component
to this method. Typically, in small area applications, sample sizes differ between areas. The package
distinguishes between large sample sizes - standardized data (zij) from the respective area i (conditional)
is used - and small sample sizes - standardized data (zij) from all areas (unconditional) is employed. In
order to distinguish between large and small sample sizes, a threshold t is defined: for small sample
sizes, i.e. below the threshold (ni < t) - or even for an out-of-sample area - we use the standardized data
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from all areas to generate adjusted data for area i. The input values for the KDE (rim) arise from the
standardized values zm. The index m ranges from 1, ..., n for sample sizes below t (unconditional) and
from 1, ..., ni for sample sizes above t (conditional). With

rim = zm σi,XT β̂ + xTi β̂ for

{
m ∈ s ni < t

m ∈ si ni ≥ t
(7)

we estimate the respective density using the KDE (6) for each area i. f̂h,i denotes the resulting density
for area i.

Small area means under limited auxiliary information In order to account for both types of biases
the proposed method relies on the approximated area-specific density f̂h,i of the synthetic part and the
first-order bias-correction αi:

Ŷ
trans, bc

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

exp (µ̂ij + α̂i)

 ≈ 1

Ni

(
Ni∑
j=1

exp
(
xTij β̂

)
︸ ︷︷ ︸

Ti

exp (ûi + α̂i)

)
.

µ̂ij = xTij β̂ + ûi is defined as in the NER model. As shown above, under limited auxiliary information,
the problem is reduced to determining the unknown back-transformed total (Ti). Würz et al. (2022) use
numerical integration and the estimated density of the synthetic part f̂h,i to determine the total T̂i =∑Ni

j=1 exp
(
xTij β̂

)
= NiE[exp(xTij β̂)] = Ni

∫ +∞
−∞ exp(x)f̂h,i(x)dx from sample data and population-

level auxiliary information - without using population micro-data. To achieve this, saeTrafo uses the
package sfsmisc (Maechler et al., 2021). The requested small area estimator of the mean is obtained by
inserting the estimated back-transformed area-specific totals T̂i:

Ŷ
trans, bc-agg

i =
1

Ni
T̂i exp (ûi + α̂i) . (8)

For the log-shift transformation, the characteristic shift-parameter λ̂ is added

Ŷ
trans, bc-agg

i =
1

Ni
T̂i exp (ûi + α̂i)− λ̂.

The R package saeTrafo is the first package providing these estimators to the users.

Uncertainty estimation For the estimator Ŷ
trans, bc-agg

i (8) under limited auxiliary data, Würz et al.
(2022) develop a parametric bootstrap MSE that captures the additional uncertainty due to KDE and the
estimation of the adaptive shift parameter in the case of a log-shift transformation. The following enu-
meration outlines the bootstrap procedure employed in saeTrafo for the log and log-shift transformation
(these transformations are denoted with h).

1. Transform the data: y∗ij = h(yij)

2. Estimate β̂, σ̂2u, and σ̂2e from sample data using model (3). In the case of the log-shift transforma-
tion, estimate λ̂ as proposed by Rojas-Perilla et al. (2020).

3. For b = 1, ..., B

(a) Generate u(b)i ∼ N (0, σ̂2u) and e(b)ij ∼ N (0, σ̂2e) for all areas i and j ∈ si.
(b) Build bootstrap samples on the transformed scale

y
∗(b)
ij = xTij β̂ + u

(b)
i + e

(b)
ij , with j ∈ si

for all areas i and therefore determine the estimator Ŷ
trans, bc-agg, (b)

i (8) for all areas within
each bootstrap replication b. Note, that λ is re-estimated within every replication b in case of
the log-shift transformation.
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(c) Determine the true mean for each area i in each bootstrap replication b. Due to the lack of
population micro-data for x, an approximation of the true bootstrap mean is needed. From
the available aggregated population-level values, Würz et al. (2022) construct an area-specific
distribution on the transformed scale for each bootstrap replication b:

y
∗(b)
ij |y

(b)
s ,Xs, u

(b)
i ∼ N

(
xTi β̂ + u

(b)
i , σ2

i,XT β̂
+ σ̂2e

)
, (9)

determine σi,XT β̂ =
√∑p

k=1

∑p
l=1 β̂kβ̂lCov[xik,xil] from known covariances and esti-

mated regression coefficients, and take σ̂2e from step 2. To get the true mean (Y (b)
i ) on the

original scale, Würz et al. (2022) combine the distributional assumptions on the transformed
scale (9) with the properties of the exponential back-transformation function h−1() = exp(),
respectively h−1() = exp()− λ:

Y
(b)
i =

1

Ni

∑
j∈Ui

h−1
(
y
∗(b)
ij

)
|y(b)
s ,Xs, u

(b)
i

h−1()=exp()
=

1

Ni

∑
j∈Ui

exp
(
y
∗(b)
ij

)
|y(b)
s ,Xs, u

(b)
i

= exp
(
xTi β̂ + u

(b)
i + 0.5

(
σ2
i,XT β̂

+ σ̂2e

))
.

For data-driven log-shift transformation, the analogue is

Y
(b)
i = exp

(
xTi β̂ + u

(b)
i + 0.5

(
σ2
i,XT β̂

+ σ̂2e

))
− λ̂,

where λ̂ is the shift-parameter estimated from step 2.

4. Determine the MSE over the B bootstrap replications:

M̂SEi =
1

B

B∑
b=1

(
Ŷ

trans, bc-agg, (b)

i − Y (b)
i

)2

.

saeTrafo offers this parametric bootstrap procedure. To increase user-friendliness, it is possible to run
this MSE estimation procedure on several cores. The expected execution times are displayed to the users.

The next section describes the Austrian data while Section 4 presents the core function NER Trafo.
The function provides the theory from this section in a user-friendly way, and demonstrates it based on
the Austrian data.

3 Data sets for illustration

The main idea of SAE is to combine survey and population (census or administrative) data to increase
the accuracy of the estimated indicator of interest. Since the target variable is only provided in the survey
data, additional information from the population is used to support the prediction of the target variable
using linear mixed models (Rao and Molina, 2015; Tzavidis et al., 2018). The package saeTrafo con-
tains sample and population data to provide the users with exemplary data. The sample (eusilcA smp)
and population data (eusilcA pop) are obtained from the package emdi (Kreutzmann et al., 2019).
The authors provide an extensive description of the data generating processed of the eusilcP dataset
coming from the package simFrame (Alfons et al., 2010). This household-level data set consists of
synthetic Austrian European Union Statistics on Income and Living Conditions (EU-SILC) from 2006.
For the package emdi, a spatially finer regional disaggregation was generated manually using a random
assignment taking into account the different regional income-levels in Austria. The lowest regional level
in this synthetic data set are the 94 Austrian districts. This population data comprises 25 000 households,
while there were more than 3.5 million households in Austria in 2006. The sample data is constructed by
stratified random sampling and consists of 1 945 households. The sample data includes 70 districts, leav-
ing 24 areas out-of-sample. The equivalized household income (eqIncome) is the target variable and
is only available within the sample. This variable is defined as the ratio of the total household disposable
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income and the equivalized household size. It was determined by the Organisation for Economic Co-
operation and Development (OECD) (Hagenaars et al., 1994). In the following examples, 14 covariates
serve as auxiliary data: gender, eqsize, cash, self empl, unempl ben, age ben, surv ben,
sick ben, dis ben, rent, fam allow, house allow, cap inv, and tax adj. For detailed
information, please refer to Kreutzmann et al. (2019). All 14 covariates are included within the sample
and the full and aggregated population data. Furthermore, the variable district is available in the
data and represents the spatial target level.

The core function NER Trafo of the package saeTrafo deals with different population data inputs.
Figure 1 visualizes, which functions from the theory part (Section 2) applies under which population
data input. To provide aggregates in a directly and user-friendly manner, pop area size, pop mean,
and pop cov are available as data sources in the package. All three data objects are calculated from
eusilcA pop. Their direct availability makes it more convenient for the user to try out all functionali-
ties of saeTrafo.

4 Core functionalities

This section is structured accordingly: Section 4.1 gives an overview of the main function NER Trafo,
Section 4.2 shows how NER Trafo is applied using the exemplary data, and Section 4.3 demonstrates
the possibilities of saeTrafo’s generic functions to analyse, visualize, and export the corresponding S3
object.

4.1 Overview NER Trafo

The NER Trafo function provides the methodology from Section 2. NER Trafo has 16 input argu-
ments, takes the different data input possibilities into account, and allows for a variety of specifications
(cf. Table 1). As a minimum input, the sample data (smp data and smp domains), the formula
object (fixed), and population data - either the aggregated data (pop area size, pop mean, and
optional pop cov) or the individual data (pop data and pop domains) - must be entered. As sae-
Trafo uses the S3 object system, NER Trafo returns an object of class saeTrafo and NER (Chambers
and Hastie, 1992). The reason for assigning two classes to the object is ability to integrate further SAE
models in future releases. The output object consists of ten components. In this way, the user can
directly access the point estimates (ind), the uncertainty estimates (MSE), transformation parameters
(transform param), information on the underlying linear mixed-effects model as in the package
nlme (Pinheiro et al., 2022) (model), a list describing the data input (framework), the selected trans-
formation (transformation), the method for transformation parameter estimation (method), the
formula object (fixed), the function call (call), and number of successful bootstraps for bootstrap
MSE estimation procedures (successful bootstraps).

Figure 1 illustrates which estimation methods for point and MSE estimation are used under different
combinations of selected transformation and type of population data. If no transformation is selected,
saeTrafo employs the classical model by Battese et al. (1988). Since no individual data are neces-
sary, potentially used population micro-data are processed into aggregates in a first step. Under the log
or log-shift transformation saeTrafo automatically selects between different methods depending on the
data. saeTrafo uses the estimator of Würz et al. (2022) if population aggregates (means, covariances,
and populations area sizes) are supplied in the presence of transformations. If only means and area
sizes under log or log-shift transformation are present, the NER Trafo function employs the estimator

Ŷ
trans,bc-naive-agg

i (5) for which no MSE estimator exists. This estimator only corrects the first-order bias
and neglects the second bias due to limited data. An alternative method - not implemented in R yet -
is the estimator from Li et al. (2019), for which no MSE estimator exists too. If the log or log-shift

transformation occur with individual population data, saeTrafo uses the estimator Ŷ
trans,bc

i (4) together
with its bootstrap MSE. Please note, that in the cases of individual population data other packages like
emdi (Kreutzmann et al., 2019) provide further functionalities: the estimation of quantiles, inequality
indicators, and further transformations (box-cox transformation (Box and Cox, 1964) and dual transfor-
mation (Yang, 2006)). These options become available in the ebp function of emdi which applies the
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Table 1: Input arguments of function NER Trafo.

Arguments Short description Default

fixed Formula object with fixed effects and response variable
of the NER model

pop area size Population sizes per domain NULL
pop mean Population means for all fixed effects per domain NULL
pop cov Population covariance matrices between all fixed effects

per domain
NULL

pop data Census or administrative data containing all fixed effects NULL
pop domains Domain identifier for population data NULL
smp data Survey data comprising the fixed effects and the response

variable
smp domains Domain identifier for sample data
threshold Threshold for using pooled domain data 30
B Number of bootstrap replications for bootstrap MSE esti-

mation
50

transformation Type of transformation: no, log, log-shift log-shift
interval Interval for estimating the optimal parameter of log-shift

transformation
range of response

MSE MSE estimation FALSE
parallel mode Mode of parallelization for bootstrap MSE procedure automatic
cpus Kernels for parallelization for bootstrap MSE procedure 1
seed Seed for random number generator within bootstrap MSE

procedure
123

Selected
transformation

Population data Mean
estimator

MSE
estimation

no

pop mean,
pop area sizes

pop data,
pop domains

pop mean, pop cov,
pop area sizes

pop mean,
pop area sizes

pop data,
pop domains

log or
log.shift

Ŷ
BHF

i (2)

Ŷ
trans, bc-agg

i (8)

Ŷ
trans,bc-naive-agg

i (5)

Ŷ
trans,bc

i (4)

Prasad and Rao
(1990)

Bootstrap: Würz
et al. (2022)

Bootstrap: Molina
and Martı́n (2018)

Figure 1: Overview of different estimation methods provided in function NER Trafo. These estimation
methods are chosen depending on the selected transformation and the type of provided population data.
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method of Molina and Rao (2010). Since the ebp function is based on Monte Carlo replications, the run
time is longer than for NER Trafo.

4.2 Estimation of (transformed) nested error regression models

Synthetic Austrian EUSILC data (cf. Section 3) is used to illustrate the functionalities of saeTrafo and
the estimation with NER Trafo. The example demonstrates the estimation of the small area means for
the equivalized household income (eqIncome) at the disaggregation level of 94 Austrian districts. The
sample, population, and aggregated data are available in saeTrafo:

R> library(saeTrafo)
R> data("eusilcA_pop")
R> data("eusilcA_smp")
R> data("pop_area_size")
R> data("pop_mean")
R> data("pop_cov")

The data allow for easy testing of the different methods implemented and bundled in NER Trafo. For

illustration purposes, the example focuses on estimating Ŷ
trans, bc-agg

i (8), therefore it is sufficient to insert
only aggregated population data. In addition to the point estimates, MSE estimates are calculated too, so
MSE is set to TRUE. Furthermore, the setting for the threshold for pooled estimation (cf. (7)) is set
to 30. To prevent long run times for MSE estimation the default of the number of bootstrap replications
is only 50, whereby parallelization is available in the function. To obtain a more precise MSE estimate,
B is increased to 250 in the example. The seed is set to 2022 to ensure reproducibility of the results.

R> formula <- eqIncome ˜ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
+ fam_allow + house_allow + cap_inv + tax_adj

R> NER_model <- NER_Trafo(fixed = formula,
+ pop_area_size = pop_area_size, pop_mean = pop_mean,
+ pop_cov = pop_cov, smp_data = eusilcA_smp,
+ smp_domains = "district", B = 250, threshold = 50,
+ MSE = TRUE, seed = 2022)

The R object NER model is of two classes saeTrafo and NER. For this S3 object several generic
functions are provided within saeTrafo and presented in the following section.

4.3 Generic functions

The most important generic functions of the R package saeTrafo (summary output, diagnostic plots,
visualisation of estimates, and their export) are shown in detail. All other functionalities are only briefly
introduced.

Summary of a saeTrafo object By applying the summary function on an object of class saeTrafo,
R-user receive basic information and first diagnostic results. In addition to the call, small area specific
characteristics (number of out-of-sample and in-sample domains, information on sample sizes, and their
distribution among domains) are displayed. To assess the proportion of variance explained by the model,
saeTrafo provides both a marginal and conditional R2 following Nakagawa and Schielzeth (2013). The
R2s are implemented as in the emdi-package (Kreutzmann et al., 2019) and use the MuMIn-package
from Barton (2018). Moreover, the output shows information on the residual diagnostics for the unit-
level errors (eij) and the domain-specific random effects (ui). If a transformation is selected, saeTrafo
calculates these diagnostics on the transformed scale and hence help to judge, if the transformation
assists to meet the normality assumption of both components. The ICC relates the variances (σ2u and σ2e )
to each other. Finally, the summary function outputs information on the transformation and the selected
parameter λ.
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R> summary(NER_model)

Nested Error Regression Model

Call:
NER_Trafo(fixed = eqIncome ˜ gender + eqsize + cash + self_empl +

unempl_ben + age_ben + surv_ben + sick_ben + dis_ben + rent +
fam_allow + house_allow + cap_inv + tax_adj,
pop_area_size = pop_area_size, pop_mean = pop_mean,
pop_cov = pop_cov, smp_data = eusilcA_smp,
smp_domains = "district", threshold = 50, B = 250,
MSE = TRUE, seed = 2022)

Out-of-sample domains: 24
In-sample domains: 70

Sample sizes:
Units in sample: 1945
Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample_domains 14 17.0 22.5 27.78571 29.00 200
Population_domains 5 126.5 181.5 265.95745 265.75 5857

Explanatory measures:
Marginal_R2 Conditional_R2
0.6233538 0.7054886

Residual diagnostics:
Skewness Kurtosis Shapiro_W Shapiro_p

Error 0.6222910 7.607189 0.9706711 1.705890e-19
Random_effect 0.4788713 2.726898 0.9737695 1.487627e-01

ICC: 0.2180689

Transformation:
Transformation Method Optimal_lambda

log.shift reml 27907.57

The output of the example shows that the synthetic Austrian data consists of 24 out-of-sample domains
and 70 in-sample domains. As the sample sizes over domains are considerably small (Median: 22.5)
this is a classical small area problem. Both the marginal and conditional coefficients of determination
are high with values above 62%. The normality assumption for the random effects is not rejected at a
significance level of 5%. For the individual errors, this assumption is rejected with p = 1.705890e-19.
The random effects contribute to around 21% of the model variance. The chosen transformation is the
log-shift transformation with REML-estimated transformation parameter of λ = 27907.57.

Diagnostic plots for the nested error regression model The plot function provides five plots bund-
ling the most important diagnostic information: Q-Q plots to judge the normality assumption on the error
terms (cf. Figure 2a), the deviation of both the density from the normal distribution for the individual
errors (cf. Figure 2b) and the random effects (cf. Figure 2c), the Cook’s distance to identify outliers (cf.
Figure 2d) as well as information on the optimal transformation parameter λ for the log-shift transfor-
mation (cf. Figure 2e). The plot function allows customized settings: the input arguments label,
color, cooks, and range enable direct changes to the plots. In addition, with gg theme there is the
possibility of further personalisation of the plots by using the ggplot2 package (Wickham, 2016).
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R> plot(NER_model)

In the Austrian income example, the Q-Q plot (cf. Figure 2a) and the density plot (cf. Figure 2c) confirm
the normality assumptions of the underlying model for the random effects. However, for the individual
error term, the Q-Q plot (cf. Figure 2a) shows several outliers. The Cooks distance plot highlights
three individuals as possible outliers. The last plot (cf. Figure 2e) shows the log-likelihood reaching its
maximum at λ = 27907.57. This plot is only supplied for the log-shift transformation.

Comparing point and optional MSE/CV estimates The generic function compare plot is very
important for users to evaluate the quality of their model-based estimates. In SAE applications the com-
parison of the particular model-based estimator to the respective direct estimator is of central importance.
Since saeTrafo does not provide a function for determining direct estimators, other packages must be
utilized. Among others the survey package (Lumley, 2004), the laeken package (Alfons and Templ,
2013), and the emdi package (Kreutzmann et al., 2019) enable the estimation of disaggregated direct es-
timators and their variances from a survey. Up to now, the generic function compare plot works only
with direct estimators from the package emdi. The procedure for this is shown in the exemplary code.
For the comparison of point estimates, compare plot returns two types of plots: a scatter plot follow-
ing Brown et al. (2001) and a lineplot with direct and model-based domain-wise estimates. To compare
the uncertainty - if MSE or CV is set to TRUE - compare plot returns a boxplot and a scatterplot. In
addition to a direct adjustment of the visualisation with label, color, shape, and line type the
argument gg theme offers the possibility for further visualisation options using the ggplot2 package
(Wickham, 2016).

R> require(emdi)
R> library(emdi)
R> emdi_direct <- direct(y = "eqIncome", smp_data = eusilcA_smp,
+ smp_domains = "district", weights = "weight", var = TRUE,
+ na.rm = TRUE)
R> detach("package:emdi", unload = TRUE)

R> compare_plot(model = NER_model, direct = emdi_direct, CV = TRUE)

Both plots comparing direct and model-based point estimates show that the direct and model-based
estimates are close to each other, as the regression line and the identity line are close to each other (cf.
Figure 3a) and the model-based estimates track the direct ones (cf. Figure 3b). Furthermore, the CV is
assessed in Figure 3c and 3d. As the boxplots show, the uncertainty - measured by the CV - is reduced
clearly. The scatterplot which orders the domains by their sample size (from low to high) supports this
impression.

Visualization of regional disaggregated estimates on a map The spatial visualisation on a map is
simplified considerably by the map plot function which generates maps automatically if a Spa-
tialPolygonsDataFrame from package sp (Bivand et al., 2013) is provided additionally to the
S3 object from NER Trafo. As in emdi (Kreutzmann et al., 2019), the same polygon data show-
ing Austrian districts is available within saeTrafo, so that it is possible to visualize the estimates on
a map. The load shapeaustria function loads this map and the map plot function offers var-
ious options for the users. This function directly supplies settings for the graphical representation
(color, scale points, and guide), outputs the processed data (return data), and enables op-
tions to customize the map with the help of ggplot2 (Wickham, 2016). If the domain ids within the
SpatialPolygonsDataFrame and the S3 object differ, map tab enables the entry of a data.-
frame for the assignment of the domain ids.

R> load_shapeaustria()

R> map_plot(NER_model, map_obj = shape_austria_dis, map_dom_id = "PB")
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Figure 2: Diagnostic plots from generic function plot: Q-Q plots (a) and two density plots ((b) and
(c)) to check the normality assumption for both error terms, Cook’s distance plot for detecting potential
outliers (d), and log-likelihood for the optimal shift parameter λ (e).
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Figure 3: Plots for comparison to direct estimates from generic function compare plot for the NER
model: scatter plot (a), line plots with estimates ordered by domain-specific sample size (b), boxplots to
compare CV for both estimators (c), and scatter plot for CV estimates ordered by domain-specific sample
size (d).

Figure 4: Map with Austrian districts showing their small area means for the equivalized household
income from function map plot.

14



The map in Figure 4 shows the mean equivalized household income for all 94 Austrian districts produced
by the SAE methods explained above. Smaller values are mostly in rural districts (like Zell am See with
the lowest value of 10469.93e) and higher mean equivalized household incomes appear in more urban
districts.

Exporting the results and most important model information In addition to the evaluation and
visualization of the point estimates (and uncertainty estimates), the package enables the export to other
software. saeTrafo offers direct and user-friendly export of the estimates and the information from the
summary function on the saeTrafo object to the software Excel.

R> write.excel(NER_model, file = "excel_output.xlsx", CV = TRUE)

In addition, the export to OpenDocument format is also supported.

R> write.ods(NER_model, file = "excel_output.xlsx", CV = TRUE)

In both functions it can be specified if the CVs and MSEs should also be exported. If split is set
to TRUE, the point estimators, MSEs and CVs are saved in separate worksheets, respectively separate
documents. The created files are stored in the working directory.

Further generic functions Besides the generic functions already presented in detail, saeTrafo offers
further generics: the function estimators is convenient to get point, MSE and CV estimates. In
addition, the widely known functions as.data.frame, as.matrix, head, print, subset, and
tail can be applied to the S3 object created with estimators. The print function returns the most
important model information. To facilitate the comparison between SAE estimators, the generic function
compare pred exists and creates a data set with point or MSE estimators of both objects. To also
enable comparisons with other SAE methodology, an emdi object can be entered.

To further increase user-friendliness, well-known, and widely used generic functions from the stats
package can be used with saeTrafo. Thus, the following functions can be applied to the S3 object of
NER Trafo: coef, confint, family, fitted, formula, logLik, nobs, predict, resi-
duals, sigma, terms, and vcov.

Since the linear mixed models used are calculated with the nlme package (Pinheiro et al., 2022),
the following generic functions for nlme objects are available for the S3 object of saeTrafo: fixef,
getData, getGroups, getGroupsFormula, getResponse, getVarCov, intervals, and
ranef.

5 Conclusion

The main focus of saeTrafo is to make the new methodology by Würz et al. (2022) publicly avail-
able. This methodology resolves the problem of not having access to individual population data while
using transformations in the context of unit-level small area models. This method and its uncertainty
estimation are supplied by the function NER Trafo. In addition, the package provides the following
methods: the well-known estimator by Battese et al. (1988), the bias-corrected estimator from Molina
and Martı́n (2018) using population micro-data, and a first-order bias-corrected estimator using aggre-
gated population data. An advantage of this function is the appropriate and automatic selection of small
area methodology under different possible data inputs and transformations (none, log, and data-driven
log-shift transformation). saeTrafo guarantees user-friendliness by providing all methods and their re-
spective MSE (including parallelization options) within the NER Trafo function. For this S3 object,
a variety of generic functions are offered. They automate the creation of important plots for model
diagnostics and the assessment of the estimator’s quality. Furthermore, options for visualizing the es-
timates on maps and the export of estimators are provided. Further generic functionalities increase the
user-friendliness.

This last paragraph outlines possible new features of saeTrafo for future releases: saeTrafo will
offer more (data-driven) transformations such as the box-cox or the dual-power transformation. The
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choice between different methodologies to estimate the MSE will increase user-friendliness. For the

estimator Ŷ
trans,bc

i , Molina and Martı́n (2018) propose an analytical MSE in addition to the bootstrap
version already supplied in saeTrafo. Further releases would profit by including this version. Moreover,
saeTrafo offers the MSE of Prasad and Rao (1990) for the classical NER model. Further MSE estimating
options are desirable. To have a MSE for the first-order bias-corrected estimator (trans, bc-naive-agg),
theoretical research is first necessary. Including alternative SAE methods such as the method of Li et al.
(2019) will increase the flexibility of the package. Overall, the saeTrafo software package is written in
such a way that this can be easily extended with other small area model classes. For long-term future
versions, this is aspired.
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from ’seminar fuer statistik’ ETH Zurich. URL https://CRAN.R-project.org/package=
sfsmisc. R package version 1.1-12.

Molina, I. and Marhuenda, Y. (2015) sae: an R package for small area estimation. The R Journal, 7,
81–98.

Molina, I. and Martı́n, N. (2018) Empirical best prediction under a nested error model with log transfor-
mation. The Annals of Statistics, 46, 1961–1993.

Molina, I. and Rao, J. N. K. (2010) Small area estimation of poverty indicators. Canadian Journal of
Statistics, 38, 369–385.

Nakagawa, S. and Schielzeth, H. (2013) A general and simple method for obtainingR2 from generalized
linear mixed-effects models. Methods in ecology and evolution, 4, 133–142.

Parzen, E. (1962) On estimation of a probability density function and mode. The Annals of Mathematical
Statistics, 33, 1065–1076.

Pfeffermann, D. (2013) New important developments in small area estimation. Statistical Science, 28,
40–68.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team (2022) nlme: linear and nonlinear
mixed effects models. URL https://CRAN.R-project.org/package=nlme. R package
version 3.1-155.

Prasad, N. N. and Rao, J. N. K. (1990) The estimation of the mean squared error of small-area estimators.
Journal of the American Statistical Association, 85, 163–171.

Rao, J. N. K. and Molina, I. (2015) Small Area Estimation. Hoboken: John Wiley & Sons.
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statis-

tical Computing, Vienna.
Rojas-Perilla, N., Pannier, S., Schmid, T. and Tzavidis, N. (2020) Data-driven transformations in small

area estimation. Journal of the Royal Statistical Society: Series A (Statistics in Society), 183, 121–148.
Rosenblatt, M. (1956) Remarks on some nonparametric estimates of a density function. The Annals of

Mathematical Statistics, 27, 832–837.
Schoch, T. (2014) rsae: robust small area estimation. URL https://CRAN.R-project.org/
package=rsae. R package version 0.1-5.

Scott, D. W. (2015) Multivariate density estimation: theory, practice, and visualization. John Wiley &
Sons.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel
density estimation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 53,
683–690.

Slud, E. V. and Maiti, T. (2006) Mean-squared error estimation in transformed Fay–Herriot models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68, 239–257.

Sugasawa, S. (2016) rhnerm: Random Heteroscedastic Nested Error Regression. URL https://
CRAN.R-project.org/package=rhnerm. R package version 1.1.

Sugasawa, S. and Kubokawa, T. (2017) Transforming response values in small area prediction. Compu-
tational Statistics & Data Analysis, 114, 47–60.

Sugasawa, S. and Kubokawa, T. (2019) Adaptively transformed mixed-model prediction of general finite-
population parameters. Scandinavian Journal of Statistics, 46, 1025–1046.

Tzavidis, N., Zhang, L.-C., Luna, A., Schmid, T. and Rojas-Perilla, N. (2018) From start to finish: a
framework for the production of small area official statistics. Journal of the Royal Statistical Society:
Series A (Statistics in Society), 181, 927–979.

Wickham, H. (2016) ggplot2: elegant graphics for data analysis. New York: Springer.
Würz, N., Schmid, T. and Tzavidis, N. (2022) Estimating regional income indicators under transforma-

tions and access to limited population auxiliary information. Unpublished.
Yang, L. (1995) Transformation-density estimation. Ph. d. thesis, University of North Carolina, Chapel

Hill.

18



Yang, Z. (2006) A modified family of power transformations. Economics Letters, 92, 14–19.

19


