Package ‘sensory’

February 20, 2015

Type Package

Title Simultaneous Model-Based Clustering and Imputation via a Progressive Expectation-Maximization (PEM) algorithm.

Version 1.0

Date 2014-08-20

Author Brian C. Franczak, Ryan P. Browne and Paul D. McNicholas

Maintainer Brian C. Franczak <bfrancza@math.mcmaster.ca>

Description Contains the function CUUimpute() which performs model-based clustering and imputation simultaneously.

Depends Matrix, gtools, MASS, R (>= 3.1.1)

NeedsCompilation no

License GPL (>= 2)

Repository CRAN

Date/Publication 2014-08-21 18:36:52

R topics documented:

CUUimpute .. 2
sensory ... 4
The Brown Bread Data ... 5
The Iris Data with Missing Values 5
The White Bread Data .. 6

Index ... 7
CUUimpute

Cluster-Wise Imputation via a PEM Algorithm

Description

Simultaneously performs model-based clustering and imputation using a Parsimonious Gaussian Mixture Model (PGMM) with CUU covariance structure.

Usage

CUUimpute(x, G = 1:3, q = 1:2, epsilon = 0.01, max.iter = 10000, known = NULL, print = TRUE)

Arguments

- **x**: A numeric matrix.
- **G**: A number or vectors indicating the number components to fit.
- **q**: A number or vector indicating the number of latent factors to fit.
- **epsilon**: The tolerance value for Aitken's acceleration.
- **max.iter**: The maximum number of iterations for the PEM algorithm. A warning message is displayed if the maximum is met.
- **known**: Optional. A vector of group memberships that must be numeric and whose length must be equal to the number of rows in x. (See Example I below)
- **print**: Logical indicating whether or not the iteration number and the corresponding log-likelihood value should be printed.

Details

The PGMM with CUU covariance structure, herein referred to as the CUU model, was developed in McNicholas and Murphy (2008) for model-based clustering. The CUU model, like the other PGMMs, arises by assuming a latent Gaussian model structure for each population. As a result, the number of free parameters in CUU model's covariance structure increases linearly as the dimension of the data increases.

Browne et al. (2013) developed a Progressive Expectation-Maximization (PEM) algorithm to fit the CUU model to data with missing values. Under this parameter estimation scheme the CUU model is able to simultaneously impute and cluster a given data matrix. The CUUimpute() function fits the CUU model for a varying number of components, G, and latent factors, q, to a data matrix x. The function will run if only a data matrix is supplied however, the user is able to choose how many components and latent factors to fit, specify the tolerance limit for Aitken's acceleration, the maximum number of PEM iterations the algorithm will perform and give a vector representing the group memberships of each observation, if that information exists.
CUUimpute

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>allbic</td>
<td>An array containing the Bayesian Information Criterion (BIC) values for each</td>
</tr>
<tr>
<td></td>
<td>CUU model fitted to the data.</td>
</tr>
<tr>
<td>bic</td>
<td>The BIC of the best fitting CUU model.</td>
</tr>
<tr>
<td>G</td>
<td>The number of components in the best fitting CUU model.</td>
</tr>
<tr>
<td>q</td>
<td>The number of latent factors in the best fitting CUU model.</td>
</tr>
<tr>
<td>loglik</td>
<td>A vector whose length is equal to the number of PEM iterations performed and</td>
</tr>
<tr>
<td></td>
<td>whose elements contain the log-likelihood value on each iteration.</td>
</tr>
<tr>
<td>gpar</td>
<td>A list of the model parameters corresponding to the best fitting CUU model.</td>
</tr>
<tr>
<td>yhat</td>
<td>A data matrix with imputed values.</td>
</tr>
<tr>
<td>u</td>
<td>A matrix containing the values of the latent variables.</td>
</tr>
<tr>
<td>zig</td>
<td>A matrix giving the probabilities of group membership for each observation.</td>
</tr>
<tr>
<td></td>
<td>Note: these probabilities are based off the model parameters of the best</td>
</tr>
<tr>
<td></td>
<td>fitting CUU model.</td>
</tr>
<tr>
<td>map</td>
<td>A vector whose length is equal to the number of observations and whose</td>
</tr>
<tr>
<td></td>
<td>elements correspond to the group membership of each observation.</td>
</tr>
<tr>
<td>class.table</td>
<td>A cross tabulation between the predicted and true group memberships.</td>
</tr>
<tr>
<td>iclresult</td>
<td>A list containing all of the information listed above for the best fitting</td>
</tr>
<tr>
<td></td>
<td>CUU model chosen by the Integrated Complete Likelihood (ICL) measure.</td>
</tr>
<tr>
<td></td>
<td>Note: allbic and bic are replaced by allicl and icl.</td>
</tr>
</tbody>
</table>

Author(s)

Brian C. Franczak, Ryan P. Browne and Paul D. McNicholas
Maintainer: Brian C. Franczak <bfrancza@math.mcmaster.ca>

References

See Also

sensory

Examples

```r
### Example 1
data(iris) # loads the modified Iris data
head(iris) # displays the first six rows of the modified Iris data
data(iris) # loads the original Iris data

# create a vectors whose elements contain the group memberships of each flower
```
iris.known <- as.integer(iris[,ncol(iris)])

fit a three component CUU models to the modified Iris data
output <- CUUimpute(x=iris,G=3,q=1,print=FALSE,known=iris.known)
output
summary(output) # Summarizes the results

names(output) # Shows what results are available
output$allbic # Gives every BIC value
output$bic # Gives BIC for best fitting model
output$G # Gives the number of components for the best fitting CUU model
output$loglik # Gives a vector whose elements are the log-likelihood at each iteration
output$gpar # Gives the model parameters for the best fitting CUU model
head(output$yhat) # Displays the first 6 rows of the imputed matrix
output$yhat # Gives the entire imputed matrix
output$class.table # Gives a classification table between the predicted and true group memberships

sensory Cluster-Wise Imputation via a PEM Algorithm

Description
Contains the function CUUimpute() which performs model-based clustering and imputation simultaneously.

Details

Package: sensory
Type: Package
Version: 1.0
Date: 2014-08-07
License: GPL (>=2)

This package contains two data sets collected at Compusense Inc. in Guelph, Ontario, Canada, a modified version of Fisher's Irises, and the function CUUimpute().

Author(s)
Brian C. Franczak, Ryan P. Browne and Paul D. McNicholas
Maintainer: Brian C. Franczak <bfranza@math.mcmaster.ca>

References
The Brown Bread Data

Description
The brown bread data set is composed of 570 panelists and 16 products, labelled A,...,P to protect the identity of the manufacturer. Each panelist rated a subset of 6 products using the 9-point Hedonic Scale.

Usage
data(bbread)

Examples

data(bbread) # Loads the brown bread data set
data(bbread) # Displays the first six rows of the brown bread data set

See Also
Details, examples, and references are given under CUUimpute

The Iris Data with Missing Values

Description
Fisher’s Irises with one measurement removed per observation. For details load data(iris,package="gclus").

Usage
data(iiris)

Examples

data(iiris) # Loads the modified Iris data.
data(iiris) # Displays the first six rows of the modified Iris Data
The White Bread Data

Description
The white bread data is a liking study composed of 420 panelists and 12 products, labelled A,...,L to protect the identity of the manufacturer. Each panelist rated 6 white breads using the 9-point Hedonic scale.

Usage
data(wbread)

References

Examples
data(wbread) # Loads the white bread data
table(wbread) # Displays the first six rows of the white bread data
Index

*Topic Brown Bread Data
 The Brown Bread Data, 5

*Topic CUU Model
 CUUimpute, 2
 sensory, 4

*Topic Clustering
 CUUimpute, 2
 sensory, 4

*Topic Expectation Maximization (EM) Algorithm
 CUUimpute, 2
 sensory, 4

*Topic Fisher's Irises
 The Iris Data with Missing Values, 5

*Topic Imputation
 CUUimpute, 2
 sensory, 4

*Topic Parsimonious Gaussian Mixture Models
 CUUimpute, 2
 sensory, 4

*Topic Sensory Informed Designs
 CUUimpute, 2
 sensory, 4
 The Brown Bread Data, 5
 The White Bread Data, 6

*Topic White Bread Data
 The White Bread Data, 6

*Topic datasets
 The Brown Bread Data, 5
 The Iris Data with Missing Values, 5
 The White Bread Data, 6

bbread(The Brown Bread Data), 5

CUUimpute, 2, 5

iiris(The Iris Data with Missing Values), 5

sensory, 3, 4

The Brown Bread Data, 5
The Iris Data with Missing Values, 5
The White Bread Data, 6
wbread(The White Bread Data), 6