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spOccupancy-package Single-Species, Multi-Species, and Integrated Spatial Occupancy
Models

Description

Fits single-species, multi-species, and integrated non-spatial and spatial occupancy models using
Markov Chain Monte Carlo (MCMC). Models are fit using Polya-Gamma data augmentation de-
tailed in Polson, Scott, and Windle (2013). Spatial models are fit using either Gaussian processes
or Nearest Neighbor Gaussian Processes (NNGP) for large spatial datasets. Details on NNGPs are
given in Datta, Banerjee, Finley, and Gelfand (2016). Provides functionality for data integration
of multiple occupancy data sets using a joint likelihood framework. Details on data integration are
given in Miller, Pacifici, Sanderlin, and Reich (2019). Details on single-species and multi-species
models are found in MacKenzie et al. (2002) and Dorazio and Royle (2005), respectively. Details
on the package functionality is given in Doser et al. (2022), Doser, Finley, Banerjee (2023), Doser
et al. (2024a,b). See citation('spOccupancy') for how to cite spOccupancy in publications.

Single-species models
PGOcc fits single-species occupancy models.

spPGOcc fits single-species spatial occupancy models.

intPGOcc fits single-species integrated occupancy models (i.e., an occupancy model with multiple
data sources).

spIntPGOcc fits single-species integrated spatial occupancy models.

tPGOcc fits a multi-season single-species occupancy model.

stPGOcc fits a multi-season single-species spatial occupancy model.

svcPGBinom fits a single-species spatially-varying coefficient GLM.

svcPGOcc fits a single-species spatially-varying coefficient occupancy model.

svcTPGBinom fits a single-species spatially-varying coefficient multi-season GLM.
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svcTPGOcc fits a single-species spatially-varying coefficient multi-season occupancy model.

Multi-species models

msPGOcc fits multi-species occupancy models.

spMsPGOcc fits multi-species spatial occupancy models.

lfJSDM fits a joint species distribution model without imperfect detection.

sfJSDM fits a spatial joint species distribution model without imperfect detection.

lfMsPGOcc fits a joint species distribution model with imperfect detection (i.e., a multi-species
occupancy model with residual species correlations).

sfMsPGOcc fits a spatial joint species distribution model with imperfect detection.

svcMsPGOcc fits a multi-species spatially-varying coefficient occupancy model.

tMsPGOcc fits a multi-season multi-species occupancy model.

stMsPGOcc fits a multi-season multi-species spatial occupancy model.

svcTMsPGOcc fits a multi-season multi-species spatially-varying coefficient occupancy model.

Goodness of Fit and Model Assessment Functions

ppcOcc performs posterior predictive checks.

waicOcc computes the Widely Applicable Information Criterion for spOccupancy model objects.

Data Simulation Functions

simOcc simulates single-species occupancy data.

simTOcc simulates single-species multi-season occupancy data.

simBinom simulates detection-nondetection data with perfect detection.

simTBinom simulates multi-season detection-nondetection data with perfect detection.

simMsOcc simulates multi-species occupancy data.

simIntOcc simulates single-species occupancy data from multiple data sources.

simTMsOcc simulates multi-species multi-season occupancy data from multiple data sources.

Miscellaneous

postHocLM fits post-hoc linear (mixed) models.

getSVCSamples extracts spatially varying coefficient MCMC samples.

updateMCMC updates a spOccupancy or spAbundance model object with more MCMC iterations.

All objects from model-fitting functions have support with the summary function for displaying a
concise summary of model results, the fitted function for extracting model fitted values, and the
predict function for predicting occupancy and/or detection across an area of interest.

Author(s)

Jeffrey W. Doser, Andrew O. Finley, Marc Kery



6 fitted.intPGOcc

References

Doser, J. W., Finley, A. O., Kery, M., & Zipkin, E. F. (2022). spOccupancy: An R package for
single-species, multi-species, and integrated spatial occupancy models. Methods in Ecology and
Evolution, 13, 1670-1678. doi:10.1111/2041210X.13897.

Doser, J. W., Finley, A. O., & Banerjee, S. (2023). Joint species distribution models with imperfect
detection for high-dimensional spatial data. Ecology, 104(9), e4137. doi:10.1002/ecy.4137.

Doser, J. W., Finley, A. O., Saunders, S. P., Kery, M., Weed, A. S., & Zipkin, E. F. (2024A). Mod-
eling complex species-environment relationships through spatially-varying coefficient occupancy
models. Journal of Agricultural, Biological and Environmental Statistics. doi:10.1007/s13253023-
005956.

Doser, J. W., Kery, M., Saunders, S. P., Finley, A. O., Bateman, B. L., Grand, J., Reault, S., Weed,
A. S., & Zipkin, E. F. (2024B). Guidelines for the use of spatially varying coefficients in species
distribution models. Global Ecology and Biogeography, 33, e13814. doi:10.1111/geb.13814.

fitted.intPGOcc Extract Model Fitted Values for intPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted single-
species integrated occupancy (intPGOcc) model.

Usage

## S3 method for class 'intPGOcc'
fitted(object, ...)

Arguments

object object of class intPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class intPGOcc.

Value

A list comprised of

y.rep.samples A list of three-dimensional numeric arrays of fitted values for each individual
data source for use in Goodness of Fit assessments.

p.samples A list of three-dimensional numeric arrays of detection probability values.

https://doi.org/10.1111/2041-210X.13897
https://doi.org/10.1002/ecy.4137
https://doi.org/10.1007/s13253-023-00595-6
https://doi.org/10.1007/s13253-023-00595-6
https://doi.org/10.1111/geb.13814
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fitted.lfJSDM Extract Model Fitted Values for lfJSDM Object

Description

Method for extracting model fitted values and probability values from a fitted latent factor joint
species distribution model (lfJSDM).

Usage

## S3 method for class 'lfJSDM'
fitted(object, ...)

Arguments

object object of class lfJSDM.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and probability values for fitted
model objects of class lfJSDM.

Value

A list comprised of:

z.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, and
sites.

psi.samples A three-dimensional numeric array of probability values. Array dimensions cor-
respond to MCMC samples, species, and sites.

fitted.lfMsPGOcc Extract Model Fitted Values for lfMsPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted latent factor
multi-species occupancy (lfMsPGOcc) model.

Usage

## S3 method for class 'lfMsPGOcc'
fitted(object, ...)
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Arguments

object object of class lfMsPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class lfMsPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.msPGOcc Extract Model Fitted Values for msPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted multi-
species occupancy (msPGOcc) model.

Usage

## S3 method for class 'msPGOcc'
fitted(object, ...)

Arguments

object object of class msPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class msPGOcc.
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Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.PGOcc Extract Model Fitted Values for PGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted single-species
occupancy (PGOcc) model.

Usage

## S3 method for class 'PGOcc'
fitted(object, ...)

Arguments

object object of class PGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class PGOcc.

Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, and repli-
cates.

p.samples A three-dimensional numeric array of detection probability values. Array di-
mensions correspond to MCMC samples, sites, and replicates.
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fitted.sfJSDM Extract Model Fitted Values for sfJSDM Object

Description

Method for extracting model fitted values and probability values from a fitted spatial factor joint
species distribution model (sfJSDM).

Usage

## S3 method for class 'sfJSDM'
fitted(object, ...)

Arguments

object object of class sfJSDM.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and probability values for fitted
model objects of class sfJSDM.

Value

A list comprised of:

z.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, and
sites.

psi.samples A three-dimensional numeric array of probability values. Array dimensions cor-
respond to MCMC samples, species, and sites.

fitted.sfMsPGOcc Extract Model Fitted Values for sfMsPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted spatial factor
multi-species occupancy (sfMsPGOcc) model.

Usage

## S3 method for class 'sfMsPGOcc'
fitted(object, ...)
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Arguments

object object of class sfMsPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class sfMsPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.spIntPGOcc Extract Model Fitted Values for spIntPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted single-
species integrated spatial occupancy (spIntPGOcc) model.

Usage

## S3 method for class 'spIntPGOcc'
fitted(object, ...)

Arguments

object object of class spIntPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class spIntPGOcc.
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Value

A list comprised of

y.rep.samples A list of three-dimensional numeric arrays of fitted values for each individual
data source for use in Goodness of Fit assessments.

p.samples A list of three-dimensional numeric arrays of detection probability values.

fitted.spMsPGOcc Extract Model Fitted Values for spMsPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted multi-
species spatial occupancy (spMsPGOcc) model.

Usage

## S3 method for class 'spMsPGOcc'
fitted(object, ...)

Arguments

object object of class spMsPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class spMsPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.
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fitted.spPGOcc Extract Model Fitted Values for spPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted single-species
spatial occupancy (spPGOcc) model.

Usage

## S3 method for class 'spPGOcc'
fitted(object, ...)

Arguments

object object of class spPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class spPGOcc.

Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, and repli-
cates.

p.samples A three-dimensional numeric array of detection probability values. Array di-
mensions correspond to MCMC samples, sites, and replicates.

fitted.stMsPGOcc Extract Model Fitted Values for stMsPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted multi-
species multi-season spatial occupancy (stMsPGOcc) model.

Usage

## S3 method for class 'stMsPGOcc'
fitted(object, ...)
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Arguments

object object of class stMsPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class stMsPGOcc.

Value

A list comprised of:

y.rep.samples A five-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
primary time period, and replicates.

p.samples A five-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, primary time period, and
replicates.

fitted.stPGOcc Extract Model Fitted Values for stPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted multi-season
single-species spatial occupancy (stPGOcc) model.

Usage

## S3 method for class 'stPGOcc'
fitted(object, ...)

Arguments

object object of class stPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class stPGOcc.
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Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, primary
time periods, and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, sites, primary time periods, and replicates.

fitted.svcMsPGOcc Extract Model Fitted Values for svcMsPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted multi-
species spatially varying coefficient occupancy (svcMsPGOcc) model.

Usage

## S3 method for class 'svcMsPGOcc'
fitted(object, ...)

Arguments

object object of class svcMsPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class svcMsPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.
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fitted.svcPGBinom Extract Model Fitted Values for svcPGBinom Object

Description

Method for extracting model fitted values from a fitted single-species spatially-varying coefficients
binomial model (svcPGBinom).

Usage

## S3 method for class 'svcPGBinom'
fitted(object, ...)

Arguments

object object of class svcPGBinom.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values for fitted model objects of class
svcPGBinom.

Value

A two-dimensional matrix of fitted values for use in Goodness of Fit assessments. Dimensions
correspond to MCMC samples and sites.

fitted.svcPGOcc Extract Model Fitted Values for svcPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted single-species
spatially-varying coefficients occupancy (svcPGOcc) model.

Usage

## S3 method for class 'svcPGOcc'
fitted(object, ...)

Arguments

object object of class svcPGOcc.

... currently no additional arguments
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Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class svcPGOcc.

Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, and repli-
cates.

p.samples A three-dimensional numeric array of detection probability values. Array di-
mensions correspond to MCMC samples, sites, and replicates.

fitted.svcTMsPGOcc Extract Model Fitted Values for svcTMsPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted multi-
species multi-season spatially varying coefficient occupancy (svcTMsPGOcc) model.

Usage

## S3 method for class 'svcTMsPGOcc'
fitted(object, ...)

Arguments

object object of class svcTMsPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class svcTMsPGOcc.

Value

A list comprised of:

y.rep.samples A five-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
primary time period, and replicates.

p.samples A five-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, primary time period, and
replicates.
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fitted.svcTPGBinom Extract Model Fitted Values for svcTPGBinom Object

Description

Method for extracting model fitted values from a fitted multi-season single-species spatially-varying
coefficients binomial model (svcTPGBinom).

Usage

## S3 method for class 'svcTPGBinom'
fitted(object, ...)

Arguments

object object of class svcTPGBinom.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values for fitted model objects of class
svcTPGBinom.

Value

A three-dimensional matrix of fitted values for use in Goodness of Fit assessments. Dimensions
correspond to MCMC samples, sites, and primary time periods.

fitted.svcTPGOcc Extract Model Fitted Values for svcTPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted multi-season
single-species spatially-varying coefficients occupancy (svcTPGOcc) model.

Usage

## S3 method for class 'svcTPGOcc'
fitted(object, ...)

Arguments

object object of class svcTPGOcc.

... currently no additional arguments
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Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class svcTPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, primary
time periods, and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, sites, primary time periods, and replicates.

fitted.tMsPGOcc Extract Model Fitted Values for tMsPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted multi-
species multi-season occupancy (tMsPGOcc) model.

Usage

## S3 method for class 'tMsPGOcc'
fitted(object, ...)

Arguments

object object of class tMsPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class tMsPGOcc.

Value

A list comprised of:

y.rep.samples A five-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
primary time period, and replicates.

p.samples A five-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, primary time period, and
replicates.
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fitted.tPGOcc Extract Model Fitted Values for tPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted multi-season
single-species occupancy (tPGOcc) model.

Usage

## S3 method for class 'tPGOcc'
fitted(object, ...)

Arguments

object object of class tPGOcc.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class tPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, primary
time periods, and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, sites, primary time periods, and replicates.

getSVCSamples Extract spatially-varying coefficient MCMC samples

Description

Function for extracting the full spatially-varying coefficient MCMC samples from an spOccupancy
model object.

Usage

getSVCSamples(object, pred.object, ...)



getSVCSamples 21

Arguments

object an object of class svcPGOcc, svcPGBinom, svcTPGOcc, svcTPGBinom, svcMsPGOcc,
svcTMsPGOcc.

pred.object a prediction object from a spatially-varying coefficient model fit using spOccu-
pancy. Should be of class predict.svcPGOcc, predict.svcPGBinom, predict.svcTPGOcc,
predict.svcTPGBinom, predict.svcMsPGOcc, or predict.svcTMsPGOcc. If
specified, SVC samples are extracted at the prediction locations.

... currently no additional arguments

Value

A list of coda::mcmc objects of the spatially-varying coefficient MCMC samples for all spatially-
varying coefficients estimated in the model (including the intercept if specified). Note these values
correspond to the sum of the estimated spatial and non-spatial effect to give the overall effect of the
covariate at each location. Each element of the list is a two-dimensional matrix where dimensions
correspond to MCMC sample and site. If pred.object is specified, values are returned for the
prediction locations instead of the sampled locations.

Note

For multi-species models, the value of the SVC will be returned at all spatial locations for each
species even when range.ind is specified in the data list when fitting the model. This may not be
desirable for complete summaries of the SVC for each species, so if specifying range.ind in the
data list, you may want to subsequently process the SVC samples for each species to be restricted
to each species range.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, 2)
p.occ <- length(beta)
alpha <- c(0, 1)
p.det <- length(alpha)
phi <- c(3 / .6, 3 / .8)
sigma.sq <- c(1.2, 0.7)
svc.cols <- c(1, 2)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential',
svc.cols = svc.cols)

# Detection-nondetection data
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y <- dat$y
# Occupancy covariates
X <- dat$X
# Detection covarites
X.p <- dat$X.p
# Spatial coordinates
coords <- dat$coords

# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.iter <- n.batch * batch.length
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.ig = list(a = 2, b = 1),
phi.unif = list(a = 3/1, b = 3/.1))

# Initial values
inits.list <- list(alpha = 0, beta = 0,

phi = 3 / .5,
sigma.sq = 2,
w = matrix(0, nrow = length(svc.cols), ncol = nrow(X)),
z = apply(y, 1, max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)

out <- svcPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = 'exponential',
svc.cols = c(1, 2),
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
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n.burn = 50,
n.thin = 1)

svc.samples <- getSVCSamples(out)
str(svc.samples)

hbef2015 Detection-nondetection data of 12 foliage gleaning bird species in
2015 in the Hubbard Brook Experimental Forest

Description

Detection-nondetection data of 12 foliage gleaning bird species in 2015 in the Hubbard Brook
Experimental Forest (HBEF) in New Hampshire, USA. Data were collected at 373 sites over three
replicate point counts each of 10 minutes in length, with a detection radius of 100m. Some sites
were not visited for all three replicates. The 12 species included in the data set are as follows: (1)
AMRE: American Redstart; (2) BAWW: Black-and-white Warbler; (3) BHVI: Blue-headed Vireo;
(4) BLBW: Blackburnian Warbler; (5) BLPW: Blackpoll Warbler; (6) BTBW: Black-throated Blue
Warbler; (7) BTNW: BLack-throated Green Warbler; (8) CAWA: Canada Warbler; (9) MAWA:
Magnolia Warbler; (10) NAWA: Nashville Warbler; (11) OVEN: Ovenbird; (12) REVI: Red-eyed
Vireo.

Usage

data(hbef2015)

Format

hbef2015 is a list with four elements:

y: a three-dimensional array of detection-nondetection data with dimensions of species (12), sites
(373) and replicates (3).

occ.covs: a numeric matrix with 373 rows and one column consisting of the elevation at each site.

det.covs: a list of two numeric matrices with 373 rows and 3 columns. The first element is the
day of year when the survey was conducted for a given site and replicate. The second element is
the time of day when the survey was conducted.

coords: a numeric matrix with 373 rows and two columns containing the site coordinates (East-
ing and Northing) in UTM Zone 19. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NAD83".

Source

Rodenhouse, N. and S. Sillett. 2019. Valleywide Bird Survey, Hubbard Brook Experimental Forest,
1999-2016 (ongoing) ver 3. Environmental Data Initiative. doi:10.6073/pasta/faca2b2cf2db9d415c39b695cc7fc217
(Accessed 2021-09-07)

https://doi.org/10.6073/pasta/faca2b2cf2db9d415c39b695cc7fc217
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References

Doser, J. W., Leuenberger, W., Sillett, T. S., Hallworth, M. T. & Zipkin, E. F. (2022). Integrated
community occupancy models: A framework to assess occurrence and biodiversity dynamics using
multiple data sources. Methods in Ecology and Evolution, 00, 1-14. doi:10.1111/2041210X.13811

hbefElev Elevation in meters extracted at a 30m resolution across the Hubbard
Brook Experimental Forest

Description

Elevation in meters extracted at a 30m resolution of the Hubbard Brook Experimental Forest. Data
come from the National Elevation Dataset.

Usage

data(hbefElev)

Format

hbefElev is a data frame with three columns:

val: the elevation value in meters.

Easting: the x coordinate of the point. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NAD83".

Northing: the y coordinate of the point. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NAD83".

Source

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., & Tyler, D. (2002). The national
elevation dataset. Photogrammetric engineering and remote sensing, 68(1), 5-32.

References

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., & Tyler, D. (2002). The national
elevation dataset. Photogrammetric engineering and remote sensing, 68(1), 5-32.

https://doi.org/10.1111/2041-210X.13811
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hbefTrends Detection-nondetection data of 12 foliage gleaning bird species from
2010-2018 in the Hubbard Brook Experimental Forest

Description

Detection-nondetection data of 12 foliage gleaning bird species in 2010-2018 in the Hubbard Brook
Experimental Forest (HBEF) in New Hampshire, USA. Data were collected at 373 sites over three
replicate point counts each of 10 minutes in length, with a detection radius of 100m. Some sites
were not visited for all three replicates. The 12 species included in the data set are as follows: (1)
AMRE: American Redstart; (2) BAWW: Black-and-white Warbler; (3) BHVI: Blue-headed Vireo;
(4) BLBW: Blackburnian Warbler; (5) BLPW: Blackpoll Warbler; (6) BTBW: Black-throated Blue
Warbler; (7) BTNW: BLack-throated Green Warbler; (8) CAWA: Canada Warbler; (9) MAWA:
Magnolia Warbler; (10) NAWA: Nashville Warbler; (11) OVEN: Ovenbird; (12) REVI: Red-eyed
Vireo.

Usage

data(hbefTrends)

Format

hbefTrends is a list with four elements:

y: a four-dimensional array of detection-nondetection data with dimensions of species (12), sites
(373), years (9), and replicates (3).

occ.covs: a list of potential covariates for inclusion in the occurrence portion of an occupancy
model. There are two covariates: elevation (a site-level covariate), and years (a temporal covariate.
) det.covs: a list of two numeric three-dimensional arrays with dimensions corresponding to
sites (373), years (9), and replicates (3). The first element is the day of year when the survey was
conducted for a given site, year, and replicate. The second element is the time of day when the
survey was conducted.

coords: a numeric matrix with 373 rows and two columns containing the site coordinates (East-
ing and Northing) in UTM Zone 19. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NAD83".

Source

Rodenhouse, N. and S. Sillett. 2019. Valleywide Bird Survey, Hubbard Brook Experimental Forest,
1999-2016 (ongoing) ver 3. Environmental Data Initiative. doi:10.6073/pasta/faca2b2cf2db9d415c39b695cc7fc217
(Accessed 2021-09-07)

References

Doser, J. W., Leuenberger, W., Sillett, T. S., Hallworth, M. T. & Zipkin, E. F. (2022). Integrated
community occupancy models: A framework to assess occurrence and biodiversity dynamics using
multiple data sources. Methods in Ecology and Evolution, 00, 1-14. doi:10.1111/2041210X.13811

https://doi.org/10.6073/pasta/faca2b2cf2db9d415c39b695cc7fc217
https://doi.org/10.1111/2041-210X.13811
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intMsPGOcc Function for Fitting Integrated Multi-Species Occupancy Models Us-
ing Polya-Gamma Latent Variables

Description

Function for fitting integrated multi-species occupancy models using Polya-Gamma latent variables.

Usage

intMsPGOcc(occ.formula, det.formula, data, inits, priors, n.samples,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a list of symbolic descriptions of the models to be fit for the detection portion
of the model using R’s model syntax for each data set. Each element in the list
is a formula for the detection model of a given data set. Only right-hand side of
formula is specified. Random effects are not currently supported. See example
below.

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, sites, and species. y is a list of three-dimensional arrays. Each
element of the list has first dimension equal to the number of species observed
in that data source, second dimension equal to the number of sites observed in
that data source, and thir dimension equal to the maximum number of replicates
at a given site. occ.covs is a matrix or data frame containing the variables used
in the occurrence portion of the model, with the number of rows being the num-
ber of sites with at least one data source for each column (variable). det.covs
is a list of variables included in the detection portion of the model for each
data source. det.covs should have the same number of elements as y, where
each element is itself a list. Each element of the list for a given data source
is a different detection covariate, which can be site-level or observational-level.
Site-level covariates are specified as a vector with length equal to the number
of observed sites of that data source, while observational-level covariates are
specified as a matrix or data frame with the number of rows equal to the number
of observed sites of that data source and number of columns equal to the max-
imum number of replicates at a given site. sites is a list of site indices with
number of elements equal to the number of data sources being modeled. Each
element contains a vector of length equal to the number of sites that specific
data source contains. Each value in the vector indicates the row in occ.covs
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that corresponds with the specific row of the detection-nondetection data for the
data source. This is used to properly link sites across data sets. species is a list
with number of data sources being modeled. Each element of the list is a vector
of codes (these can be numeric or character) that indicate the species modeled
in the specific data set.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, and z.
The value portion of each tag is the parameter’s initial value. See priors de-
scription for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.psi.ig,
and sigma.sq.p.ig. Community-level occurrence (beta.comm) regression co-
efficients are assumed to follow a normal distribution. The hyperparameters of
the normal distribution are passed as a list of length two with the first and sec-
ond elements corresponding to the mean and variance of the normal distribution,
which are each specified as vectors of length equal to the number of coefficients
to be estimated or of length one if priors are the same for all coefficients. If
not specified, prior means are set to 0 and prior variances set to 2.72. For the
community-level detection means (alpha.comm), the mean and variance hyper-
parameters are themselves passed in as lists, with each element of the list corre-
sponding to the specific hyperparameters for the detection parameters in a given
data source. If not specified, prior means are set to 0 and prior variances set to
2.72. Community-level variance parameters for occurrence (tau.sq.beta) and
detection (tau.sq.alpha) are assumed to follow an inverse Gamma distribu-
tion. For the occurrence parameters, the hyperparameters of the inverse gamma
distribution are passed as a list of length two with the first and second elements
corresponding to the shape and scale parameters, which are each specified as
vectors of length equal to the number of coefficients to be estimated or a single
value if all parameters are assigned the same prior. If not specified, prior shape
and scale parameters are set to 0.1. For the detection community-level variance
parameters (tau.sq.alpha), the shape and scale parameters are passed in as
lists, with each element of the list corresponding to the specific hyperparame-
ters for the detection variances in a given data source. sigma.sq.psi and are
the random effect variances for any occurrence random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

n.samples the number of posterior samples to collect in each chain.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.
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verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold cross-validation is not currently supported for integrated multi-species occu-
pancy models.

k.fold.threads cross-validation is not currently supported for integrated multi-species occu-
pancy models.

k.fold.seed cross-validation is not currently supported for integrated multi-species occu-
pancy models.

k.fold.only cross-validation is not currently supported for integrated multi-species occu-
pancy models.

... currently no additional arguments

Value

An object of class intMsPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients for all data sources.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters for all data sources.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients for all data sources.

z.samples a three-dimensional array of posterior samples for the latent occurrence values
for each species.

psi.samples a three-dimensional array of posterior samples for the latent occurrence proba-
bility values for each species.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.



intMsPGOcc 29

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Note

Basic functionality of this function is stable, but some components are still in development and
not currently available. Please create a GitHub issue on the package GitHub page if you use this
function and encounter an error.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

References

Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using
Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Dorazio, R. M., and Royle, J. A. (2005). Estimating size and composition of biological communities
by modeling the occurrence of species. Journal of the American Statistical Association, 100(470),
389-398.

Doser, J. W., Leuenberger, W., Sillett, T. S., Hallworth, M. T. & Zipkin, E. F. (2022). Integrated
community occupancy models: A framework to assess occurrence and biodiversity dynamics using
multiple data sources. Methods in Ecology and Evolution, 00, 1-14. doi:10.1111/2041210X.13811

Examples

set.seed(91)
J.x <- 10
J.y <- 10
# Total number of data sources across the study region
J.all <- J.x * J.y
# Number of data sources.
n.data <- 2
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
n.rep <- list()

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1111/2041-210X.13811
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n.rep[[1]] <- rep(3, J.obs[1])
n.rep[[2]] <- rep(4, J.obs[2])

# Number of species observed in each data source
N <- c(8, 3)

# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.4, 0.3)
# Detection
# Detection covariates
alpha.mean <- list()
tau.sq.alpha <- list()
# Number of detection parameters in each data source
p.det.long <- c(4, 3)
for (i in 1:n.data) {

alpha.mean[[i]] <- runif(p.det.long[i], -1, 1)
tau.sq.alpha[[i]] <- runif(p.det.long[i], 0.1, 1)

}
# Random effects
psi.RE <- list()
p.RE <- list()
beta <- matrix(NA, nrow = max(N), ncol = p.occ)
for (i in 1:p.occ) {

beta[, i] <- rnorm(max(N), beta.mean[i], sqrt(tau.sq.beta[i]))
}
alpha <- list()
for (i in 1:n.data) {

alpha[[i]] <- matrix(NA, nrow = N[i], ncol = p.det.long[i])
for (t in 1:p.det.long[i]) {
alpha[[i]][, t] <- rnorm(N[i], alpha.mean[[i]][t], sqrt(tau.sq.alpha[[i]])[t])

}
}
sp <- FALSE
factor.model <- FALSE
# Simulate occupancy data
dat <- simIntMsOcc(n.data = n.data, J.x = J.x, J.y = J.y,

J.obs = J.obs, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = sp, factor.model = factor.model,
n.factors = n.factors)

J <- nrow(dat$coords.obs)
y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
X.re <- dat$X.re.obs
X.p.re <- dat$X.p.re
sites <- dat$sites
species <- dat$species

# Package all data into a list
occ.covs <- cbind(X)
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colnames(occ.covs) <- c('int', 'occ.cov.1')
#colnames(occ.covs) <- c('occ.cov')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(det.cov.1.1 = X.p[[1]][, , 2],

det.cov.1.2 = X.p[[1]][, , 3],
det.cov.1.3 = X.p[[1]][, , 4])

det.covs[[2]] <- list(det.cov.2.1 = X.p[[2]][, , 2],
det.cov.2.2 = X.p[[2]][, , 3])

data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
species = species)

# Take a look at the data.list structure for integrated multi-species
# occupancy models.
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0,var = 2.73),

alpha.comm.normal = list(mean = list(0, 0),
var = list(2.72, 2.72)),

tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = list(0.1, 0.1),

b = list(0.1, 0.1)))
inits.list <- list(alpha.comm = list(0, 0),

beta.comm = 0,
tau.sq.beta = 1,
tau.sq.alpha = list(1, 1),

alpha = list(a = matrix(rnorm(p.det.long[1] * N[1]), N[1], p.det.long[1]),
b = matrix(rnorm(p.det.long[2] * N[2]), N[2], p.det.long[2])),

beta = 0)

# Fit the model.
out <- intMsPGOcc(occ.formula = ~ occ.cov.1,

det.formula = list(f.1 = ~ det.cov.1.1 + det.cov.1.2 + det.cov.1.3,
f.2 = ~ det.cov.2.1 + det.cov.2.2),

inits = inits.list,
priors = prior.list,
data = data.list,
n.samples = 100,
n.omp.threads = 1,
verbose = TRUE,
n.report = 10,
n.burn = 50,
n.thin = 1,
n.chains = 1)

summary(out, level = 'community')

intPGOcc Function for Fitting Single-Species Integrated Occupancy Models Us-
ing Polya-Gamma Latent Variables
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Description

Function for fitting single-species integrated occupancy models using Polya-Gamma latent vari-
ables. Data integration is done using a joint likelihood framework, assuming distinct detection
models for each data source that are each conditional on a single latent occurrence process.

Usage

intPGOcc(occ.formula, det.formula, data, inits, priors, n.samples,
n.omp.threads = 1, verbose = TRUE, n.report = 1000,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed,
k.fold.data, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below.

det.formula a list of symbolic descriptions of the models to be fit for the detection portion
of the model using R’s model syntax for each data set. Each element in the list
is a formula for the detection model of a given data set. Only right-hand side of
formula is specified. See example below.

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, and sites. y is a list of matrices or data frames for each data set
used in the integrated model. Each element of the list has first dimension equal
to the number of sites with that data source and second dimension equal to the
maximum number of replicates at a given site. occ.covs is a matrix or data
frame containing the variables used in the occupancy portion of the model, with
the number of rows being the number of sites with at least one data source for
each column (variable). det.covs is a list of variables included in the detection
portion of the model for each data source. det.covs should have the same num-
ber of elements as y, where each element is itself a list. Each element of the list
for a given data source is a different detection covariate, which can be site-level
or observational-level. Site-level covariates are specified as a vector with length
equal to the number of observed sites of that data source, while observation-level
covariates are specified as a matrix or data frame with the number of rows equal
to the number of observed sites of that data source and number of columns equal
to the maximum number of replicates at a given site.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
and alpha. The value portion of tags z and beta is the parameter’s initial value.
The tag alpha is a list comprised of the initial values for the detection parame-
ters for each data source. Each element of the list should be a vector of initial
values for all detection parameters in the given data source or a single value for
each data source to assign all parameters for a given data source the same initial
value. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.
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priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal
and alpha.normal. Occurrence (beta) and detection (alpha) regression coef-
ficients are assumed to follow a normal distribution. For beta hyperparameters
of the normal distribution are passed as a list of length two with the first and sec-
ond elements corresponding to the mean and variance of the normal distribution,
which are each specified as vectors of length equal to the number of coefficients
to be estimated or of length one if priors are the same for all coefficients. For
the detection coefficients alpha, the mean and variance hyperparameters are
themselves passed in as lists, with each element of the list corresponding to the
specific hyperparameters for the detection parameters in a given data source. If
not specified, prior means are set to 0 and prior variances set to 2.72.

n.samples the number of posterior samples to collect in each chain.
n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-

cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.
n.burn the number of samples out of the total n.samples to discard as burn-in. By

default, the first 10% of samples is discarded.
n.thin the thinning interval for collection of MCMC samples. The thinning occurs after

the n.burn samples are discarded. Default value is set to 1.
n.chains the number of chains to run in sequence.
k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.data an integer specifying the specific data set to hold out values from. If not spec-
ified, data from all data set locations will be incorporated into the k-fold cross-
validation.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments
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Value

An object of class intPGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occupancy regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients for
all data sources.

z.samples a coda object of posterior samples for the latent occupancy values

psi.samples a coda object of posterior samples for the latent occupancy probability values

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().
k.fold.deviance

scoring rule (deviance) from k-fold cross-validation. A separate deviance value
is returned for each data source. Only included if k.fold is specified in function
call. Only a single value is returned if k.fold.data is specified.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using
Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.

Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists.
Ecological monographs, 85(1), 3-28.

Finley, A. O., Datta, A., and Banerjee, S. (2020). spNNGP R package for nearest neighbor Gaussian
process models. arXiv preprint arXiv:2001.09111.

Examples

set.seed(1008)

# Simulate Data -----------------------------------------------------------
J.x <- 15

https://repositories.lib.utexas.edu/handle/2152/21842
https://repositories.lib.utexas.edu/handle/2152/21842
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J.y <- 15
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {

n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5, 1)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
for (i in 1:n.data) {

alpha[[i]] <- runif(2, -1, 1)
}
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)

# Simulate occupancy data.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,

n.rep = n.rep, beta = beta, alpha = alpha, sp = FALSE)

y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(det.cov.1.1 = X.p[[1]][, , 2])
det.covs[[2]] <- list(det.cov.2.1 = X.p[[2]][, , 2])
det.covs[[3]] <- list(det.cov.3.1 = X.p[[3]][, , 2])
det.covs[[4]] <- list(det.cov.4.1 = X.p[[4]][, , 2])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
sites = sites)

J <- length(dat$z.obs)
# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),

beta = 0,
z = rep(1, J))

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = list(0, 0, 0, 0),
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var = list(2.72, 2.72, 2.72, 2.72)))
n.samples <- 5000
out <- intPGOcc(occ.formula = ~ occ.cov,

det.formula = list(f.1 = ~ det.cov.1.1,
f.2 = ~ det.cov.2.1,
f.3 = ~ det.cov.3.1,
f.4 = ~ det.cov.4.1),

data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = 1000,
n.thin = 1,
n.chains = 1)

summary(out)

lfJSDM Function for Fitting a Latent Factor Joint Species Distribution Model

Description

Function for fitting a joint species distribution model with species correlations. This model does not
explicitly account for imperfect detection (see lfMsPGOcc()). We use Polya-gamma latent variables
and a factor modeling approach.

Usage

lfJSDM(formula, data, inits, priors, n.factors,
n.samples, n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, and
coords. y is a two-dimensional array with first dimension equal to the number
of species and second dimension equal to the number of sites. Note how this
differs from other spOccupancy functions in that y does not have any replicate
surveys. This is because lfJSDM does not account for imperfect detection. covs
is a matrix or data frame containing the variables used in the model, with J rows
for each column (variable). coords is a matrix with J rows and 2 columns con-
sisting of the spatial coordinates of each site in the data. Note that spOccupancy
assumes coordinates are specified in a projected coordinate system.
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inits a list with each tag corresponding to a parameter name. Valid tags are beta.comm,
beta, tau.sq.beta, sigma.sq.psi, lambda. The value portion of each tag is
the parameter’s initial value. See priors description for definition of each pa-
rameter name. Additionally, the tag fix can be set to TRUE to fix the starting
values across all chains. If fix is not specified (the default), starting values are
varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
tau.sq.beta.ig, and sigma.sq.psi.ig. Community-level (beta.comm) re-
gression coefficients are assumed to follow a normal distribution. The hyperpa-
rameters of the normal distribution are passed as a list of length two with the
first and second elements corresponding to the mean and variance of the normal
distribution, which are each specified as vectors of length equal to the number
of coefficients to be estimated or of length one if priors are the same for all co-
efficients. If not specified, prior means are set to 0 and prior variances set to
2.72. Community-level variance parameters (tau.sq.beta) are assumed to fol-
low an inverse Gamma distribution. The hyperparameters of the inverse gamma
distribution are passed as a list of length two with the first and second elements
corresponding to the shape and scale parameters, which are each specified as
vectors of length equal to the number of coefficients to be estimated or a single
value if all parameters are assigned the same prior. If not specified, prior shape
and scale parameters are set to 0.1. The factor model fits n.factors indepen-
dent latent factors. The priors for the factor loadings matrix lambda are fixed
following standard approaches to ensure parameter identifiability. The upper
triangular elements of the N x n.factors matrix are fixed at 0 and the diagonal
elements are fixed at 1. The lower triangular elements are assigned a standard
normal prior (i.e., mean 0 and variance 1). sigma.sq.psi is the random effect
variance for any random effects, and is assumed to follow an inverse Gamma
distribution. The hyperparameters of the inverse-Gamma distribution are passed
as a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances.

n.factors the number of factors to use in the latent factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 0 and N (the number
of species in the community). When set to 0, the model assumes there are no
residual species correlations, which is equivalent to the msPGOcc() function but
without imperfect detection.

n.samples the number of posterior samples to collect in each chain.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.
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n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class lfJSDM that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

lambda.samples a coda object of posterior samples for the latent factor loadings.

psi.samples a three-dimensional array of posterior samples for the latent probability of oc-
currence/detection values for each species.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.

w.samples a three-dimensional array of posterior samples for the latent effects for each
latent factor.
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beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().
k.fold.deviance

vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k.fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References
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Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.
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Examples

set.seed(400)
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- rep(1, J)
N <- 10
# Community-level covariate effects
# Occurrence

https://repositories.lib.utexas.edu/handle/2152/21842
https://repositories.lib.utexas.edu/handle/2152/21842
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beta.mean <- c(0.2, 0.6, 1.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.2, 1.7)
# Detection
# Fix this to be constant and really close to 1.
alpha.mean <- c(9)
tau.sq.alpha <- c(0.05)
p.det <- length(alpha.mean)
# Random effects
# Include a single random effect
psi.RE <- list(levels = c(20),

sigma.sq.psi = c(2))
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
# Factor model
factor.model <- TRUE
n.factors <- 4

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = FALSE,
factor.model = TRUE, n.factors = 4)

X <- dat$X
y <- dat$y
X.re <- dat$X.re
coords <- dat$coords
occ.covs <- cbind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2', 'occ.re.1')
data.list <- list(y = y[, , 1],

covs = occ.covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

tau.sq.beta.ig = list(a = 0.1, b = 0.1))
inits.list <- list(beta.comm = 0, beta = 0, tau.sq.beta = 1)
out <- lfJSDM(formula = ~ occ.cov.1 + occ.cov.2 + (1 | occ.re.1),

data = data.list,
inits = inits.list,
priors = prior.list,
n.factors = 4,
n.samples = 1000,
n.report = 500,
n.burn = 500,
n.thin = 2,
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n.chains = 1)
summary(out)

lfMsPGOcc Function for Fitting Latent Factor Multi-Species Occupancy Models

Description

Function for fitting multi-species occupancy models with species correlations (i.e., a joint species
distribution model with imperfect detection). We use Polya-gamma latent variables and a factor
modeling approach for dimension reduction.

Usage

lfMsPGOcc(occ.formula, det.formula, data, inits, priors, n.factors,
n.samples, n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, and coords. y is a three-dimensional array with first dimension
equal to the number of species, second dimension equal to the number of sites,
and third dimension equal to the maximum number of replicates at a given site.
occ.covs is a matrix or data frame containing the variables used in the occur-
rence portion of the model, with J rows for each column (variable). det.covs
is a list of variables included in the detection portion of the model. Each list el-
ement is a different detection covariate, which can be site-level or observational-
level. Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site. coords is a matrix or data frame with two columns that contain
the spatial coordinates of each site. Note that spOccupancy assumes coordinates
are specified in a projected coordinate system.
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inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, lambda, sigma.sq.psi,
sigma.sq.p, z. The value portion of each tag is the parameter’s initial value.
See priors description for definition of each parameter name. Additionally, the
tag fix can be set to TRUE to fix the starting values across all chains. If fix is
not specified (the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.psi.ig,
and sigma.sq.p.ig. Community-level occurrence (beta.comm) and detection
(alpha.comm) regression coefficients are assumed to follow a normal distribu-
tion. The hyperparameters of the normal distribution are passed as a list of
length two with the first and second elements corresponding to the mean and
variance of the normal distribution, which are each specified as vectors of length
equal to the number of coefficients to be estimated or of length one if priors
are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances set to 2.72. Community-level variance parameters for occurrence
(tau.sq.beta) and detection (tau.sq.alpha) are assumed to follow an inverse
Gamma distribution. The hyperparameters of the inverse gamma distribution
are passed as a list of length two with the first and second elements correspond-
ing to the shape and scale parameters, which are each specified as vectors of
length equal to the number of coefficients to be estimated or a single value if all
parameters are assigned the same prior. If not specified, prior shape and scale
parameters are set to 0.1. The factor model fits n.factors independent latent
factors. The priors for the factor loadings matrix lambda are fixed following
standard approaches to ensure parameter identifiability. The upper triangular el-
ements of the N x n.factors matrix are fixed at 0 and the diagonal elements are
fixed at 1. The lower triangular elements are assigned a standard normal prior
(i.e., mean 0 and variance 1). sigma.sq.psi and sigma.sq.p are the random
effect variances for any occurrence or detection random effects, respectively,
and are assumed to follow an inverse Gamma distribution. The hyperparameters
of the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

n.factors the number of factors to use in the latent factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

n.samples the number of posterior samples to collect in each chain.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.
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n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class lfMsPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

lambda.samples a coda object of posterior samples for the latent factor loadings.
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z.samples a three-dimensional array of posterior samples for the latent occurrence values
for each species.

psi.samples a three-dimensional array of posterior samples for the latent occurrence proba-
bility values for each species.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercepts included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

w.samples a three-dimensional array of posterior samples for the latent effects for each
latent factor.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().
k.fold.deviance

vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k.fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 8
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
p.RE <- list()
# Include a random intercept on detection
p.RE <- list(levels = c(40),

sigma.sq.p = c(2))
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
n.factors <- 4

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
sp = FALSE, factor.model = TRUE, n.factors = n.factors, p.RE = p.RE)

y <- dat$y
X <- dat$X
X.p <- dat$X.p
X.p.re <- dat$X.p.re
# Package all data into a list

https://doi.org/10.18637/jss.v067.i01
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occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3],
det.re = X.p.re[, , 1])

data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
coords = dat$coords)

# Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

# Initial values
lambda.inits <- matrix(0, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
lambda = lambda.inits,
z = apply(y, c(1, 2), max, na.rm = TRUE))

n.samples <- 300
n.burn <- 200
n.thin <- 1

out <- lfMsPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2 + (1 | det.re),
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.factors = n.factors,
n.omp.threads = 1,
verbose = TRUE,
n.report = 100,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary(out, level = 'community')

msPGOcc Function for Fitting Multi-Species Occupancy Models Using Polya-
Gamma Latent Variables
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Description

Function for fitting multi-species occupancy models using Polya-Gamma latent variables.

Usage

msPGOcc(occ.formula, det.formula, data, inits, priors, n.samples,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
and det.covs. y is a three-dimensional array with first dimension equal to the
number of species, second dimension equal to the number of sites, and third
dimension equal to the maximum number of replicates at a given site. occ.covs
is a matrix or data frame containing the variables used in the occurrence portion
of the model, with J rows for each column (variable). det.covs is a list of
variables included in the detection portion of the model. Each list element is
a different detection covariate, which can be site-level or observational-level.
Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
and z. The value portion of each tag is the parameter’s initial value. See priors
description for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.psi.ig,
and sigma.sq.p.ig. Community-level occurrence (beta.comm) and detection
(alpha.comm) regression coefficients are assumed to follow a normal distribu-
tion. The hyperparameters of the normal distribution are passed as a list of
length two with the first and second elements corresponding to the mean and
variance of the normal distribution, which are each specified as vectors of length
equal to the number of coefficients to be estimated or of length one if priors
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are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances set to 2.72. Community-level variance parameters for occurrence
(tau.sq.beta) and detection (tau.sq.alpha) are assumed to follow an inverse
Gamma distribution. The hyperparameters of the inverse gamma distribution
are passed as a list of length two with the first and second elements correspond-
ing to the shape and scale parameters, which are each specified as vectors of
length equal to the number of coefficients to be estimated or a single value if all
parameters are assigned the same prior. If not specified, prior shape and scale
parameters are set to 0.1. sigma.sq.psi and sigma.sq.p are the random ef-
fect variances for any occurrence or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

n.samples the number of posterior samples to collect in each chain.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.
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... currently no additional arguments

Value

An object of class msPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

z.samples a three-dimensional array of posterior samples for the latent occurrence values
for each species.

psi.samples a three-dimensional array of posterior samples for the latent occurrence proba-
bility values for each species.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercepts included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().
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k.fold.deviance

vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k.fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)

https://repositories.lib.utexas.edu/handle/2152/21842
https://repositories.lib.utexas.edu/handle/2152/21842
https://doi.org/10.18637/jss.v067.i01
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# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
sp = FALSE)

y <- dat$y
X <- dat$X
X.p <- dat$X.p
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs)

# Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

# Initial values
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
z = apply(y, c(1, 2), max, na.rm = TRUE))

n.samples <- 3000
n.burn <- 2000
n.thin <- 1

out <- msPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = n.burn,
n.thin = n.thin,
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n.chains = 1)

summary(out, level = 'community')

neon2015 Detection-nondetection data of 12 foliage gleaning bird species in
2015 in Bartlett Experimental Forest in New Hampshire, USA

Description

Detection-nondetection data of 12 foliage gleaning bird species in 2015 in the Bartlett Experimen-
tal Forest in New Hampshire, USA. These data were collected as part of the National Ecological
Observatory Network (NEON). Data were collected at 80 sites where observers recorded the num-
ber of all bird species observed during a six minute, 125m radius point count survey once during
the breeding season. The six minute survey was split into three two-minute intervals following a
removal design where the observer recorded the interval during which a species was first observed
(if any) with a 1, intervals prior to observation with a 0, and then mentally removed the species
from subsequent intervals (marked with NA), which enables modeling of data in an occupancy
modeling framework. The 12 species included in the data set are as follows: (1) AMRE: Amer-
ican Redstart; (2) BAWW: Black-and-white Warbler; (3) BHVI: Blue-headed Vireo; (4) BLBW:
Blackburnian Warbler; (5) BLPW: Blackpoll Warbler; (6) BTBW: Black-throated Blue Warbler;
(7) BTNW: BLack-throated Green Warbler; (8) CAWA: Canada Warbler; (9) MAWA: Magnolia
Warbler; (10) NAWA: Nashville Warbler; (11) OVEN: Ovenbird; (12) REVI: Red-eyed Vireo.

Usage

data(neon2015)

Format

neon2015 is a list with four elements:

y: a three-dimensional array of detection-nondetection data with dimensions of species (12), sites
(80) and replicates (3).

occ.covs: a numeric matrix with 80 rows and one column consisting of the elevation at each site.

det.covs: a list of two numeric vectors with 80 elements. The first element is the day of year when
the survey was conducted for a given site. The second element is the time of day when the survey
began.

coords: a numeric matrix with 80 rows and two columns containing the site coordinates (East-
ing and Northing) in UTM Zone 19. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NAD83".

Source

NEON (National Ecological Observatory Network). Breeding landbird point counts, RELEASE-
2021 (DP1.10003.001). https://doi.org/10.48443/s730-dy13. Dataset accessed from https://data.neonscience.org
on October 10, 2021
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PGOcc Function for Fitting Single-Species Occupancy Models Using Polya-
Gamma Latent Variables

Description

Function for fitting single-species occupancy models using Polya-Gamma latent variables.

Usage

PGOcc(occ.formula, det.formula, data, inits, priors, n.samples,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs, and
det.covs. y is a matrix or data frame with first dimension equal to the number
of sites (J) and second dimension equal to the maximum number of replicates
at a given site. occ.covs is a matrix or data frame containing the variables used
in the occurrence portion of the model, with J rows for each column (variable).
det.covs is a list of variables included in the detection portion of the model.
Each list element is a different detection covariate, which can be site-level or
observational-level. Site-level covariates are specified as a vector of length J
while observation-level covariates are specified as a matrix or data frame with
the number of rows equal to J and number of columns equal to the maximum
number of replicates at a given site.

https://doi.org/10.1111/2041-210X.13811
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inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq.psi, and sigma.sq.p. The value portion of each tag is the pa-
rameter’s initial value. sigma.sq.psi and sigma.sq.p are only relevant when
including random effects in the occurrence and detection portion of the occu-
pancy model, respectively. See priors description for definition of each param-
eter name. Additionally, the tag fix can be set to TRUE to fix the starting values
across all chains. If fix is not specified (the default), starting values are varied
randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, sigma.sq.psi.ig, and sigma.sq.p.ig. Occupancy (beta)
and detection (alpha) regression coefficients are assumed to follow a normal
distribution. The hyperparameters of the normal distribution are passed as a
list of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if pri-
ors are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances set to 2.72. sigma.sq.psi and sigma.sq.p are the random ef-
fect variances for any occurrence or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

n.samples the number of posterior samples to collect in each chain.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.
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k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class PGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occupancy regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

z.samples a coda object of posterior samples for the latent occupancy values

psi.samples a coda object of posterior samples for the latent occupancy probability values
sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

like.samples a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().
k.fold.deviance

scoring rule (deviance) from k-fold cross-validation. Only included if k.fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().
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Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using
Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists.
Ecological monographs, 85(1), 3-28.

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm.
2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology
83: 2248-2255.

Examples

set.seed(400)
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, -0.15)
p.occ <- length(beta)
alpha <- c(0.7, 0.4)
p.det <- length(alpha)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sp = FALSE)
occ.covs <- dat$X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov = dat$X.p[, , 2])
# Data bundle
data.list <- list(y = dat$y,

occ.covs = occ.covs,
det.covs = det.covs)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72))
# Initial values
inits.list <- list(alpha = 0, beta = 0,

z = apply(data.list$y, 1, max, na.rm = TRUE))

https://repositories.lib.utexas.edu/handle/2152/21842
https://repositories.lib.utexas.edu/handle/2152/21842
https://doi.org/10.18637/jss.v067.i01
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n.samples <- 5000
n.report <- 1000

out <- PGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = n.report,
n.burn = 1000,
n.thin = 1,
n.chains = 1)

summary(out)

postHocLM Function for Fitting Linear Mixed Models with Previous Model Esti-
mates

Description

Function for fitting a linear (mixed) model as a second-stage model where the response variable
itself comes from a previous model fit and has uncertainty associated with it. The response variable
is assumed to be a set of estimates from a previous model fit, where each value in the response
variable has a posterior MCMC sample of estimates. This function is useful for doing "posthoc"
analyses of model estimates (e.g., exploring how species traits relate to species-specific parameter
estimates from a multi-species occupancy model). Such analyses are sometimes referred to as "two-
stage" analyses.

Usage

postHocLM(formula, data, inits, priors, verbose = FALSE,
n.report = 100, n.samples, n.chains = 1, ...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y and covs.
y is a matrix or data frame with first dimension equal to the number of poste-
rior samples of each value in the response variable and the second dimension
is equal to the number of values in the response variable. For example, if the
response is species-specific covariate effect estimates from a multi-species oc-
cupancy model, the rows correspond to the posterior MCMC samples and the
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columns correspond to species. covs is a matrix or data frame containing the in-
dependent variables used in the model. Note the number of rows of covs should
be equal to the number of columns in y.

inits a list with each tag corresponding to a parameter name. Valid tags are beta,
tau.sq, and sigma.sq. The value portion of each tag is the parameter’s initial
value. sigma.sq is only relevant when including random effects in the model.
See priors description for definition of each parameter name. Additionally, the
tag fix can be set to TRUE to fix the starting values across all chains. If fix is
not specified (the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
tau.sq.ig, and sigma.sq.ig. Regression coefficients (beta) are assumed to
follow a normal distribution. The hyperparameters of the normal distribution are
passed as a list of length two with the first and second elements corresponding
to the mean and variance of the normal distribution, which are each specified as
vectors of length equal to the number of coefficients to be estimated or of length
one if priors are the same for all coefficients. If not specified, prior means are
set to 0 and prior variances set to 100. tau.sq is the residual variance, and is
assumed to follow an inverse-Gamma distribution. The hyperparameters of the
inverse-Gamma distribution are passed as a vector of length two with first and
second elements corresponding to the shape and scale parameters, respectively.
sigma.sq are the variances of any random intercepts included in the model,
which similarly to tau.sq follow an inverse-Gamma distribution. The hyper-
parameters of the inverse-Gamma distribution are passed as a list of length two
with first and second elements corresponding to the shape and scale parameters,
respectively, which are each specified as vectors of length equal to the number
of random intercepts or of length one if priors are the same for all random effect
variances.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.
n.samples the number of posterior samples to collect in each chain. Note that by default,

the same number of MCMC samples fit in the first stage model is assumed to be
fit for the second stage model. If n.samples is specified, it must be a multiple of
the number of samples fit in the first stage, otherwise an error will be reported.

n.chains the number of chains to run in sequence.
... currently no additional arguments

Value

An object of class postHocLM that is a list comprised of:

beta.samples a coda object of posterior samples for the regression coefficients.
tau.sq.samples a coda object of posterior samples for the residual variances.
y.hat.samples a coda object of posterior samples of fitted values.
sigma.sq.samples

a coda object of posterior samples for the random effect variances if any random
intercepts were included in the model.
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beta.star.samples

a coda object of posterior samples for the random effects. Only included if
random intercepts are specified in formula.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

bayes.R2 a coda object of posterior samples of the Bayesian R-squared as a measure of
model fit. Note that when random intercepts are included in the model, this is
the conditional Bayesian R-squared, not the marginal Bayesian R-squared.

The return object will include additional objects used for subsequent summarization.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Examples

# Simulate Data -----------------------------------------------------------
set.seed(100)
N <- 100
beta <- c(0, 0.5, 1.2)
tau.sq <- 1
p <- length(beta)
X <- matrix(1, nrow = N, ncol = p)
if (p > 1) {

for (i in 2:p) {
X[, i] <- rnorm(N)

} # i
}
mu <- X[, 1] * beta[1] + X[, 2] * beta[2] + X[, 3] * beta[3]
y <- rnorm(N, mu, sqrt(tau.sq))
# Replicate y n.samples times and add a small amount of noise that corresponds
# to uncertainty from a first stage model.
n.samples <- 1000
y <- matrix(y, n.samples, N, byrow = TRUE)
y <- y + rnorm(length(y), 0, 0.25)

# Package data for use with postHocLM -------------------------------------
colnames(X) <- c('int', 'cov.1', 'cov.2')
data.list <- list(y = y, covs = X)
data <- data.list
inits <- list(beta = 0, tau.sq = 1)
priors <- list(beta.normal = list(mean = 0, var = 10000),

tau.sq.ig = c(0.001, 0.001))

https://doi.org/10.18637/jss.v067.i01
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# Run the model -----------------------------------------------------------
out <- postHocLM(formula = ~ cov.1 + cov.2,

inits = inits,
data = data.list,
priors = priors,
verbose = FALSE,
n.chains = 1)

summary(out)

ppcOcc Function for performing posterior predictive checks

Description

Function for performing posterior predictive checks on spOccupancy model objects.

Usage

ppcOcc(object, fit.stat, group, ...)

Arguments

object an object of class PGOcc, spPGOcc, msPGOcc, spMsPGOcc, intPGOcc, spIntPGOcc,
lfMsPGOcc, sfMsPGOcc, tPGOcc, stPGOcc, svcPGOcc, svcMsPGOcc, tMsPGOcc,
stMsPGOcc, svcTMsPGOcc.

fit.stat a quoted keyword that specifies the fit statistic to use in the posterior predictive
check. Supported fit statistics are "freeman-tukey" and "chi-squared".

group a positive integer indicating the way to group the detection-nondetection data
for the posterior predictive check. Value 1 will group values by row (site) and
value 2 will group values by column (replicate).

... currently no additional arguments

Details

Standard GoF assessments are not valid for binary data, and posterior predictive checks must be
performed on some sort of binned data.

Value

An object of class ppcOcc that is a list comprised of:

fit.y a numeric vector of posterior samples for the fit statistic calculated on the ob-
served data when object is of class PGOcc, spPGOcc, or svcPGOcc. When
object is of class msPGOcc, spMsPGOcc, lfMsPGOcc, sfMsPGOcc, or svcMsPGOcc
this is a numeric matrix with rows corresponding to posterior samples and columns
corresponding to species. When object is of class intPGOcc or spIntPGOcc,
this is a list, with each element of the list being a vector of posterior samples for
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each data set. When object is of class tPGOcc or stPGOcc, this is a numeric ma-
trix with rows corresponding to posterior samples and columns corresponding to
primary sampling periods. When object is of class tMsPGOcc, stMsPGOcc, or
svcTMsPGOcc, this is a three-dimensional array with dimensions corresponding
to MCMC sample, species, and primary time period.

fit.y.rep a numeric vector of posterior samples for the fit statistic calculated on a replicate
data set generated from the model when object is of class PGOcc, spPGOcc, or
svcPGOcc. When object is of class msPGOcc, spMsPGOcc, lfMsPGOcc, sfMsPGOcc,
or svcMsPGOcc this is a numeric matrix with rows corresponding to posterior
samples and columns corresponding to species. When object is of class intPGOcc
or spIntPGOcc, this is a list, with each element of the list being a vector of poste-
rior samples for each data set. When object is of class tPGOcc or stPGOcc, this
is a numeric matrix with rows corresponding to posterior samples and columns
corresponding to primary sampling periods. When object is of class tMsPGOcc,
stMsPGOcc, or svcTMsPGOcc, this is a three-dimensional array with dimensions
corresponding to MCMC sample, species, and primary time period.

fit.y.group.quants

a matrix consisting of posterior quantiles for the fit statistic using the observed
data for each unique element the fit statistic is calculated for (i.e., sites when
group = 1, replicates when group = 2) when object is of class PGOcc, spPGOcc,
or svcPGOcc. When object is of class msPGOcc, spMsPGOcc, lfMsPGOcc, sfMsPGOcc,
svcMsPGOcc, this is a three-dimensional array with the additional dimension cor-
responding to species. When object is of class intPGOcc or spIntPGOcc, this is
a list, with each element consisting of the posterior quantile matrix for each data
set. When object is of class tPGOcc or stPGOcc, this is a three-dimensional
array with the additional dimension corresponding to primary sampling periods.
When object is of class tMsPGOcc, stMsPGOcc, svcTMsPGOcc, this is a four-
dimensional array with dimensions corresponding to quantile, species, grouping
element, and primary time period.

fit.y.rep.group.quants

a matrix consisting of posterior quantiles for the fit statistic using the model
replicated data for each unique element the fit statistic is calculated for (i.e.,
sites when group = 1, replicates when group = 2) when object is of class
PGOcc, spPGOcc, svcPGOcc. When object is of class msPGOcc, spMsPGOcc,
lfMsPGOcc, sfMsPGOcc, or svcMsPGOcc, this is a three-dimensional array with
the additional dimension corresponding to species. When object is of class
intPGOcc or spIntPGOcc, this is a list, with each element consisting of the pos-
terior quantile matrix for each data set. When object is of class tPGOcc or
stPGOcc, this is a three-dimensional array with the additional dimension cor-
responding to primary sampling periods. When object is of class tMsPGOcc,
stMsPGOcc, svcTMsPGOcc, this is a four-dimensional array with dimensions cor-
responding to quantile, species, grouping element, and primary time period.

The return object will include additional objects used for standard extractor functions.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
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Examples

set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, -0.15)
p.occ <- length(beta)
alpha <- c(0.7, 0.4)
p.det <- length(alpha)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sp = FALSE)
occ.covs <- dat$X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov = dat$X.p[, , 2])
# Data bundle
data.list <- list(y = dat$y,

occ.covs = occ.covs,
det.covs = det.covs)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72))
# Initial values
inits.list <- list(alpha = 0, beta = 0,

z = apply(data.list$y, 1, max, na.rm = TRUE))

n.samples <- 5000
n.report <- 1000

out <- PGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = n.report,
n.burn = 4000,
n.thin = 1)

# Posterior predictive check
ppc.out <- ppcOcc(out, fit.stat = 'chi-squared', group = 1)
summary(ppc.out)

predict.intMsPGOcc Function for prediction at new locations for integrated multi-species
occupancy models
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Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘intMsPGOcc‘. Prediction is currently possible only for the latent occupancy state.

Usage

## S3 method for class 'intMsPGOcc'
predict(object, X.0, ignore.RE = FALSE, ...)

Arguments

object an object of class intMsPGOcc

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in intMsPGOcc. Columns should corre-
spond to the order of how covariates were specified in the corresponding formula
argument of intMsPGOcc. Column names of the random effects must match the
name of the random effects, if specified in the corresponding formula argument
of intMsPGOcc.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

... currently no additional arguments

Value

A list object of class predict.intMsPGOcc consisting of:

psi.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.
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Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(91)
J.x <- 10
J.y <- 10
# Total number of data sources across the study region
J.all <- J.x * J.y
# Number of data sources.
n.data <- 2
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
n.rep <- list()
n.rep[[1]] <- rep(3, J.obs[1])
n.rep[[2]] <- rep(4, J.obs[2])

# Number of species observed in each data source
N <- c(8, 3)

# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.4, 0.3)
# Detection
# Detection covariates
alpha.mean <- list()
tau.sq.alpha <- list()
# Number of detection parameters in each data source
p.det.long <- c(4, 3)
for (i in 1:n.data) {

alpha.mean[[i]] <- runif(p.det.long[i], -1, 1)
tau.sq.alpha[[i]] <- runif(p.det.long[i], 0.1, 1)

}
# Random effects
psi.RE <- list()
p.RE <- list()
beta <- matrix(NA, nrow = max(N), ncol = p.occ)
for (i in 1:p.occ) {

beta[, i] <- rnorm(max(N), beta.mean[i], sqrt(tau.sq.beta[i]))
}
alpha <- list()
for (i in 1:n.data) {

alpha[[i]] <- matrix(NA, nrow = N[i], ncol = p.det.long[i])
for (t in 1:p.det.long[i]) {

alpha[[i]][, t] <- rnorm(N[i], alpha.mean[[i]][t], sqrt(tau.sq.alpha[[i]])[t])
}

}
sp <- FALSE



predict.intMsPGOcc 65

factor.model <- FALSE
# Simulate occupancy data
dat <- simIntMsOcc(n.data = n.data, J.x = J.x, J.y = J.y,

J.obs = J.obs, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = sp, factor.model = factor.model,

n.factors = n.factors)
J <- nrow(dat$coords.obs)
y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
X.re <- dat$X.re.obs
X.p.re <- dat$X.p.re
sites <- dat$sites
species <- dat$species

# Package all data into a list
occ.covs <- cbind(X)
colnames(occ.covs) <- c('int', 'occ.cov.1')
#colnames(occ.covs) <- c('occ.cov')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(det.cov.1.1 = X.p[[1]][, , 2],

det.cov.1.2 = X.p[[1]][, , 3],
det.cov.1.3 = X.p[[1]][, , 4])

det.covs[[2]] <- list(det.cov.2.1 = X.p[[2]][, , 2],
det.cov.2.2 = X.p[[2]][, , 3])

data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,

sites = sites,
species = species)

# Take a look at the data.list structure for integrated multi-species
# occupancy models.
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0,

var = 2.73),

alpha.comm.normal = list(mean = list(0, 0),
var = list(2.72, 2.72)),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = list(0.1, 0.1),

b = list(0.1, 0.1)))
inits.list <- list(alpha.comm = list(0, 0),

beta.comm = 0,
tau.sq.beta = 1,
tau.sq.alpha = list(1, 1),

alpha = list(a = matrix(rnorm(p.det.long[1] * N[1]), N[1], p.det.long[1]),
b = matrix(rnorm(p.det.long[2] * N[2]), N[2], p.det.long[2])),
beta = 0)

# Fit the model.
out <- intMsPGOcc(occ.formula = ~ occ.cov.1,
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det.formula = list(f.1 = ~ det.cov.1.1 + det.cov.1.2 + det.cov.1.3,
f.2 = ~ det.cov.2.1 + det.cov.2.2),

inits = inits.list,
priors = prior.list,

data = data.list,
n.samples = 100,

n.omp.threads = 1,
verbose = TRUE,
n.report = 10,
n.burn = 50,
n.thin = 1,
n.chains = 1)

#Predict at new locations.
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
out.pred <- predict(out, X.0, ignore.RE = TRUE)

# Create prediction for one species.
curr.sp <- 2
psi.hat.quants <- apply(out.pred$psi.0.samples[,curr.sp, ],
2, quantile, c(0.025, 0.5, 0.975))
plot(psi.0[curr.sp, ], psi.hat.quants[2, ], pch = 19, xlab = 'True',

ylab = 'Predicted', ylim = c(min(psi.hat.quants), max(psi.hat.quants)),
main = paste("Species ", curr.sp, sep = ''))

segments(psi.0[curr.sp, ], psi.hat.quants[1, ], psi.0[curr.sp, ], psi.hat.quants[3, ])
lines(psi.0[curr.sp, ], psi.0[curr.sp, ])

predict.intPGOcc Function for prediction at new locations for single-species integrated
occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘intPGOcc‘.

Usage

## S3 method for class 'intPGOcc'
predict(object, X.0, ...)

Arguments

object an object of class intPGOcc

X.0 the design matrix for prediction locations. This should include a column of 1s
for the intercept. Covariates should have the same column names as those used
when fitting the model with intPGOcc.

... currently no additional arguments
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Value

An object of class predict.intPGOcc that is a list comprised of:

psi.0.samples a coda object of posterior predictive samples for the latent occurrence probabil-
ity values.

z.0.samples a coda object of posterior predictive samples for the latent occurrence values.

The return object will include additional objects used for standard extractor functions.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(1008)

# Simulate Data -----------------------------------------------------------
J.x <- 10
J.y <- 10
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {

n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5, 1)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
for (i in 1:n.data) {

alpha[[i]] <- runif(2, -1, 1)
}
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)

# Simulate occupancy data.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,

n.rep = n.rep, beta = beta, alpha = alpha, sp = FALSE)

y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
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# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(det.cov.1.1 = X.p[[1]][, , 2])
det.covs[[2]] <- list(det.cov.2.1 = X.p[[2]][, , 2])
det.covs[[3]] <- list(det.cov.3.1 = X.p[[3]][, , 2])
det.covs[[4]] <- list(det.cov.4.1 = X.p[[4]][, , 2])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
sites = sites)

J <- length(dat$z.obs)
# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),

beta = 0,
z = rep(1, J))

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)))

n.samples <- 5000
out <- intPGOcc(occ.formula = ~ occ.cov,

det.formula = list(f.1 = ~ det.cov.1.1,
f.2 = ~ det.cov.2.1,
f.3 = ~ det.cov.3.1,
f.4 = ~ det.cov.4.1),

data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = 4000,
n.thin = 1)

summary(out)

# Prediction
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred

out.pred <- predict(out, X.0)
psi.hat.quants <- apply(out.pred$psi.0.samples, 2, quantile, c(0.025, 0.5, 0.975))
plot(psi.0, psi.hat.quants[2, ], pch = 19, xlab = 'True',

ylab = 'Fitted', ylim = c(min(psi.hat.quants), max(psi.hat.quants)))
segments(psi.0, psi.hat.quants[1, ], psi.0, psi.hat.quants[3, ])
lines(psi.0, psi.0)
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predict.lfJSDM Function for prediction at new locations for latent factor joint species
distribution models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘lfJSDM‘.

Usage

## S3 method for class 'lfJSDM'
predict(object, X.0, coords.0,

ignore.RE = FALSE, ...)

Arguments

object an object of class lfJSDM

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the model, the levels of the random effects at the new
locations should be included as a column in the design matrix. The ordering
of the levels should match the ordering used to fit the data in lfJSDM. Columns
should correspond to the order of how covariates were specified in the formula
argument of lfJSDM. Column names of the random effects must match the name
of the random effects, if specified in the formula argument of lfJSDM.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

... currently no additional arguments

Value

A list object of class predict.lfJSDM that consists of:

psi.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

w.0.samples a three-dimensional array of posterior predictive samples for the latent factors.

The return object will include additional objects used for standard extractor functions.
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Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}

n.factors <- 3
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,

sp = FALSE, factor.model = TRUE, n.factors = n.factors)
n.samples <- 5000
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
# Summarize the multiple replicates into a single value for use in a JSDM
y <- apply(dat$y[, -pred.indx, ], c(1, 2), max, na.rm = TRUE)
# Covariates
X <- dat$X[-pred.indx, ]
# Spatial coordinates
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coords <- dat$coords[-pred.indx, ]
# Prediction values
X.0 <- dat$X[pred.indx, ]
psi.0 <- dat$psi[, pred.indx]
coords.0 <- dat$coords[pred.indx, ]
# Package all data into a list
covs <- X[, 2, drop = FALSE]
colnames(covs) <- c('occ.cov')
data.list <- list(y = y,

covs = covs,
coords = coords)

# Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

tau.sq.beta.ig = list(a = 0.1, b = 0.1))
# Initial values
lambda.inits <- matrix(0, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
tau.sq.beta = 1,
lambda = lambda.inits)

out <- lfJSDM(formula = ~ occ.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
n.factors = 3,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = 4000)

summary(out)

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0)

predict.lfMsPGOcc Function for prediction at new locations for latent factor multi-species
occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘lfMsPGOcc‘. Prediction is possible for both the latent occupancy state as well as
detection.



72 predict.lfMsPGOcc

Usage

## S3 method for class 'lfMsPGOcc'
predict(object, X.0, coords.0,

ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object an object of class lfMsPGOcc

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in lfMsPGOcc. Columns should corre-
spond to the order of how covariates were specified in the corresponding formula
argument of lfMsPGOcc. Column names of the random effects must match the
name of the random effects, if specified in the corresponding formula argument
of lfMsPGOcc.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

... currently no additional arguments

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

Value

A list object of class predict.lfMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

w.0.samples a three-dimensional array of posterior predictive samples for the latent factors.

When type = 'detection', the list consists of:

p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

The return object will include additional objects used for standard extractor functions.
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Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}

n.factors <- 3
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,

sp = FALSE, factor.model = TRUE, n.factors = n.factors)
n.samples <- 5000
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Spatial coordinates
coords <- dat$coords[-pred.indx, ]
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# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
# Prediction values
X.0 <- dat$X[pred.indx, ]
psi.0 <- dat$psi[, pred.indx]
coords.0 <- dat$coords[pred.indx, ]
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

# Initial values
lambda.inits <- matrix(0, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
lambda = lambda.inits,
z = apply(y, c(1, 2), max, na.rm = TRUE))

out <- lfMsPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.samples = n.samples,
n.factors = 3,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = 4000)

summary(out, level = 'community')

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0)
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predict.msPGOcc Function for prediction at new locations for multi-species occupancy
models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘msPGOcc‘. Prediction is possible for both the latent occupancy state as well as detection.

Usage

## S3 method for class 'msPGOcc'
predict(object, X.0, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object an object of class msPGOcc

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in msPGOcc. Columns should correspond
to the order of how covariates were specified in the corresponding formula ar-
gument of msPGOcc. Column names of the random effects must match the name
of the random effects, if specified in the corresponding formula argument of
msPGOcc.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

... currently no additional arguments

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

Value

A list object of class predict.msPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.
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When type = 'detection', the list consists of:

p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
sp = FALSE)

n.samples <- 5000
# Split into fitting and prediction data set
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pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
# Prediction values
X.0 <- dat$X[pred.indx, ]
psi.0 <- dat$psi[, pred.indx]
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs)

# Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

# Initial values
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
z = apply(y, c(1, 2), max, na.rm = TRUE))

out <- msPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = 4000)

summary(out, level = 'community')

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0)

predict.PGOcc Function for prediction at new locations for single-species occupancy
models
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Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘PGOcc‘. Prediction is possible for both the latent occupancy state as well as detection.

Usage

## S3 method for class 'PGOcc'
predict(object, X.0, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object an object of class PGOcc

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in PGOcc. Columns should correspond to
the order of how covariates were specified in the corresponding formula argu-
ment of PGOcc. Column names of the random effects must match the name of
the random effects, if specified in the corresponding formula argument of PGOcc.

ignore.RE logical value that specifies whether or not to remove random occurrence (or
detection if type = 'detection') effects from the subsequent predictions. If
TRUE, random effects will be included. If FALSE, random effects will be set to 0
and predictions will only be generated from the fixed effects.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

... currently no additional arguments

Value

A list object of class predict.PGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a coda object of posterior predictive samples for the latent occupancy probabil-
ity values.

z.0.samples a coda object of posterior predictive samples for the latent occupancy values.

When type = 'detection', the list consists of:

p.0.samples a coda object of posterior predictive samples for the detection probability values.

The return object will include additional objects used for standard extractor functions.



predict.PGOcc 79

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, 2)
p.occ <- length(beta)
alpha <- c(0, 1)
p.det <- length(alpha)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sp = FALSE)
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Prediction covariates
X.0 <- dat$X[pred.indx, ]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov = X.p[, , 2])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs)

# Priors
prior.list <- list(beta.normal = list(mean = rep(0, p.occ),

var = rep(2.72, p.occ)),
alpha.normal = list(mean = rep(0, p.det),

var = rep(2.72, p.det)))
# Initial values
inits.list <- list(alpha = rep(0, p.det),
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beta = rep(0, p.occ),
z = apply(y, 1, max, na.rm = TRUE))

n.samples <- 5000
n.report <- 1000

out <- PGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = n.report,
n.burn = 4000,
n.thin = 1)

summary(out)

# Predict at new locations ------------------------------------------------
colnames(X.0) <- c('intercept', 'occ.cov')
out.pred <- predict(out, X.0)
psi.0.quants <- apply(out.pred$psi.0.samples, 2, quantile, c(0.025, 0.5, 0.975))
plot(dat$psi[pred.indx], psi.0.quants[2, ], pch = 19, xlab = 'True',

ylab = 'Fitted', ylim = c(min(psi.0.quants), max(psi.0.quants)))
segments(dat$psi[pred.indx], psi.0.quants[1, ], dat$psi[pred.indx], psi.0.quants[3, ])
lines(dat$psi[pred.indx], dat$psi[pred.indx])

predict.sfJSDM Function for prediction at new locations for spatial factor joint species
distribution model

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘sfJSDM‘.

Usage

## S3 method for class 'sfJSDM'
predict(object, X.0, coords.0, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ignore.RE = FALSE, ...)

Arguments

object an object of class sfJSDM
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X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the model, the levels of the random effects at the new
locations should be included as a column in the design matrix. The ordering
of the levels should match the ordering used to fit the data in sfJSDM. Columns
should correspond to the order of how covariates were specified in the formula
argument of sfJSDM. Column names of the random effects must match the name
of the random effects, if specified in the formula argument of sfJSDM.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

... currently no additional arguments

Value

An list object of class predict.sfJSDM that consists of:

psi.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

w.0.samples a three-dimensional array of posterior predictive samples for the latent spatial
factors.

run.time execution time reported using proc.time().

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.
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Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
J.x <- 7
J.y <- 7
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 5
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
n.factors <- 3
phi <- runif(n.factors, 3/1, 3/.4)
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential',
factor.model = TRUE, n.factors = n.factors)

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length

# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
# Summarize the multiple replicates into a single value for use in a JSDM
y <- apply(dat$y[, -pred.indx, ], c(1, 2), max, na.rm = TRUE)
# Occupancy covariates
X <- dat$X[-pred.indx, ]
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# Coordinates
coords <- as.matrix(dat$coords[-pred.indx, ])
# Prediction values
X.0 <- dat$X[pred.indx, ]
coords.0 <- as.matrix(dat$coords[pred.indx, ])
psi.0 <- dat$psi[, pred.indx]

# Package all data into a list
covs <- X[, 2, drop = FALSE]
colnames(covs) <- c('occ.cov')
data.list <- list(y = y,

covs = covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

tau.sq.beta.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1))

# Starting values
lambda.inits <- matrix(0, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(beta.comm = 0,

beta = 0,
tau.sq.beta = 1,
phi = 3 / .5,
sigma.sq = 2,
lambda = lambda.inits)

# Tuning
tuning.list <- list(phi = 1)

out <- sfJSDM(formula = ~ occ.cov,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
n.factors = 3,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 100,
n.thin = 1)

summary(out, level = 'both')

# Predict at new locations ------------------------------------------------
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out.pred <- predict(out, X.0, coords.0, verbose = FALSE)

predict.sfMsPGOcc Function for prediction at new locations for spatial factor multi-
species occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘sfMsPGOcc‘. Prediction is possible for both the latent occupancy state as well as
detection.

Usage

## S3 method for class 'sfMsPGOcc'
predict(object, X.0, coords.0, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ignore.RE = FALSE, type = 'occupancy', grid.index.0, ...)

Arguments

object an object of class sfMsPGOcc

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in sfMsPGOcc. Columns should corre-
spond to the order of how covariates were specified in the corresponding formula
argument of sfMsPGOcc. Column names of the random effects must match the
name of the random effects, if specified in the corresponding formula argument
of sfMsPGOcc.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.
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type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

grid.index.0 an indexing vector used to specify how each row in X.0 corresponds to the co-
ordinates specified in coords.0. Only relevant if the spatial random effect was
estimated at a higher spatial resolution (e.g., grid cells) than point locations.

... currently no additional arguments

Value

An list object of class predict.sfMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

w.0.samples a three-dimensional array of posterior predictive samples for the latent spatial
factors.

run.time execution time reported using proc.time().

When type = 'detection', the list consists of:

p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

run.time execution time reported using proc.time().

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
J.x <- 7
J.y <- 7
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 5
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
n.factors <- 3
phi <- runif(n.factors, 3/1, 3/.4)
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential',
factor.model = TRUE, n.factors = n.factors)

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length

# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Coordinates
coords <- as.matrix(dat$coords[-pred.indx, ])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
# Prediction values
X.0 <- dat$X[pred.indx, ]
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coords.0 <- as.matrix(dat$coords[pred.indx, ])
psi.0 <- dat$psi[, pred.indx]

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1),
sigma.sq.ig = list(a = 2, b = 2))

# Starting values
lambda.inits <- matrix(0, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
phi = 3 / .5,
sigma.sq = 2,
lambda = lambda.inits,
z = apply(y, c(1, 2), max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)

out <- sfMsPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
n.factors = 3,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
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n.report = 10,
n.burn = 100,
n.thin = 1)

summary(out, level = 'both')

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, verbose = FALSE)

predict.spIntPGOcc Function for prediction at new locations for single-species integrated
spatial occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘spIntPGOcc‘.

Usage

## S3 method for class 'spIntPGOcc'
predict(object, X.0, coords.0, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ...)

Arguments

object an object of class spIntPGOcc.

X.0 the design matrix for prediction locations. This should include a column of 1s
for the intercept. Covariates should have the same column names as those used
when fitting the model with spIntPGOcc.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

... currently no additional arguments
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Value

An object of class predict.spIntPGOcc that is a list comprised of:

psi.0.samples a coda object of posterior predictive samples for the latent occurrence probabil-
ity values.

z.0.samples a coda object of posterior predictive samples for the latent occurrence values.

The return object will include additional objects used for standard extractor functions.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Hooten, M. B., and Hefley, T. J. (2019). Bringing Bayesian models to life. CRC Press.

Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
# Number of locations in each direction. This is the total region of interest
# where some sites may or may not have a data source.
J.x <- 8
J.y <- 8
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {

n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5, 0.5)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alpha[[1]] <- runif(2, 0, 1)
alpha[[2]] <- runif(3, 0, 1)
alpha[[3]] <- runif(2, -1, 1)
alpha[[4]] <- runif(4, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE



90 predict.spIntPGOcc

# Simulate occupancy data.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,

n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
phi = phi, sigma.sq = sigma.sq, cov.model = 'spherical')

y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
coords <- as.matrix(dat$coords.obs)
coords.0 <- as.matrix(dat$coords.pred)

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(det.cov.1.1 = X.p[[1]][, , 2])
det.covs[[2]] <- list(det.cov.2.1 = X.p[[2]][, , 2],

det.cov.2.2 = X.p[[2]][, , 3])
det.covs[[3]] <- list(det.cov.3.1 = X.p[[3]][, , 2])
det.covs[[4]] <- list(det.cov.4.1 = X.p[[4]][, , 2],

det.cov.4.2 = X.p[[4]][, , 3],
det.cov.4.3 = X.p[[4]][, , 4])

data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
coords = coords)

J <- length(dat$z.obs)

# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),

beta = 0,
phi = 3 / .5,
sigma.sq = 2,
w = rep(0, J),
z = rep(1, J))

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)),

phi.unif = c(3/1, 3/.1),
sigma.sq.ig = c(2, 2))

# Tuning
tuning.list <- list(phi = 1)

# Number of batches
n.batch <- 40



predict.spMsPGOcc 91

# Batch length
batch.length <- 25

out <- spIntPGOcc(occ.formula = ~ occ.cov,
det.formula = list(f.1 = ~ det.cov.1.1,

f.2 = ~ det.cov.2.1 + det.cov.2.2,
f.3 = ~ det.cov.3.1,
f.4 = ~ det.cov.4.1 + det.cov.4.2 + det.cov.4.3),

data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "spherical",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1)

summary(out)

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, verbose = FALSE)

predict.spMsPGOcc Function for prediction at new locations for multi-species spatial oc-
cupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘spMsPGOcc‘. Prediction is possible for both the latent occupancy state as well as
detection.

Usage

## S3 method for class 'spMsPGOcc'
predict(object, X.0, coords.0, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object an object of class spMsPGOcc
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X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in spMsPGOcc. Columns should corre-
spond to the order of how covariates were specified in the corresponding formula
argument of spMsPGOcc. Column names of the random effects must match the
name of the random effects, if specified in the corresponding formula argument
of spMsPGOcc.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

... currently no additional arguments

Value

An list object of class predict.spMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

w.0.samples a three-dimensional array of posterior predictive samples for the latent spatial
random effects.

run.time execution time reported using proc.time().

When type = 'detection', the list consists of:

p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.
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run.time execution time reported using proc.time().

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
J.x <- 7
J.y <- 7
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 5
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
phi <- runif(N, 3/1, 3/.4)
sigma.sq <- runif(N, 0.3, 3)
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential')
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# Number of batches
n.batch <- 30
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length

# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Coordinates
coords <- as.matrix(dat$coords[-pred.indx, ])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
# Prediction values
X.0 <- dat$X[pred.indx, ]
coords.0 <- as.matrix(dat$coords[pred.indx, ])
psi.0 <- dat$psi[, pred.indx]

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],
det.cov.2 = X.p[, , 3]
)

data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1),
sigma.sq.ig = list(a = 2, b = 2))

# Starting values
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
phi = 3 / .5,
sigma.sq = 2,
w = matrix(0, nrow = N, ncol = nrow(X)),
z = apply(y, c(1, 2), max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)
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out <- spMsPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,

priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,

n.omp.threads = 1,
verbose = TRUE,

NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',

n.report = 10,
n.burn = 500,
n.thin = 1)

summary(out, level = 'both')

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, verbose = FALSE)

predict.spPGOcc Function for prediction at new locations for single-species spatial oc-
cupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘spPGOcc‘. Prediction is possible for both the latent occupancy state as well as detection.

Usage

## S3 method for class 'spPGOcc'
predict(object, X.0, coords.0, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ignore.RE = FALSE, type = 'occupancy', grid.index.0, ...)

Arguments

object an object of class spPGOcc

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in spPGOcc. Columns should correspond
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to the order of how covariates were specified in the corresponding formula ar-
gument of spPGOcc. Column names of the random effects must match the name
of the random effects, if specified in the corresponding formula argument of
spPGOcc.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

n.report the interval to report sampling progress.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

grid.index.0 an indexing vector used to specify how each row in X.0 corresponds to the co-
ordinates specified in coords.0. Only relevant if the spatial random effect was
estimated at a higher spatial resolution (e.g., grid cells) than point locations.

... currently no additional arguments

Value

A list object of class predict.spPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a coda object of posterior predictive samples for the latent occurrence probabil-
ity values.

z.0.samples a coda object of posterior predictive samples for the latent occurrence values.

w.0.samples a coda object of posterior predictive samples for the latent spatial random ef-
fects.

run.time execution time reported using proc.time().

When type = 'detection', the list consists of:

p.0.samples a coda object of posterior predictive samples for the detection probability values.

run.time execution time reported using proc.time().

The return object will include additional objects used for standard extractor functions.
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Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Hooten, M. B., and Hefley, T. J. (2019). Bringing Bayesian models to life. CRC Press.

Examples

set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, 2)
p.occ <- length(beta)
alpha <- c(0, 1)
p.det <- length(alpha)
phi <- 3 / .6
sigma.sq <- 2
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential')
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .5), replace = FALSE)
y <- dat$y[-pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Prediction covariates
X.0 <- dat$X[pred.indx, ]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
coords <- as.matrix(dat$coords[-pred.indx, ])
coords.0 <- as.matrix(dat$coords[pred.indx, ])
psi.0 <- dat$psi[pred.indx]
w.0 <- dat$w[pred.indx]

# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2])
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data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.iter <- n.batch * batch.length
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.ig = c(2, 2),
phi.unif = c(3/1, 3/.1))

# Initial values
inits.list <- list(alpha = 0, beta = 0,

phi = 3 / .5,
sigma.sq = 2,
w = rep(0, nrow(X)),
z = apply(y, 1, max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)

out <- spPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = 'exponential',
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.neighbors = 15,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1)

summary(out)

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, verbose = FALSE)

predict.stMsPGOcc Function for prediction at new locations for multi-season multi-
species spatial occupancy models
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Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘stMsPGOcc‘. Prediction is possible for both the latent occupancy state as well as
detection. Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'stMsPGOcc'
predict(object, X.0, coords.0, t.cols, n.omp.threads = 1,

verbose = TRUE, n.report = 100,
ignore.RE = FALSE, type = 'occupancy', grid.index.0, ...)

Arguments

object an object of class stMsPGOcc

X.0 the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist of
all 1s for the intercept if an intercept is included in the model. If random effects
are included in the occupancy (or detection if type = 'detection') portion of
the model, the levels of the random effects at the new locations/time periods
should be included as an element of the three-dimensional array. The ordering
of the levels should match the ordering used to fit the data in stMsPGOcc. The
covariates should be organized in the same order as they were specified in the
corresponding formula argument of stMsPGOcc. Names of the third dimension
(covariates) of any random effects in X.0 must match the name of the random
effects used to fit the model, if specified in the corresponding formula argument
of stMsPGOcc. See example below.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

t.cols an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.0). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

ignore.RE logical value that specifies whether or not to remove random unstructured occur-
rence (or detection if type = 'detection') effects from the subsequent predic-
tions. If TRUE, random effects will be included. If FALSE, unstructured random
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effects will be set to 0 and predictions will only be generated from the fixed ef-
fects, the spatial random effects, and AR(1) random effects if the model was fit
with ar1 = TRUE.

n.report the interval to report sampling progress.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

grid.index.0 an indexing vector used to specify how each row in X.0 corresponds to the co-
ordinates specified in coords.0. Only relevant if the spatial random effect was
estimated at a higher spatial resolution (e.g., grid cells) than point locations.

... currently no additional arguments

Value

A list object of class predict.stMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a four-dimensional object of posterior predictive samples for the latent occu-
pancy probability values with dimensions corresponding to posterior predictive
sample, species, site, and primary time period.

z.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy values with dimensions corresponding to posterior predictive sample,
species, site, and primary time period.

w.0.samples a three-dimensional array of posterior predictive samples for the latent spatial
factors with dimensions correpsonding to MCMC sample, latent factor, and site.

When type = 'detection', the list consists of:

p.0.samples a four-dimensional object of posterior predictive samples for the detection prob-
ability values with dimensions corresponding to posterior predictive sample,
site, and primary time period.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary
time periods are obtained directly when fitting the model. See the psi.samples and z.samples
portions of the output list from the model object of class stMsPGOcc.
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Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

# Simulate Data -----------------------------------------------------------
set.seed(500)
J.x <- 8
J.y <- 8
J <- J.x * J.y
# Years sampled
n.time <- sample(3:10, J, replace = TRUE)
# n.time <- rep(10, J)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(2:4, n.time[j], replace = TRUE)
# n.rep[j, 1:n.time[j]] <- rep(4, n.time[j])

}
N <- 7
# Community-level covariate effects
# Occurrence
beta.mean <- c(-3, -0.2, 0.5)
trend <- FALSE
sp.only <- 0
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 1.4)
# Detection
alpha.mean <- c(0, 1.2, -1.5)
tau.sq.alpha <- c(1, 0.5, 2.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- TRUE
svc.cols <- c(1)
p.svc <- length(svc.cols)
n.factors <- 3
phi <- runif(p.svc * n.factors, 3 / .9, 3 / .3)
factor.model <- TRUE
cov.model <- 'exponential'
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ar1 <- TRUE
sigma.sq.t <- runif(N, 0.05, 1)
rho <- runif(N, 0.1, 1)

dat <- simTMsOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep, N = N,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, factor.model = factor.model,

svc.cols = svc.cols, n.factors = n.factors, phi = phi, sp = sp,
cov.model = cov.model, ar1 = ar1, sigma.sq.t = sigma.sq.t, rho = rho)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates
X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]
# Coordinates
coords <- dat$coords[-pred.indx, ]
coords.0 <- dat$coords[pred.indx, ]

occ.covs <- list(occ.cov.1 = X[, , 2],
occ.cov.2 = X[, , 3])

det.covs <- list(det.cov.1 = X.p[, , , 2],
det.cov.2 = X.p[, , , 3])

data.list <- list(y = y, occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
rho.unif = list(a = -1, b = 1),
sigma.sq.t.ig = list(a = 0.1, b = 0.1),

phi.unif = list(a = 3 / .9, b = 3 / .1))
z.init <- apply(y, c(1, 2, 3), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, tau.sq.beta = 1, tau.sq.alpha = 1,
rho = 0.5, sigma.sq.t = 0.5,
phi = 3 / .5, z = z.init)

# Tuning
tuning.list <- list(phi = 1, rho = 0.5)

# Number of batches
n.batch <- 5
# Batch length
batch.length <- 25
n.burn <- 25
n.thin <- 1
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n.samples <- n.batch * batch.length

out <- stMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,

ar1 = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.factors = n.factors,
cov.model = 'exponential',

priors = prior.list,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,

n.thin = n.thin,
n.chains = 1)

summary(out)

# Predict at new sites across all n.max.years
# Take a look at array of covariates for prediction
str(X.0)
# Subset to only grab time periods 1, 2, and 5
t.cols <- c(1, 2, 5)
X.pred <- X.0[, t.cols, ]
out.pred <- predict(out, X.pred, coords.0, t.cols = t.cols, type = 'occupancy')
str(out.pred)

predict.stPGOcc Function for prediction at new locations for multi-season single-
species spatial occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘stPGOcc‘. Prediction is possible for both the latent occupancy state as well as detection.
Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'stPGOcc'
predict(object, X.0, coords.0, t.cols, n.omp.threads = 1,

verbose = TRUE, n.report = 100,
ignore.RE = FALSE, type = 'occupancy',
forecast = FALSE, grid.index.0, ...)
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Arguments

object an object of class stPGOcc
X.0 the design matrix of covariates at the prediction locations. This should be a

three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist of
all 1s for the intercept if an intercept is included in the model. If random effects
are included in the occupancy (or detection if type = 'detection') portion of
the model, the levels of the random effects at the new locations/time periods
should be included as an element of the three-dimensional array. The ordering
of the levels should match the ordering used to fit the data in stPGOcc. The
covariates should be organized in the same order as they were specified in the
corresponding formula argument of stPGOcc. Names of the third dimension
(covariates) of any random effects in X.0 must match the name of the random
effects used to fit the model, if specified in the corresponding formula argument
of stPGOcc. See example below.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

t.cols an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.0). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below. Not required when forecast = TRUE.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

ignore.RE logical value that specifies whether or not to remove random unstructured occur-
rence (or detection if type = 'detection') effects from the subsequent predic-
tions. If TRUE, random effects will be included. If FALSE, unstructured random
effects will be set to 0 and predictions will only be generated from the fixed ef-
fects, the spatial random effects, and AR(1) random effects if the model was fit
with ar1 = TRUE.

n.report the interval to report sampling progress.
type a quoted keyword indicating what type of prediction to produce. Valid keywords

are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

forecast a logical value indicating whether prediction is occurring at non-sampled pri-
mary time periods (e.g., forecasting).

grid.index.0 an indexing vector used to specify how each row in X.0 corresponds to the co-
ordinates specified in coords.0. Only relevant if the spatial random effect was
estimated at a higher spatial resolution (e.g., grid cells) than point locations.

... currently no additional arguments
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Value

A list object of class predict.stPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy probability values with dimensions corresponding to posterior predictive
sample, site, and primary time period.

z.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy values with dimensions corresponding to posterior predictive sample, site,
and primary time period.

w.0.samples a coda object of posterior predictive samples for the latent spatial random ef-
fects.

When type = 'detection', the list consists of:

p.0.samples a three-dimensional object of posterior predictive samples for the detection prob-
ability values with dimensions corresponding to posterior predictive sample,
site, and primary time period.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary
time periods are obtained directly when fitting the model. See the psi.samples and z.samples
portions of the output list from the model object of class stPGOcc.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(500)
# Sites
J.x <- 10
J.y <- 10
J <- J.x * J.y
# Primary time periods
n.time <- sample(10, J, replace = TRUE)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
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for (j in 1:J) {
n.rep[j, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)

}
# Occurrence --------------------------
beta <- c(0.4, 0.5, -0.9)
trend <- TRUE
sp.only <- 0
psi.RE <- list()
# Detection ---------------------------
alpha <- c(-1, 0.7, -0.5)
p.RE <- list()
# Spatial -----------------------------
sp <- TRUE
cov.model <- "exponential"
sigma.sq <- 2
phi <- 3 / .4

# Get all the data
dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,

beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, cov.model = cov.model, ar1 = FALSE)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx, , , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates
X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]
psi.0 <- dat$psi[pred.indx, ]
# Coordinates
coords <- dat$coords[-pred.indx, ]
coords.0 <- dat$coords[pred.indx, ]

# Package all data into a list
# Occurrence
occ.covs <- list(int = X[, , 1],

trend = X[, , 2],
occ.cov.1 = X[, , 3])

# Detection
det.covs <- list(det.cov.1 = X.p[, , , 2],

det.cov.2 = X.p[, , , 3])
# Data list bundle
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
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sigma.sq.ig = c(2, 2),
phi.unif = c(3 / 1, 3 / 0.1))

# Initial values
z.init <- apply(y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(beta = 0, alpha = 0, z = z.init, phi = 3 / .5, sigma.sq = 2,

w = rep(0, J))
# Tuning
tuning.list <- list(phi = 1)
# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.iter <- n.batch * batch.length

# Run the model
out <- stPGOcc(occ.formula = ~ trend + occ.cov.1,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
NNGP = TRUE,
ar1 = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.chains = 1)

summary(out)

# Predict at new sites across all n.max.years
# Take a look at array of covariates for prediction
str(X.0)
# Subset to only grab time periods 1, 2, and 5
t.cols <- c(1, 2, 5)
X.pred <- X.0[, t.cols, ]
out.pred <- predict(out, X.0, coords.0, t.cols = t.cols, type = 'occupancy')
str(out.pred)

predict.svcMsPGOcc Function for prediction at new locations for spatially varying coeffi-
cient multi-species occupancy models
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Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘svcMsPGOcc‘. Prediction is possible for both the latent occupancy state as well as
detection.

Usage

## S3 method for class 'svcMsPGOcc'
predict(object, X.0, coords.0, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object an object of class svcMsPGOcc

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in svcMsPGOcc. Columns should corre-
spond to the order of how covariates were specified in the corresponding formula
argument of svcMsPGOcc. Column names of the random effects must match the
name of the random effects, if specified in the corresponding formula argument
of svcMsPGOcc.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

... currently no additional arguments
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Value

An list object of class predict.svcMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

w.0.samples a four-dimensional array of posterior predictive samples for the spatially-varying
coefficients, with dimensions corresponding to MCMC sample, spatial factor,
site, and spatially varying coefficient.

run.time execution time reported using proc.time().

When type = 'detection', the list consists of:

p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

run.time execution time reported using proc.time().

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- sample(5, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.2, 0.3, -0.1, 0.4)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 0.4, 0.5, 0.3)
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# Detection
alpha.mean <- c(0, 1.2, -0.5)
tau.sq.alpha <- c(1, 0.5, 1.3)
p.det <- length(alpha.mean)
# No random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
# Number of spatial factors for each SVC
n.factors <- 2
# The intercept and first two covariates have spatially-varying effects
svc.cols <- c(1, 2, 3)
p.svc <- length(svc.cols)
q.p.svc <- n.factors * p.svc
# Spatial decay parameters
phi <- runif(q.p.svc, 3 / 0.9, 3 / 0.1)
# A length N vector indicating the proportion of simulated locations
# that are within the range for a given species.
range.probs <- runif(N, 1, 1)
factor.model <- TRUE
cov.model <- 'spherical'
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, phi = phi, sp = sp, svc.cols = svc.cols,
cov.model = cov.model, n.factors = n.factors,
factor.model = factor.model, range.probs = range.probs)

# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Coordinates
coords <- as.matrix(dat$coords[-pred.indx, ])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
# Prediction values
X.0 <- dat$X[pred.indx, ]
coords.0 <- as.matrix(dat$coords[pred.indx, ])

# Prep data for spOccupancy -----------------------------------------------
# Occurrence covariates
occ.covs <- cbind(X)
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2', 'occ.cov.3',
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'occ.cov.4')
# Detection covariates
det.covs <- list(det.cov.1 = X.p[, , 2],
det.cov.2 = X.p[, , 3])

# Data list
data.list <- list(y = y, coords = coords, occ.covs = occ.covs,

det.covs = det.covs)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),

phi.unif = list(a = 3 / 1, b = 3 / .1))
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
z = apply(y, c(1, 2), max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)

# Number of batches
n.batch <- 2
# Batch length
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.samples <- n.batch * batch.length

out <- svcMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2 + occ.cov.3 +
occ.cov.4,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,

n.factors = n.factors,
batch.length = batch.length,

std.by.sp = TRUE,
accept.rate = 0.43,
priors = prior.list,

svc.cols = svc.cols,
cov.model = "spherical",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = n.burn,

n.thin = n.thin,
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n.chains = 1)

summary(out)
# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, verbose = FALSE)

# Get SVC samples for each species at prediction locations
svc.samples <- getSVCSamples(out, out.pred)

predict.svcPGBinom Function for prediction at new locations for single-species spatially-
varying coefficient Binomial models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘svcPGBinom‘.

Usage

## S3 method for class 'svcPGBinom'
predict(object, X.0, coords.0, weights.0, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ignore.RE = FALSE, ...)

Arguments

object an object of class svcPGBinom
X.0 the design matrix of covariates at the prediction locations. Note that for spatially-

varying coefficients models the order of covariates in X.0 must be the same as
the order of covariates specified in the model formula. This should include a
column of 1s for the intercept if an intercept is included in the model. If un-
structured random effects are included in the model, the levels of the random
effects at the new locations should be included as a column in the design ma-
trix. The ordering of the levels should match the ordering used to fit the data
in svcPGBinom. Columns should correspond to the order of how covariates
were specified in the corresponding formula argument of svcPGBinom. Col-
umn names of the random effects must match the name of the random effects, if
specified in the corresponding formula argument of svcPGBinom.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

weights.0 a numeric vector containing the binomial weights (i.e., the total number of
Bernoulli trials) at each site. If weights.0 is not specified, we assume 1 trial at
each site (i.e., presence/absence).

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.
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verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

n.report the interval to report sampling progress.

... currently no additional arguments

Value

A list object of class predict.svcPGBinom consisting of:

psi.0.samples a coda object of posterior predictive samples for the binomial probability values.

y.0.samples a coda object of posterior predictive samples for the binomial data.

w.0.samples a three-dimensional array of posterior predictive samples for the spatial random
effects, with dimensions corresponding to MCMC iteration, coefficient, and site.

run.time execution time reported using proc.time().

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(1000)
# Sites
J.x <- 10
J.y <- 10
J <- J.x * J.y
# Binomial weights
weights <- sample(10, J, replace = TRUE)
beta <- c(0, 0.5, -0.2, 0.75)
p <- length(beta)
# No unstructured random effects
psi.RE <- list()
# Spatial parameters
sp <- TRUE
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# Two spatially-varying covariates.
svc.cols <- c(1, 2)
p.svc <- length(svc.cols)
cov.model <- "exponential"
sigma.sq <- runif(p.svc, 0.4, 1.5)
phi <- runif(p.svc, 3/1, 3/0.2)

# Simulate the data
dat <- simBinom(J.x = J.x, J.y = J.y, weights = weights, beta = beta,

psi.RE = psi.RE, sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi)

# Binomial data
y <- dat$y
# Covariates
X <- dat$X
# Spatial coordinates
coords <- dat$coords

# Subset data for prediction if desired
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y.0 <- y[pred.indx, drop = FALSE]
X.0 <- X[pred.indx, , drop = FALSE]
coords.0 <- coords[pred.indx, ]
y <- y[-pred.indx, drop = FALSE]
X <- X[-pred.indx, , drop = FALSE]
coords <- coords[-pred.indx, ]
weights.0 <- weights[pred.indx]
weights <- weights[-pred.indx]

# Package all data into a list
# Covariates
covs <- cbind(X)
colnames(covs) <- c('int', 'cov.1', 'cov.2', 'cov.3')

# Data list bundle
data.list <- list(y = y,

covs = covs,
coords = coords,
weights = weights)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

sigma.sq.ig = list(a = 2, b = 1),
phi.unif = list(a = 3 / 1, b = 3 / 0.1))

# Starting values
inits.list <- list(beta = 0, alpha = 0,

sigma.sq = 1, phi = phi)
# Tuning
tuning.list <- list(phi = 1)

n.batch <- 10
batch.length <- 25
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n.burn <- 100
n.thin <- 1

out <- svcPGBinom(formula = ~ cov.1 + cov.2 + cov.3,
svc.cols = c(1, 2),
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.report = 2,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary(out)

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, weights.0, verbose = FALSE)
str(out.pred)

predict.svcPGOcc Function for prediction at new locations for single-species spatially-
varying coefficient occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘svcPGOcc‘. Prediction is possible for both the latent occupancy state as well as detection.

Usage

## S3 method for class 'svcPGOcc'
predict(object, X.0, coords.0, weights.0, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ignore.RE = FALSE, type = 'occupancy', grid.index.0, ...)

Arguments

object an object of class svcPGOcc
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X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in svcPGOcc. Columns should correspond
to the order of how covariates were specified in the corresponding formula argu-
ment of svcPGOcc. Column names of the random effects must match the name
of the random effects, if specified in the corresponding formula argument of
svcPGOcc.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

weights.0 not used for objects of class svcTPGOcc. Used when calling other functions.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

n.report the interval to report sampling progress.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

grid.index.0 an indexing vector used to specify how each row in X.0 corresponds to the co-
ordinates specified in coords.0. Only relevant if the SVCs were estimated at a
higher spatial resolution (e.g., grid cells) than point locations.

... currently no additional arguments

Value

A list object of class predict.svcPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a coda object of posterior predictive samples for the latent occurrence probabil-
ity values.

z.0.samples a coda object of posterior predictive samples for the latent occurrence values.

w.0.samples a three-dimensional array of posterior predictive samples for the spatial random
effects, with dimensions corresponding to MCMC iteration, coefficient, and site.

run.time execution time reported using proc.time().
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When type = 'detection', the list consists of:

p.0.samples a coda object of posterior predictive samples for the detection probability values.

run.time execution time reported using proc.time().

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Hooten, M. B., and Hefley, T. J. (2019). Bringing Bayesian models to life. CRC Press.

Examples

set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, 2)
p.occ <- length(beta)
alpha <- c(0, 1)
p.det <- length(alpha)
phi <- c(3 / .6, 3 / .8)
sigma.sq <- c(0.5, 0.9)
svc.cols <- c(1, 2)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential',
svc.cols = svc.cols)

# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .5), replace = FALSE)
y <- dat$y[-pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Prediction covariates
X.0 <- dat$X[pred.indx, ]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
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coords <- as.matrix(dat$coords[-pred.indx, ])
coords.0 <- as.matrix(dat$coords[pred.indx, ])
psi.0 <- dat$psi[pred.indx]
w.0 <- dat$w[pred.indx, , drop = FALSE]

# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.iter <- n.batch * batch.length
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.ig = list(a = 2, b = 0.5),
phi.unif = list(a = 3/1, b = 3/.1))

# Initial values
inits.list <- list(alpha = 0, beta = 0,

phi = 3 / .5,
sigma.sq = 0.5,
z = apply(y, 1, max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)

out <- svcPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = 'exponential',
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
svc.cols = c(1, 2),
n.neighbors = 15,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1)

summary(out)
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# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, verbose = FALSE)

predict.svcTMsPGOcc Function for prediction at new locations for multi-season multi-
species spatially-varying coefficient occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘svcTMsPGOcc‘. Prediction is possible for both the latent occupancy state as well
as detection. Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'svcTMsPGOcc'
predict(object, X.0, coords.0, t.cols, n.omp.threads = 1,

verbose = TRUE, n.report = 100,
ignore.RE = FALSE, type = 'occupancy', grid.index.0, ...)

Arguments

object an object of class svcTMsPGOcc

X.0 the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist of
all 1s for the intercept if an intercept is included in the model. If random effects
are included in the occupancy (or detection if type = 'detection') portion of
the model, the levels of the random effects at the new locations/time periods
should be included as an element of the three-dimensional array. The ordering
of the levels should match the ordering used to fit the data in svcTMsPGOcc.
The covariates should be organized in the same order as they were specified
in the corresponding formula argument of svcTMsPGOcc. Names of the third
dimension (covariates) of any random effects in X.0 must match the name of the
random effects used to fit the model, if specified in the corresponding formula
argument of svcTMsPGOcc. See example below.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

t.cols an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.0). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below.
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n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

ignore.RE logical value that specifies whether or not to remove random unstructured occur-
rence (or detection if type = 'detection') effects from the subsequent predic-
tions. If TRUE, random effects will be included. If FALSE, unstructured random
effects will be set to 0 and predictions will only be generated from the fixed ef-
fects, the spatial random effects, and AR(1) random effects if the model was fit
with ar1 = TRUE.

n.report the interval to report sampling progress.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

grid.index.0 an indexing vector used to specify how each row in X.0 corresponds to the co-
ordinates specified in coords.0. Only relevant if the spatial random effect was
estimated at a higher spatial resolution (e.g., grid cells) than point locations.

... currently no additional arguments

Value

A list object of class predict.svcTMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a four-dimensional object of posterior predictive samples for the latent occu-
pancy probability values with dimensions corresponding to posterior predictive
sample, species, site, and primary time period.

z.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy values with dimensions corresponding to posterior predictive sample,
species, site, and primary time period.

w.0.samples a four-dimensional array of posterior predictive samples for the latent spatial
factors with dimensions correpsonding to MCMC sample, latent factor, site, and
spatially-varying coefficient.

When type = 'detection', the list consists of:

p.0.samples a four-dimensional object of posterior predictive samples for the detection prob-
ability values with dimensions corresponding to posterior predictive sample,
site, and primary time period.

The return object will include additional objects used for standard extractor functions.
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Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary
time periods are obtained directly when fitting the model. See the psi.samples and z.samples
portions of the output list from the model object of class svcTMsPGOcc.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

# Simulate Data -----------------------------------------------------------
set.seed(500)
J.x <- 8
J.y <- 8
J <- J.x * J.y
# Years sampled
n.time <- sample(3:10, J, replace = TRUE)
# n.time <- rep(10, J)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(2:4, n.time[j], replace = TRUE)
# n.rep[j, 1:n.time[j]] <- rep(4, n.time[j])

}
N <- 7
# Community-level covariate effects
# Occurrence
beta.mean <- c(-3, -0.2, 0.5)
trend <- FALSE
sp.only <- 0
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 1.4)
# Detection
alpha.mean <- c(0, 1.2, -1.5)
tau.sq.alpha <- c(1, 0.5, 2.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
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for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))

}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- TRUE
svc.cols <- c(1, 2)
p.svc <- length(svc.cols)
n.factors <- 2
phi <- runif(p.svc * n.factors, 3 / .9, 3 / .3)
factor.model <- TRUE
cov.model <- 'exponential'
ar1 <- TRUE
sigma.sq.t <- runif(N, 0.05, 1)
rho <- runif(N, 0.1, 1)

dat <- simTMsOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep, N = N,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, factor.model = factor.model,

svc.cols = svc.cols, n.factors = n.factors, phi = phi, sp = sp,
cov.model = cov.model, ar1 = ar1, sigma.sq.t = sigma.sq.t, rho = rho)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates
X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]
# Coordinates
coords <- dat$coords[-pred.indx, ]
coords.0 <- dat$coords[pred.indx, ]

occ.covs <- list(occ.cov.1 = X[, , 2],
occ.cov.2 = X[, , 3])

det.covs <- list(det.cov.1 = X.p[, , , 2],
det.cov.2 = X.p[, , , 3])

data.list <- list(y = y, occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
rho.unif = list(a = -1, b = 1),
sigma.sq.t.ig = list(a = 0.1, b = 0.1),

phi.unif = list(a = 3 / .9, b = 3 / .1))
z.init <- apply(y, c(1, 2, 3), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
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inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,
alpha = 0, tau.sq.beta = 1, tau.sq.alpha = 1,
rho = 0.5, sigma.sq.t = 0.5,
phi = 3 / .5, z = z.init)

# Tuning
tuning.list <- list(phi = 1, rho = 0.5)

# Number of batches
n.batch <- 5
# Batch length
batch.length <- 25
n.burn <- 25
n.thin <- 1
n.samples <- n.batch * batch.length

out <- svcTMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,

ar1 = TRUE,
svc.cols = svc.cols,
NNGP = TRUE,
n.neighbors = 5,
n.factors = n.factors,
cov.model = 'exponential',

priors = prior.list,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,

n.thin = n.thin,
n.chains = 1)

summary(out)

# Predict at new sites across all n.max.years
# Take a look at array of covariates for prediction
str(X.0)
# Subset to only grab time periods 1, 2, and 5
t.cols <- c(1, 2, 5)
X.pred <- X.0[, t.cols, ]
out.pred <- predict(out, X.pred, coords.0, t.cols = t.cols, type = 'occupancy')
str(out.pred)

# Extract SVC samples for each species at prediction locations
svc.samples <- getSVCSamples(out, out.pred)
str(svc.samples)
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predict.svcTPGBinom Function for prediction at new locations for multi-season single-
species spatially-varying coefficient binomial models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘svcTPGBinom‘. Prediction is possible for both the latent occupancy state as well
as detection. Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'svcTPGBinom'
predict(object, X.0, coords.0, t.cols, weights.0, n.omp.threads = 1,

verbose = TRUE, n.report = 100, ignore.RE = FALSE, ...)

Arguments

object an object of class svcTPGBinom

X.0 the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist of
all 1s for the intercept if an intercept is included in the model. If random effects
are included in the occupancy (or detection if type = 'detection') portion of
the model, the levels of the random effects at the new locations/time periods
should be included as an element of the three-dimensional array. The ordering
of the levels should match the ordering used to fit the data in svcTPGBinom.
The covariates should be organized in the same order as they were specified
in the corresponding formula argument of svcTPGBinom. Names of the third
dimension (covariates) of any random effects in X.0 must match the name of the
random effects used to fit the model, if specified in the corresponding formula
argument of svcTPGBinom. See example below.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

weights.0 a numeric site by primary time period matrix containing the binomial weights
(i.e., the total number of Bernoulli trials) at each site and primary time period.
If weights.0 is not specified, we assume 1 trial at each site/primary time period
(i.e., presence/absence).

t.cols an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.0). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
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hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

ignore.RE logical value that specifies whether or not to remove random unstructured occur-
rence (or detection if type = 'detection') effects from the subsequent predic-
tions. If TRUE, random effects will be included. If FALSE, unstructured random
effects will be set to 0 and predictions will only be generated from the fixed ef-
fects, the spatial random effects, and AR(1) random effects if the model was fit
with ar1 = TRUE.

n.report the interval to report sampling progress.

... currently no additional arguments

Value

A list object of class predict.svcTPGBinom that consists of:

psi.0.samples a three-dimensional object of posterior predictive samples for the occurrence
probability values with dimensions corresponding to posterior predictive sam-
ple, site, and primary time period.

y.0.samples a three-dimensional object of posterior predictive samples for the predicted bi-
nomial data with dimensions corresponding to posterior predictive sample, site,
and primary time period.

w.0.samples a three-dimensional array of posterior predictive samples for the spatial random
effects, with dimensions corresponding to MCMC iteration, coefficient, and site.

run.time execution time reported using proc.time().

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary time
periods are obtained directly when fitting the model. See the psi.samples and y.rep.samples
portions of the output list from the model object of class svcTPGBinom.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(1000)
# Sites
J.x <- 15
J.y <- 15
J <- J.x * J.y
# Years sampled
n.time <- sample(10, J, replace = TRUE)
# Binomial weights
weights <- matrix(NA, J, max(n.time))
for (j in 1:J) {

weights[j, 1:n.time[j]] <- sample(5, n.time[j], replace = TRUE)
}
# Occurrence --------------------------
beta <- c(-2, -0.5, -0.2, 0.75)
p.occ <- length(beta)
trend <- TRUE
sp.only <- 0
psi.RE <- list()
# Spatial parameters ------------------
sp <- TRUE
svc.cols <- c(1, 2, 3)
p.svc <- length(svc.cols)
cov.model <- "exponential"
sigma.sq <- runif(p.svc, 0.1, 1)
phi <- runif(p.svc, 3/1, 3/0.2)
# Temporal parameters -----------------
ar1 <- TRUE
rho <- 0.8
sigma.sq.t <- 1

# Get all the data
dat <- simTBinom(J.x = J.x, J.y = J.y, n.time = n.time, weights = weights, beta = beta,

psi.RE = psi.RE, sp.only = sp.only, trend = trend,
sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
rho = rho, sigma.sq.t = sigma.sq.t, ar1 = TRUE, x.positive = FALSE)

# Prep the data for spOccupancy -------------------------------------------
# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx, , drop = FALSE]
y.0 <- dat$y[pred.indx, , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates
X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Spatial coordinates
coords <- as.matrix(dat$coords[-pred.indx, ])
coords.0 <- as.matrix(dat$coords[pred.indx, ])
psi.0 <- dat$psi[pred.indx, ]
w.0 <- dat$w[pred.indx, ]
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weights.0 <- weights[pred.indx, ]
weights <- weights[-pred.indx, ]

# Package all data into a list
covs <- list(int = X[, , 1],

trend = X[, , 2],
cov.1 = X[, , 3],
cov.2 = X[, , 4])

# Data list bundle
data.list <- list(y = y,

covs = covs,
weights = weights,
coords = coords)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

sigma.sq.ig = list(a = 2, b = 1),
phi.unif = list(a = 3/1, b = 3/.1))

# Starting values
inits.list <- list(beta = beta, alpha = 0,

sigma.sq = 1, phi = 3 / 0.5, nu = 1)
# Tuning
tuning.list <- list(phi = 0.4, nu = 0.3, rho = 0.2)

# MCMC information
n.batch <- 2
n.burn <- 0
n.thin <- 1

out <- svcTPGBinom(formula = ~ trend + cov.1 + cov.2,
svc.cols = svc.cols,
data = data.list,
n.batch = n.batch,
batch.length = 25,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
cov.model = "exponential",
ar1 = TRUE,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.report = 25,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, t.cols = 1:max(n.time),

weights = weights.0, n.report = 10)
str(out.pred)
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predict.svcTPGOcc Function for prediction at new locations for multi-season single-
species spatially-varying coefficient occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘svcTPGOcc‘. Prediction is possible for both the latent occupancy state as well as
detection. Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'svcTPGOcc'
predict(object, X.0, coords.0, t.cols, weights.0, n.omp.threads = 1,

verbose = TRUE, n.report = 100,
ignore.RE = FALSE, type = 'occupancy', forecast = FALSE,
grid.index.0, ...)

Arguments

object an object of class svcTPGOcc

X.0 the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist of
all 1s for the intercept if an intercept is included in the model. If random effects
are included in the occupancy (or detection if type = 'detection') portion of
the model, the levels of the random effects at the new locations/time periods
should be included as an element of the three-dimensional array. The ordering
of the levels should match the ordering used to fit the data in svcTPGOcc. The
covariates should be organized in the same order as they were specified in the
corresponding formula argument of svcTPGOcc. Names of the third dimension
(covariates) of any random effects in X.0 must match the name of the random
effects used to fit the model, if specified in the corresponding formula argument
of svcTPGOcc. See example below.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

t.cols an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.0). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below. Not required when forecast = TRUE.

weights.0 not used for objects of class svcTPGOcc. Used when calling other functions.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
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hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

ignore.RE logical value that specifies whether or not to remove random unstructured occur-
rence (or detection if type = 'detection') effects from the subsequent predic-
tions. If TRUE, random effects will be included. If FALSE, unstructured random
effects will be set to 0 and predictions will only be generated from the fixed ef-
fects, the spatial random effects, and AR(1) random effects if the model was fit
with ar1 = TRUE.

n.report the interval to report sampling progress.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

grid.index.0 an indexing vector used to specify how each row in X.0 corresponds to the co-
ordinates specified in coords.0. Only relevant if the spatial random effect was
estimated at a higher spatial resolution (e.g., grid cells) than point locations.

forecast a logical value indicating whether prediction is occurring at non-sampled pri-
mary time periods (e.g., forecasting).

... currently no additional arguments

Value

A list object of class predict.svcTPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy probability values with dimensions corresponding to posterior predictive
sample, site, and primary time period.

z.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy values with dimensions corresponding to posterior predictive sample, site,
and primary time period.

w.0.samples a three-dimensional array of posterior predictive samples for the spatial random
effects, with dimensions corresponding to MCMC iteration, coefficient, and site.

When type = 'detection', the list consists of:

p.0.samples a three-dimensional object of posterior predictive samples for the detection prob-
ability values with dimensions corresponding to posterior predictive sample,
site, and primary time period.

The return object will include additional objects used for standard extractor functions.
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Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary
time periods are obtained directly when fitting the model. See the psi.samples and z.samples
portions of the output list from the model object of class svcTPGOcc.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(500)
# Sites
J.x <- 10
J.y <- 10
J <- J.x * J.y
# Primary time periods
n.time <- sample(10, J, replace = TRUE)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)
}
# Occurrence --------------------------
beta <- c(0.4, 0.5, -0.9)
trend <- TRUE
sp.only <- 0
psi.RE <- list()
# Detection ---------------------------
alpha <- c(-1, 0.7, -0.5)
p.RE <- list()
# Spatial -----------------------------
svc.cols <- c(1, 2)
p.svc <- length(svc.cols)
sp <- TRUE
cov.model <- "exponential"
sigma.sq <- runif(p.svc, 0.1, 1)
phi <- runif(p.svc, 3 / .9, 3 / .1)

# Get all the data
dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,

beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
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phi = phi, cov.model = cov.model, ar1 = FALSE, svc.cols = svc.cols)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx, , , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates
X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]
psi.0 <- dat$psi[pred.indx, ]
# Coordinates
coords <- dat$coords[-pred.indx, ]
coords.0 <- dat$coords[pred.indx, ]

# Package all data into a list
# Occurrence
occ.covs <- list(int = X[, , 1],

trend = X[, , 2],
occ.cov.1 = X[, , 3])

# Detection
det.covs <- list(det.cov.1 = X.p[, , , 2],

det.cov.2 = X.p[, , , 3])
# Data list bundle
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.ig = list(a = 2, b = 0.5),
phi.unif = list(a = 3 / 1, b = 3 / 0.1))

# Initial values
z.init <- apply(y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(beta = 0, alpha = 0, z = z.init, phi = 3 / .5, sigma.sq = 2,

w = rep(0, J))
# Tuning
tuning.list <- list(phi = 1)
# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.iter <- n.batch * batch.length

# Run the model
out <- svcTPGOcc(occ.formula = ~ trend + occ.cov.1,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
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batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
svc.cols = svc.cols,
tuning = tuning.list,
NNGP = TRUE,
ar1 = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.chains = 1)

summary(out)

# Predict at new sites across all n.max.years
# Take a look at array of covariates for prediction
str(X.0)
# Subset to only grab time periods 1, 2, and 5
t.cols <- c(1, 2, 5)
X.pred <- X.0[, t.cols, ]
out.pred <- predict(out, X.0, coords.0, t.cols = t.cols, type = 'occupancy')
str(out.pred)

predict.tMsPGOcc Function for prediction at new locations for multi-season multi-
species occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘tMsPGOcc‘. Prediction is possible for both the latent occupancy state as well as detection.
Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'tMsPGOcc'
predict(object, X.0, t.cols, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object an object of class tMsPGOcc

X.0 the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist of
all 1s for the intercept if an intercept is included in the model. If random effects
are included in the occupancy (or detection if type = 'detection') portion of
the model, the levels of the random effects at the new locations/time periods
should be included as an element of the three-dimensional array. The ordering
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of the levels should match the ordering used to fit the data in tMsPGOcc. The
covariates should be organized in the same order as they were specified in the
corresponding formula argument of tMsPGOcc. Names of the third dimension
(covariates) of any random effects in X.0 must match the name of the random
effects used to fit the model, if specified in the corresponding formula argument
of tMsPGOcc. See example below.

t.cols an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.0). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below.

ignore.RE logical value that specifies whether or not to remove random unstructured oc-
currence (or detection if type = 'detection') effects from the subsequent pre-
dictions. If TRUE, unstructured random effects will be included. If FALSE, un-
structured random effects will be set to 0 and predictions will only be generated
from the fixed effects and AR(1) random effects if the model was fit with ar1 =
TRUE.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

... currently no additional arguments

Value

A list object of class predict.tMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a four-dimensional object of posterior predictive samples for the latent occu-
pancy probability values with dimensions corresponding to posterior predictive
sample, species, site, and primary time period.

z.0.samples a four-dimensional object of posterior predictive samples for the latent occu-
pancy values with dimensions corresponding to posterior predictive sample,
species, site, and primary time period.

When type = 'detection', the list consists of:

p.0.samples a four-dimensional object of posterior predictive samples for the detection prob-
ability values with dimensions corresponding to posterior predictive sample,
species, site, and primary time period.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
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the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary
time periods are obtained directly when fitting the model. See the psi.samples and z.samples
portions of the output list from the model object of class tMsPGOcc.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>

Examples

# Simulate Data -----------------------------------------------------------
set.seed(500)
J.x <- 8
J.y <- 8
J <- J.x * J.y
# Years sampled
n.time <- sample(3:10, J, replace = TRUE)
# n.time <- rep(10, J)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(2:4, n.time[j], replace = TRUE)
# n.rep[j, 1:n.time[j]] <- rep(4, n.time[j])

}
N <- 7
# Community-level covariate effects
# Occurrence
beta.mean <- c(-3, -0.2, 0.5)
trend <- FALSE
sp.only <- 0
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 1.4)
# Detection
alpha.mean <- c(0, 1.2, -1.5)
tau.sq.alpha <- c(1, 0.5, 2.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- FALSE
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dat <- simTMsOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep, N = N,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = sp)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates
X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]

occ.covs <- list(occ.cov.1 = X[, , 2],
occ.cov.2 = X[, , 3])

det.covs <- list(det.cov.1 = X.p[, , , 2],
det.cov.2 = X.p[, , , 3])

data.list <- list(y = y, occ.covs = occ.covs,
det.covs = det.covs)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

z.init <- apply(y, c(1, 2, 3), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, tau.sq.beta = 1, tau.sq.alpha = 1,
z = z.init)

# Tuning
tuning.list <- list(phi = 1)

# Number of batches
n.batch <- 5
# Batch length
batch.length <- 25
n.burn <- 25
n.thin <- 1
n.samples <- n.batch * batch.length

out <- tMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
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n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary(out)

# Predict at new sites during time periods 1, 2, and 5
# Take a look at array of covariates for prediction
str(X.0)
# Subset to only grab time periods 1, 2, and 5
t.cols <- c(1, 2, 5)
X.pred <- X.0[, t.cols, ]
out.pred <- predict(out, X.pred, t.cols = t.cols, type = 'occupancy')
str(out.pred)

predict.tPGOcc Function for prediction at new locations for multi-season single-
species occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘tPGOcc‘. Prediction is possible for both the latent occupancy state as well as detection.
Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'tPGOcc'
predict(object, X.0, t.cols, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object an object of class tPGOcc

X.0 the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist
of all 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations/time
periods should be included as an element of the three-dimensional array. The
ordering of the levels should match the ordering used to fit the data in tPGOcc.
The covariates should be organized in the same order as they were specified in
the corresponding formula argument of tPGOcc. Names of the third dimension
(covariates) of any random effects in X.0 must match the name of the random
effects used to fit the model, if specified in the corresponding formula argument
of tPGOcc. See example below.
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t.cols an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.0). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below.

ignore.RE logical value that specifies whether or not to remove random unstructured oc-
currence (or detection if type = 'detection') effects from the subsequent pre-
dictions. If TRUE, unstructured random effects will be included. If FALSE, un-
structured random effects will be set to 0 and predictions will only be generated
from the fixed effects and AR(1) random effects if the model was fit with ar1 =
TRUE.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

... currently no additional arguments

Value

A list object of class predict.tPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy probability values with dimensions corresponding to posterior predictive
sample, site, and primary time period.

z.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy values with dimensions corresponding to posterior predictive sample, site,
and primary time period.

When type = 'detection', the list consists of:

p.0.samples a three-dimensional object of posterior predictive samples for the detection prob-
ability values with dimensions corresponding to posterior predictive sample,
site, and primary time period.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary
time periods are obtained directly when fitting the model. See the psi.samples and z.samples
portions of the output list from the model object of class tPGOcc.
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Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(990)
# Sites
J.x <- 10
J.y <- 10
J <- J.x * J.y
# Primary time periods
n.time <- sample(10, J, replace = TRUE)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)
}
# Occurrence --------------------------
beta <- c(0.4, 0.5, -0.9)
trend <- TRUE
sp.only <- 0
psi.RE <- list()
# Detection ---------------------------
alpha <- c(-1, 0.7, -0.5)
p.RE <- list()

# Get all the data
dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,

beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = FALSE, ar1 = FALSE)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx, , , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates
X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]
psi.0 <- dat$psi[pred.indx, ]

# Package all data into a list
# Occurrence
occ.covs <- list(int = X[, , 1],

trend = X[, , 2],
occ.cov.1 = X[, , 3])

# Detection
det.covs <- list(det.cov.1 = X.p[, , , 2],

det.cov.2 = X.p[, , , 3])
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# Data list bundle
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72))

# Starting values
z.init <- apply(y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(beta = 0, alpha = 0, z = z.init)

n.batch <- 100
batch.length <- 25
n.burn <- 2000
n.thin <- 1

# Run the model
out <- tPGOcc(occ.formula = ~ trend + occ.cov.1,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
priors = prior.list,
n.batch = n.batch,
batch.length = batch.length,
ar1 = FALSE,
verbose = TRUE,
n.report = 500,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

# Predict at new sites across during time periods 1, 2, and 5
# Take a look at array of covariates for prediction
str(X.0)
# Subset to only grab time periods 1, 2, and 5
t.cols <- c(1, 2, 5)
X.pred <- X.0[, t.cols, ]
out.pred <- predict(out, X.pred, t.cols = t.cols, type = 'occupancy')
str(out.pred)

sfJSDM Function for Fitting a Spatial Factor Joint Species Distribution Model

Description

The function sfJSDM fits a spatially-explicit joint species distribution model. This model does not
explicitly account for imperfect detection (see sfMsPGOcc()). We use Polya-Gamma latent vari-
ables and a spatial factor modeling approach. Currently, models are implemented using a Nearest
Neighbor Gaussian Process.
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Usage

sfJSDM(formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb',
std.by.sp = FALSE, n.factors, n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, k.fold, k.fold.threads = 1, k.fold.seed = 100,

k.fold.only = FALSE, monitors, keep.only.mean.95, shared.spatial = FALSE, ...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, coords,
range.ind, and grid.index. y is a two-dimensional array with first dimension
equal to the number of species and second dimension equal to the number of
sites. Note how this differs from other spOccupancy functions in that y does not
have any replicate surveys. This is because sfJSDM does not account for imper-
fect detection. covs is a matrix or data frame containing the variables used in
the model, with J rows for each column (variable). coords is a matrix of the
observation coordinates used to estimate the SVCs for each site. coords has two
columns for the easting and northing coordinate, respectively. Typically, each
site in the data set will have it’s own coordinate, such that coords is a J × 2
matrix and grid.index should not be specified. If you desire to estimate SVCs
at some larger spatial level, e.g., if points fall within grid cells and you want to
estimate an SVC for each grid cell instead of each point, coords can be specified
as the coordinate for each grid cell. In such a case, grid.index is an indexing
vector of length J, where each value of grid.index indicates the correspond-
ing row in coords that the given site corresponds to. Note that spOccupancy
assumes coordinates are specified in a projected coordinate system. range.ind
is a matrix with rows corresponding to species and columns corresponding to
sites, with each element taking value 1 if that site is within the range of the cor-
responding species and 0 if it is outside of the range. This matrix is not required,
but it can be helpful to restrict the modeled area for each individual species to
be within the realistic range of locations for that species when estimating the
model parameters.

inits a list with each tag corresponding to a parameter name. Valid tags are beta.comm,
beta, tau.sq.beta, phi, lambda, sigma.sq.psi, and nu. nu is only specified
if cov.model = "matern". sigma.sq.psi is only specified if random intercepts
are included in formula. The value portion of each tag is the parameter’s initial
value. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.
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priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
tau.sq.beta.ig, phi.unif, nu.unif, and sigma.sq.psi.ig. Community-
level occurrence (beta.comm) regression coefficients are assumed to follow a
normal distribution. The hyperparameters of the normal distribution are passed
as a list of length two with the first and second elements corresponding to the
mean and variance of the normal distribution, which are each specified as vec-
tors of length equal to the number of coefficients to be estimated or of length
one if priors are the same for all coefficients. If not specified, prior means are
set to 0 and prior variances set to 2.73. Community-level variance parameters
(tau.sq.beta) are assumed to follow an inverse Gamma distribution. The hy-
perparameters of the inverse gamma distribution are passed as a list of length
two with the first and second elements corresponding to the shape and scale
parameters, which are each specified as vectors of length equal to the num-
ber of coefficients to be estimated or a single value if priors are the same for
all parameters. If not specified, prior shape and scale parameters are set to
0.1. If desired, the species-specific regression coefficients (beta) can also be
estimated indepdendently by specifying the tag independent.betas = TRUE.
If specified, this will not estimate species-specific coefficients as random ef-
fects from a common-community-level distribution, and rather the values of
beta.comm and tau.sq.beta will be fixed at the specified initial values. This is
equivalent to specifying a Gaussian, independent prior for each of the species-
specific effects. The spatial factor model fits n.factors independent spatial
processes. The spatial decay phi and smoothness nu parameters for each latent
factor are assumed to follow Uniform distributions. The hyperparameters of the
Uniform are passed as a list with two elements, with both elements being vectors
of length n.factors corresponding to the lower and upper support, respectively,
or as a single value if the same value is assigned for all factors. The priors for
the factor loadings matrix lambda are fixed following the standard spatial fac-
tor model to ensure parameter identifiability (Christensen and Amemlya 2002).
The upper triangular elements of the N x n.factors matrix are fixed at 0 and
the diagonal elements are fixed at 1. The lower triangular elements are assigned
a standard normal prior (i.e., mean 0 and variance 1). sigma.sq.psi is the ran-
dom effect variance for any random effects, and is assumed to follow an inverse
Gamma distribution. The hyperparameters of the inverse-Gamma distribution
are passed as a list of length two with first and second elements corresponding
to the shape and scale parameters, respectively, which are each specified as vec-
tors of length equal to the number of random intercepts or of length one if priors
are the same for all random effect variances.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the adaptive
sampler. We assume the initial variance of the adaptive sampler is the same
for each species, although the adaptive sampler will adjust the tuning variances
separately for each species. See Roberts and Rosenthal (2009) for details.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. For spatial
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factor models, only NNGP = TRUE is currently supported.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

std.by.sp a logical value indicating whether the covariates are standardized separately
for each species within the corresponding range for each species (TRUE) or not
(FALSE). Note that if range.ind is specified in data.list, this will result in
the covariates being standardized differently for each species based on the sites
where range.ind == 1 for that given species. If range.ind is not specified and
std.by.sp = TRUE, this will simply be equivalent to standardizing the covari-
ates across all locations prior to fitting the model. Note that the covariates in
formula should still be standardized across all locations. This can be done ei-
ther outside the function, or can be done by specifying scale() in the model
formula around the continuous covariates.

n.factors the number of factors to use in the spatial factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.
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n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

monitors a character vector used to indicate if only a subset of the model model parame-
ters are desired to be monitored. If posterior samples of all parameters are de-
sired, then don’t specify the argument (this is the default). When working with
a large number of species and/or sites, the full model object can be quite large,
and so this argument can be used to only return samples of specific parameters
to help reduce the size of this resulting object. Valid tags include beta.comm,
tau.sq.beta, beta, z, psi, lambda, theta, w, like (used for WAIC calcula-
tion), beta.star, sigma.sq.psi. Note that if all parameters are not returned,
subsequent functions that require the model object may not work. We only rec-
ommend specifying this option when working with large data sets (e.g., > 100
species and/or > 10,000 sites).

keep.only.mean.95

not currently supported.

shared.spatial a logical value used to specify whether a common spatial process should be
estimated for all species instead of the factor modeling approach. If true, a
spatial variance parameter sigma.sq is estimated for the model, which can be
specified in the initial values and prior distributions (sigma.sq.ig).

... currently no additional arguments

Value

An object of class sfJSDM that is a list comprised of:
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beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

theta.samples a coda object of posterior samples for the species level correlation parameters.

lambda.samples a coda object of posterior samples for the latent spatial factor loadings.

psi.samples a three-dimensional array of posterior samples for the latent occurrence proba-
bility values for each species.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for each latent factor. Array dimensions correspond to MCMC sample,
latent factor, and site. If shared.spatial = TRUE, this is still returned as a
three-dimensional array where the first dimension is MCMC sample, second
dimension is 1, and third dimension is site.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

k.fold.deviance

vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k.fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

https://repositories.lib.utexas.edu/handle/2152/21842
https://repositories.lib.utexas.edu/handle/2152/21842
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Examples

J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6)
# Detection
alpha.mean <- c(0)
tau.sq.alpha <- c(1)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

https://doi.org/10.1080/01621459.2015.1044091
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beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
n.factors <- 3
phi <- rep(3 / .7, n.factors)
sigma.sq <- rep(2, n.factors)
nu <- rep(2, n.factors)

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, nu = nu, cov.model = 'matern', factor.model = TRUE,
n.factors = n.factors)

pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx, , drop = FALSE])
# Prediction covariates
X.0 <- dat$X[pred.indx, , drop = FALSE]
coords.0 <- as.matrix(dat$coords[pred.indx, , drop = FALSE])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , drop = FALSE]

y <- apply(y, c(1, 2), max, na.rm = TRUE)
data.list <- list(y = y, coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

tau.sq.beta.ig = list(a = 0.1, b = 0.1),
nu.unif = list(0.5, 2.5))

# Starting values
inits.list <- list(beta.comm = 0,

beta = 0,
fix = TRUE,
tau.sq.beta = 1)

# Tuning
tuning.list <- list(phi = 1, nu = 0.25)

batch.length <- 25
n.batch <- 5
n.report <- 100
formula <- ~ 1

out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
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cov.model = "matern",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 0,
n.thin = 1,
n.chains = 2)

summary(out)

sfMsPGOcc Function for Fitting Spatial Factor Multi-Species Occupancy Models

Description

The function sfMsPGOcc fits multi-species spatial occupancy models with species correlations (i.e.,
a spatially-explicit joint species distribution model with imperfect detection). We use Polya-Gamma
latent variables and a spatial factor modeling approach. Currently, models are implemented using a
Nearest Neighbor Gaussian Process.

Usage

sfMsPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.factors, n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, k.fold, k.fold.threads = 1, k.fold.seed,
k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Random intercepts are allowed using lme4 syn-
tax (Bates et al. 2015). Only right-hand side of formula is specified. See exam-
ple below.

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords, and grid.index. y is a three-dimensional array with first
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dimension equal to the number of species, second dimension equal to the num-
ber of sites, and third dimension equal to the maximum number of replicates at
a given site. occ.covs is a matrix or data frame containing the variables used
in the occurrence portion of the model, with J rows for each column (variable).
det.covs is a list of variables included in the detection portion of the model.
Each list element is a different detection covariate, which can be site-level or
observational-level. Site-level covariates are specified as a vector of length J
while observation-level covariates are specified as a matrix or data frame with
the number of rows equal to J and number of columns equal to the maximum
number of replicates at a given site. coords is a matrix of the observation coor-
dinates used to estimate the spatial random effect for each site. coords has two
columns for the easting and northing coordinate, respectively. Typically, each
site in the data set will have it’s own coordinate, such that coords is a J × 2
matrix and grid.index should not be specified. If you desire to estimate spa-
tial random effects at some larger spatial level, e.g., if points fall within grid
cells and you want to estimate a spatial random effect for each grid cell instead
of each point, coords can be specified as the coordinate for each grid cell. In
such a case, grid.index is an indexing vector of length J, where each value
of grid.index indicates the corresponding row in coords that the given site
corresponds to. Note that spOccupancy assumes coordinates are specified in a
projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
z, phi, lambda, and nu. nu is only specified if cov.model = "matern", and
sigma.sq.psi and sigma.sq.p are only specified if random effects are in-
cluded in occ.formula or det.formula, respectively. The value portion of
each tag is the parameter’s initial value. See priors description for definition
of each parameter name. Additionally, the tag fix can be set to TRUE to fix the
starting values across all chains. If fix is not specified (the default), starting
values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, tau.beta.half.t,
tau.alpha.half.t, sigma.sq.psi, sigma.sq.p, phi.unif, and nu.unif. Community-
level occurrence (beta.comm) and detection (alpha.comm) regression coeffi-
cients are assumed to follow a normal distribution. The hyperparameters of
the normal distribution are passed as a list of length two with the first and sec-
ond elements corresponding to the mean and variance of the normal distribution,
which are each specified as vectors of length equal to the number of coefficients
to be estimated or of length one if priors are the same for all coefficients. If
not specified, prior means are set to 0 and prior variances set to 2.73. By de-
fault, community-level variance parameters for occupancy (tau.sq.beta) and
detection (tau.sq.alpha) are assumed to follow an inverse Gamma distribu-
tion. The hyperparameters of the inverse gamma distribution are passed as a
list of length two with the first and second elements corresponding to the shape
and scale parameters, which are each specified as vectors of length equal to the
number of coefficients to be estimated or a single value if priors are the same
for all parameters. If not specified, prior shape and scale parameters are set to
0.1. Alternatively, half-t priors can be specified for the community level occur-
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rence/detection standard deviation parameters using the tags tau.beta.half.t
and tau.alpha.half.t. The hyperparameters of the half-t distribution are
passed as a list of length two with the first and second elements correspond-
ing to the degrees of freedom and scale parameters, which are each specified as
vectors of length equal to the number of coefficients to be estimated or a sin-
gle value if priors are the same for all parameters. The spatial factor model fits
n.factors independent spatial processes. The spatial decay phi and smooth-
ness nu parameters for each latent factor are assumed to follow Uniform dis-
tributions. The hyperparameters of the Uniform are passed as a list with two
elements, with both elements being vectors of length n.factors correspond-
ing to the lower and upper support, respectively, or as a single value if the same
value is assigned for all factors. The priors for the factor loadings matrix lambda
are fixed following the standard spatial factor model to ensure parameter iden-
tifiability (Christensen and Amemlya 2002). The upper triangular elements of
the N x n.factors matrix are fixed at 0 and the diagonal elements are fixed
at 1. The lower triangular elements are assigned a standard normal prior (i.e.,
mean 0 and variance 1). sigma.sq.psi and sigma.sq.p are the random ef-
fect variances for any occurrence or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the adaptive
sampler. We assume the initial variance of the adaptive sampler is the same
for each species, although the adaptive sampler will adjust the tuning variances
separately for each species. See Roberts and Rosenthal (2009) for details.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. For spatial
factor models, only NNGP = TRUE is currently supported.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.
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n.factors the number of factors to use in the spatial factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments
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Value

An object of class sfMsPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

theta.samples a coda object of posterior samples for the species level correlation parameters.

lambda.samples a coda object of posterior samples for the latent spatial factor loadings.

z.samples a three-dimensional array of posterior samples for the latent occurrence values
for each species.

psi.samples a three-dimensional array of posterior samples for the latent occupancy proba-
bility values for each species.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for each latent factor.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.
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run.time MCMC sampler execution time reported using proc.time().

k.fold.deviance

vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k.fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.
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Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
J.x <- 7
J.y <- 7
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 8
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
# Include a non-spatial random effect on occurrence
psi.RE <- list(levels = c(20),

sigma.sq.psi = c(0.5))
p.RE <- list()
# Include a random effect on detection
p.RE <- list(levels = c(40),

sigma.sq.p = c(2))
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
n.factors <- 4
phi <- runif(n.factors, 3/1, 3/.4)

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sp = TRUE, cov.model = 'exponential',
factor.model = TRUE, n.factors = n.factors, psi.RE = psi.RE,
p.RE = p.RE)

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length

y <- dat$y
X <- dat$X



154 sfMsPGOcc

X.p <- dat$X.p
X.p.re <- dat$X.p.re
X.re <- dat$X.re
coords <- as.matrix(dat$coords)

# Package all data into a list
occ.covs <- cbind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.cov', 'occ.re')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3],
det.re = X.p.re[, , 1])

data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1))

# Initial values
lambda.inits <- matrix(0, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))

inits.list <- list(alpha.comm = 0,
beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
phi = 3 / .5,
lambda = lambda.inits,
z = apply(y, c(1, 2), max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)

out <- sfMsPGOcc(occ.formula = ~ occ.cov + (1 | occ.re),
det.formula = ~ det.cov.1 + det.cov.2 + (1 | det.re),
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.factors = n.factors,
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search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1,
n.chains = 1)

summary(out)

simBinom Simulate Single-Species Binomial Data

Description

The function simBinom simulates single-species binomial data for simulation studies, power assess-
ments, or function testing. Data can be optionally simulated with a spatial Gaussian Process in the
model. Non-spatial random intercepts can also be included in the model.

Usage

simBinom(J.x, J.y, weights, beta, psi.RE = list(),
sp = FALSE, svc.cols = 1, cov.model, sigma.sq, phi, nu,
x.positive = FALSE, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate data along the
horizontal axis. Total number of sites with simulated data is J.x× J.y.

J.y a single numeric value indicating the number of sites to simulate data along the
vertical axis. Total number of sites with simulated data is J.x× J.y.

weights a numeric vector of length J = J.x × J.y indicating the number of Bernoulli
trials at each of the J sites.

beta a numeric vector containing the intercept and regression coefficient parameters
for the model.

psi.RE a list used to specify the non-spatial random intercepts included in the model.
The list must have two tags: levels and sigma.sq.psi. levels is a vector of
length equal to the number of distinct random intercepts to include in the model
and contains the number of levels there are in each intercept. sigma.sq.psi is
a vector of length equal to the number of distinct random intercepts to include
in the model and contains the variances for each random effect. If not specified,
no random effects are included in the model.

sp a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).
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cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE. If svc.cols has more than one value, there should be a distinct spatial
variance parameter for each spatially-varying coefficient.

phi a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE. If svc.cols has more than one value, there should be a distinct spatial
decay parameter for each spatially-varying coefficient.

nu a numeric value indicating the spatial smoothness parameter. Only used when sp
= TRUE and cov.model = "matern". If svc.cols has more than one value, there
should be a distinct spatial smoothness parameter for each spatially-varying co-
efficient.

x.positive a logical value indicating whether the simulated covariates should be simulated
as random standard normal covariates (x.positive = FALSE) or restricted to
positive values using a uniform distribution with lower bound 0 and upper bound
1 (x.positive = TRUE).

... currently no additional arguments

Value

A list comprised of:

X a J × p.occ numeric design matrix for the model.

coords a J × 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

w a matrix of the spatial random effect values for each site. The number of columns
is determined by the svc.cols argument (the number of spatially-varying coef-
ficients).

psi a J × 1 matrix of the binomial probabilities for each site.

y a length J vector of the binomial data for each site.

X.w a two dimensional matrix containing the covariate effects (including an inter-
cept) whose effects are assumed to be spatially-varying. Rows correspond to
sites and columns correspond to covariate effects.

X.re a numeric matrix containing the levels of any unstructured random effect in-
cluded in the model. Only relevant when random effects are specified in psi.RE.

beta.star a numeric vector that contains the simulated random effects for each given level
of the random effects included in the model. Only relevant when random effects
are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)
J.x <- 10
J.y <- 10
weights <- rep(4, J.x * J.y)
beta <- c(0.5, -0.15)
svc.cols <- c(1, 2)
phi <- c(3 / .6, 3 / 0.2)
sigma.sq <- c(1.2, 0.9)
psi.RE <- list(levels = 10,

sigma.sq.psi = 1.2)
dat <- simBinom(J.x = J.x, J.y = J.y, weights = weights, beta = beta,

psi.RE = psi.RE, sp = TRUE, svc.cols = svc.cols,
cov.model = 'spherical', sigma.sq = sigma.sq, phi = phi)

simIntMsOcc Simulate Multi-Species Detection-Nondetection Data from Multiple
Data Sources

Description

The function simIntMsOcc simulates multi-species detection-nondetection data from multiple data
sources for simulation studies, power assessments, or function testing of integrated occupancy mod-
els. Data can optionally be simulated with a spatial Gaussian Process on the occurrence process.

Usage

simIntMsOcc(n.data, J.x, J.y, J.obs, n.rep, N, beta, alpha, psi.RE = list(),
p.RE = list(), sp = FALSE, cov.model, sigma.sq, phi, nu,
factor.model = FALSE, n.factors, ...)

Arguments

n.data an integer indicating the number of detection-nondetection data sources to sim-
ulate.

J.x a single numeric value indicating the number of sites across the region of interest
along the horizontal axis. Total number of sites across the simulated region of
interest is J.x× J.y.

J.y a single numeric value indicating the number of sites across the region of interest
along the vertical axis. Total number of sites across the simulated region of
interest is J.x× J.y.

J.obs a numeric vector of length n.data containing the number of sites to simulate
each data source at. Data sources can be obtained at completely different sites,
the same sites, or anywhere inbetween. Maximum number of sites a given data
source is available at is equal to J = J.x× J.y.
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n.rep a list of length n.data. Each element is a numeric vector with length corre-
sponding to the number of sites that given data source is observed at (in J.obs).
Each vector indicates the number of repeat visits at each of the sites for a given
data source.

N a numeric vector of length N containing the number of species each data source
samples. These can be the same if both data sets sample the same species, or
can be different.

beta a numeric matrix with max(N) rows containing the intercept and regression co-
efficient parameters for the occurrence portion of the multi-species occupancy
model. Each row corresponds to the regression coefficients for a given species.

alpha a list of length n.data. Each element is a numeric matrix with the rows corre-
sponding to the number of species that data source contains and columns corre-
sponding to the regression coefficients for each data source.

psi.RE a list used to specify the non-spatial random intercepts included in the occur-
rence portion of the model. The list must have two tags: levels and sigma.sq.psi.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each inter-
cept. sigma.sq.psi is a vector of length equal to the number of distinct random
intercepts to include in the model and contains the variances for each random
effect. If not specified, no random effects are included in the occurrence portion
of the model.

p.RE this argument is not currently supported. In a later version, this argument will
allow for simulating data with detection random effects in the different data
sources.

sp a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric vector of length max(N) containing the spatial variance parameter for
each species. Ignored when sp = FALSE or when factor.model = TRUE.

phi a numeric vector of length max(N) containing the spatial decay parameter for
each species. Ignored when sp = FALSE. If factor.model = TRUE, this should
be of length n.factors.

nu a numeric vector of length max(N) containing the spatial smoothness parameter
for each species. Only used when sp = TRUE and cov.model = 'matern'. If
factor.model = TRUE, this should be of length n.factors.

factor.model a logical value indicating whether to simulate data following a factor modeling
approach that explicitly incoporates species correlations. If sp = TRUE, the latent
factors are simulated from independent spatial processes. If sp = FALSE, the
latent factors are simulated from standard normal distributions.

n.factors a single numeric value specifying the number of latent factors to use to simulate
the data if factor.model = TRUE.

... currently no additional arguments
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Value

A list comprised of:

X.obs a numeric design matrix for the occurrence portion of the model. This matrix
contains the intercept and regression coefficients for only the observed sites.

X.pred a numeric design matrix for the occurrence portion of the model at sites where
there are no observed data sources.

X.p a list of design matrices for the detection portions of the integrated multi-species
occupancy model. Each element in the list is a design matrix of detection co-
variates for each data source.

coords.obs a numeric matrix of coordinates of each observed site. Required for spatial
models.

coords.pred a numeric matrix of coordinates of each site in the study region without any data
sources. Only used for spatial models.

w a species (or factor) x site matrix of the spatial random effects for each species.
Only used to simulate data when sp = TRUE. If factor.model = TRUE, the first
dimension is n.factors.

w.pred a matrix of the spatial random random effects for each species (or factor) at
locations without any observation.

psi.obs a species x site matrix of the occurrence probabilities for each species at the
observed sites. Note that values are provided for all species, even if some species
are only monitored at a subset of these points.

psi.pred a species x site matrix of the occurrence probabilities for sites without any ob-
servations.

z.obs a species x site matrix of the latent occurrence states at each observed site. Note
that values are provided for all species, even if some species are only monitored
at a subset of these points.

z.pred a species x site matrix of the latent occurrence states at each site without any
observations.

p a list of detection probability arrays for each of the n.data data sources. Each
array has dimensions corresponding to species, site, and replicate, respectively.

y a list of arrays of the raw detection-nondetection data for each site and repli-
cate combination for each species in the data set. Each array has dimensions
corresponding to species, site, and replicate, respectively.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

References

Doser, J. W., Leuenberger, W., Sillett, T. S., Hallworth, M. T. & Zipkin, E. F. (2022). Integrated
community occupancy models: A framework to assess occurrence and biodiversity dynamics using
multiple data sources. Methods in Ecology and Evolution, 00, 1-14. doi:10.1111/2041210X.13811

https://doi.org/10.1111/2041-210X.13811
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Examples

set.seed(91)
J.x <- 10
J.y <- 10
# Total number of data sources across the study region
J.all <- J.x * J.y
# Number of data sources.
n.data <- 2
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
n.rep <- list()
n.rep[[1]] <- rep(3, J.obs[1])
n.rep[[2]] <- rep(4, J.obs[2])

# Number of species observed in each data source
N <- c(8, 3)

# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.4, 0.3)
# Detection
# Detection covariates
alpha.mean <- list()
tau.sq.alpha <- list()
# Number of detection parameters in each data source
p.det.long <- c(4, 3)
for (i in 1:n.data) {

alpha.mean[[i]] <- runif(p.det.long[i], -1, 1)
tau.sq.alpha[[i]] <- runif(p.det.long[i], 0.1, 1)

}
# Random effects
psi.RE <- list()
p.RE <- list()
beta <- matrix(NA, nrow = max(N), ncol = p.occ)
for (i in 1:p.occ) {

beta[, i] <- rnorm(max(N), beta.mean[i], sqrt(tau.sq.beta[i]))
}
alpha <- list()
for (i in 1:n.data) {

alpha[[i]] <- matrix(NA, nrow = N[i], ncol = p.det.long[i])
for (t in 1:p.det.long[i]) {
alpha[[i]][, t] <- rnorm(N[i], alpha.mean[[i]][t], sqrt(tau.sq.alpha[[i]])[t])

}
}
sp <- FALSE
factor.model <- FALSE
# Simulate occupancy data
dat <- simIntMsOcc(n.data = n.data, J.x = J.x, J.y = J.y,

J.obs = J.obs, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = sp, factor.model = factor.model,
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n.factors = n.factors)
str(dat)

simIntOcc Simulate Single-Species Detection-Nondetection Data from Multiple
Data Sources

Description

The function simIntOcc simulates single-species detection-nondetection data from multiple data
sources for simulation studies, power assessments, or function testing of integrated occupancy mod-
els. Data can optionally be simulated with a spatial Gaussian Process on the occurrence process.

Usage

simIntOcc(n.data, J.x, J.y, J.obs, n.rep, n.rep.max, beta, alpha,
sp = FALSE, cov.model, sigma.sq, phi, nu, ...)

Arguments

n.data an integer indicating the number of detection-nondetection data sources to sim-
ulate.

J.x a single numeric value indicating the number of sites across the region of interest
along the horizontal axis. Total number of sites across the simulated region of
interest is J.x× J.y.

J.y a single numeric value indicating the number of sites across the region of interest
along the vertical axis. Total number of sites across the simulated region of
interest is J.x× J.y.

J.obs a numeric vector of length n.data containing the number of sites to simulate
each data source at. Data sources can be obtained at completely different sites,
the same sites, or anywhere inbetween. Maximum number of sites a given data
source is available at is equal to J = J.x× J.y.

n.rep a list of length n.data. Each element is a numeric vector with length corre-
sponding to the number of sites that given data source is observed at (in J.obs).
Each vector indicates the number of repeat visits at each of the sites for a given
data source.

n.rep.max a vector of numeric values indicating the maximum number of replicate surveys
for each data set. This is an optional argument, with its default value set to
max(n.rep) for each data set. This can be used to generate data sets with differ-
ent types of missingness (e.g., simulate data across 20 days (replicate surveys)
but sites are only sampled a maximum of ten times each).

beta a numeric vector containing the intercept and regression coefficient parameters
for the occurrence portion of the single-species occupancy model.

alpha a list of length n.data. Each element is a numeric vector containing the in-
tercept and regression coefficient parameters for the detection portion of the
single-species occupancy model for each data source.
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sp a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE.

phi a numeric value indicating the spatial range parameter. Ignored when sp =
FALSE.

nu a numeric value indicating the spatial smoothness parameter. Only used when
sp = TRUE and cov.model = "matern".

... currently no additional arguments

Value

A list comprised of:

X.obs a numeric design matrix for the occurrence portion of the model. This matrix
contains the intercept and regression coefficients for only the observed sites.

X.pred a numeric design matrix for the occurrence portion of the model at sites where
there are no observed data sources.

X.p a list of design matrices for the detection portions of the integrated occupancy
model. Each element in the list is a design matrix of detection covariates for
each data source.

coords.obs a numeric matrix of coordinates of each observed site. Required for spatial
models.

coords.pred a numeric matrix of coordinates of each site in the study region without any data
sources. Only used for spatial models.

D.obs a distance matrix of observed sites. Only used for spatial models.
D.pred a distance matrix of sites in the study region without any observed data. Only

used for spatial models.
w.obs a matrix of the spatial random effects at observed locations. Only used to simu-

late data when sp = TRUE

.

w.pred a matrix of the spatial random random effects at locations without any observa-
tion.

psi.obs a matrix of the occurrence probabilities for each observed site.
psi.pred a matrix of the occurrence probabilities for sites without any observations.
z.obs a vector of the latent occurrence states at each observed site.
z.pred a vector of the latent occurrence states at each site without any observations.
p a list of detection probability matrices for each of the n.data data sources.
y a list of matrices of the raw detection-nondetection data for each site and repli-

cate combination.
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Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
J.x <- 15
J.y <- 15
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {

n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5, 1, -3)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
for (i in 1:n.data) {

alpha[[i]] <- runif(sample(1:4, 1), -1, 1)
}
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE

# Simulate occupancy data.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,

n.rep = n.rep, beta = beta, alpha = alpha, sp = TRUE,
cov.model = 'gaussian', sigma.sq = sigma.sq, phi = phi)

simMsOcc Simulate Multi-Species Detection-Nondetection Data

Description

The function simMsOcc simulates multi-species detection-nondetection data for simulation studies,
power assessments, or function testing. Data can be optionally simulated with a spatial Gaussian
Process in the occurrence portion of the model, as well as an option to allow for species correla-
tions using a factor modeling approach. Non-spatial random intercepts can also be included in the
detection or occurrence portions of the occupancy model.
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Usage

simMsOcc(J.x, J.y, n.rep, n.rep.max, N, beta, alpha, psi.RE = list(),
p.RE = list(), sp = FALSE, svc.cols = 1, cov.model,

sigma.sq, phi, nu, factor.model = FALSE, n.factors,
range.probs, shared.spatial = FALSE, grid, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate detection-
nondetection data along the horizontal axis. Total number of sites with simulated
data is J.x× J.y.

J.y a single numeric value indicating the number of sites to simulate detection-
nondetection data along the vertical axis. Total number of sites with simulated
data is J.x× J.y.

n.rep a numeric vector of length J = J.x× J.y indicating the number of repeat visits
at each of the J sites.

n.rep.max a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

N a single numeric value indicating the number of species to simulate detection-
nondetection data.

beta a numeric matrix with N rows containing the intercept and regression coefficient
parameters for the occurrence portion of the multi-species occupancy model.
Each row corresponds to the regression coefficients for a given species.

alpha a numeric matrix with N rows containing the intercept and regression coefficient
parameters for the detection portion of the multi-species occupancy model. Each
row corresponds to the regression coefficients for a given species.

psi.RE a list used to specify the non-spatial random intercepts included in the occur-
rence portion of the model. The list must have two tags: levels and sigma.sq.psi.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each inter-
cept. sigma.sq.psi is a vector of length equal to the number of distinct random
intercepts to include in the model and contains the variances for each random
effect. If not specified, no random effects are included in the occurrence portion
of the model.

p.RE a list used to specify the non-spatial random intercepts included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.p is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the detection
portion of the model.
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sp a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric vector of length N containing the spatial variance parameter for each
species. Ignored when sp = FALSE or when factor.model = TRUE.

phi a numeric vector of length N containing the spatial decay parameter for each
species. Ignored when sp = FALSE. If factor.model = TRUE, this should be of
length n.factors.

nu a numeric vector of length N containing the spatial smoothness parameter for
each species. Only used when sp = TRUE and cov.model = 'matern'. If factor.model
= TRUE, this should be of length n.factors.

factor.model a logical value indicating whether to simulate data following a factor modeling
approach that explicitly incoporates species correlations. If sp = TRUE, the latent
factors are simulated from independent spatial processes. If sp = FALSE, the
latent factors are simulated from standard normal distributions.

n.factors a single numeric value specifying the number of latent factors to use to simulate
the data if factor.model = TRUE.

range.probs a numeric vector of length N where each value should fall between 0 and 1, and
indicates the probability that one of the J spatial locations simulated is within the
simulated range of the given species. If set to 1, every species has the potential
of being present at each location.

shared.spatial a logical value indicating used to specify whether a common spatial process
should be estimated for all species instead of the factor modeling approach.

grid an atomic vector used to specify the grid across which to simulate the latent spa-
tial processes. This argument is used to simulate the underlying spatial processes
at a different resolution than the coordinates (e.g., if coordinates are distributed
across a grid).

... currently no additional arguments

Value

A list comprised of:

X a J × p.occ numeric design matrix for the occurrence portion of the model.

X.p a three-dimensional numeric array with dimensions corresponding to sites, re-
peat visits, and number of detection regression coefficients. This is the design
matrix used for the detection portion of the occupancy model.
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coords a J × 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

w a N × J matrix of the spatial random effects for each species. Only used to
simulate data when sp = TRUE. If factor.model = TRUE, the first dimension is
n.factors.

psi a N × J matrix of the occurrence probabilities for each species at each site.

z a N × J matrix of the latent occurrence states for each species at each site.

p a N x J x max(n.rep) array of the detection probabilities for each species at each
site and replicate combination. Sites with fewer than max(n.rep) replicates will
contain NA values.

y a N x J x max(n.rep) array of the raw detection-nondetection data for each
species at each site and replicate combination. Sites with fewer than max(n.rep)
replicates will contain NA values.

X.p.re a three-dimensional numeric array containing the levels of any detection random
effect included in the model. Only relevant when detection random effects are
specified in p.RE.

X.lambda.re a numeric matrix containing the levels of any occurrence random effect included
in the model. Only relevant when occurrence random effects are specified in
psi.RE.

alpha.star a numeric matrix where each row contains the simulated detection random ef-
fects for each given level of the random effects included in the detection model.
Only relevant when detection random effects are included in the model.

beta.star a numeric matrix where each row contains the simulated occurrence random
effects for each given level of the random effects included in the occurrence
model. Only relevant when occurrence random effects are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 10
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2)
tau.sq.alpha <- c(0.2, 0.3)
p.det <- length(alpha.mean)
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psi.RE <- list(levels = c(10),
sigma.sq.psi = c(1.5))

p.RE <- list(levels = c(15),
sigma.sq.p = 0.8)

# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
# Spatial parameters if desired
phi <- runif(N, 3/1, 3/.1)
sigma.sq <- runif(N, 0.3, 3)
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta,
alpha = alpha, psi.RE = psi.RE, p.RE = p.RE, sp = TRUE,
cov.model = 'exponential', phi = phi, sigma.sq = sigma.sq)

simOcc Simulate Single-Species Detection-Nondetection Data

Description

The function simOcc simulates single-species occurrence data for simulation studies, power assess-
ments, or function testing. Data can be optionally simulated with a spatial Gaussian Process in
the occurrence portion of the model. Non-spatial random intercepts can also be included in the
detection or occurrence portions of the occupancy model.

Usage

simOcc(J.x, J.y, n.rep, n.rep.max, beta, alpha, psi.RE = list(),
p.RE = list(), sp = FALSE, svc.cols = 1, cov.model,
sigma.sq, phi, nu, x.positive = FALSE, grid, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate detection-
nondetection data along the horizontal axis. Total number of sites with simulated
data is J.x× J.y.

J.y a single numeric value indicating the number of sites to simulate detection-
nondetection data along the vertical axis. Total number of sites with simulated
data is J.x× J.y.

n.rep a numeric vector of length J = J.x× J.y indicating the number of repeat visits
at each of the J sites.
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n.rep.max a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

beta a numeric vector containing the intercept and regression coefficient parameters
for the occupancy portion of the single-species occupancy model.

alpha a numeric vector containing the intercept and regression coefficient parameters
for the detection portion of the single-species occupancy model.

psi.RE a list used to specify the non-spatial random intercepts included in the occupancy
portion of the model. The list must have two tags: levels and sigma.sq.psi.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.psi is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the occupancy
portion of the model.

p.RE a list used to specify the non-spatial random intercepts included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.p is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the detection
portion of the model.

sp a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE.

phi a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE.

nu a numeric value indicating the spatial smoothness parameter. Only used when
sp = TRUE and cov.model = "matern".

x.positive a logical value indicating whether the simulated covariates should be simulated
as random standard normal covariates (x.positive = FALSE) or restricted to
positive values using a uniform distribution with lower bound 0 and upper bound
1 (x.positive = TRUE).
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grid an atomic vector used to specify the grid across which to simulate the latent spa-
tial processes. This argument is used to simulate the underlying spatial processes
at a different resolution than the coordinates (e.g., if coordinates are distributed
across a grid).

... currently no additional arguments

Value

A list comprised of:

X a J × p.occ numeric design matrix for the occupancy portion of the model.

X.p a three-dimensional numeric array with dimensions corresponding to sites, re-
peat visits, and number of detection regression coefficients. This is the design
matrix used for the detection portion of the occupancy model.

coords a J × 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

w a matrix of the spatial random effect values for each site. The number of columns
is determined by the svc.cols argument (the number of spatially-varying coef-
ficients).

psi a J × 1 matrix of the occupancy probabilities for each site.

z a length J vector of the latent occupancy states at each site.

p a J x max(n.rep) matrix of the detection probabilities for each site and repli-
cate combination. Sites with fewer than max(n.rep) replicates will contain NA
values.

y a J x max(n.rep) matrix of the raw detection-nondetection data for each site
and replicate combination.

X.p.re a three-dimensional numeric array containing the levels of any detection random
effect included in the model. Only relevant when detection random effects are
specified in p.RE.

X.re a numeric matrix containing the levels of any occurrence random effect included
in the model. Only relevant when occurrence random effects are specified in
psi.RE.

alpha.star a numeric vector that contains the simulated detection random effects for each
given level of the random effects included in the detection model. Only relevant
when detection random effects are included in the model.

beta.star a numeric vector that contains the simulated occurrence random effects for each
given level of the random effects included in the occurrence model. Only rele-
vant when occurrence random effects are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)
J.x <- 10
J.y <- 10
n.rep <- rep(4, J.x * J.y)
beta <- c(0.5, -0.15)
alpha <- c(0.7, 0.4)
phi <- 3 / .6
sigma.sq <- 2
psi.RE <- list(levels = 10,

sigma.sq.psi = 1.2)
p.RE <- list(levels = 15,

sigma.sq.p = 0.8)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, cov.model = 'spherical',
sigma.sq = sigma.sq, phi = phi)

simTBinom Simulate Multi-Season Single-Species Binomial Data

Description

The function simTBinom simulates multi-season single-species binomial data for simulation studies,
power assessments, or function testing. Data can be optionally simulated with a spatial Gaussian
Process in the model. Non-spatial random intercepts can also be included in the model.

Usage

simTBinom(J.x, J.y, n.time, weights, beta, sp.only = 0,
trend = TRUE, psi.RE = list(), sp = FALSE,
cov.model, sigma.sq, phi, nu, svc.cols = 1,
ar1 = FALSE, rho, sigma.sq.t, x.positive = FALSE, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate data along the
horizontal axis. Total number of sites with simulated data is J.x× J.y.

J.y a single numeric value indicating the number of sites to simulate data along the
vertical axis. Total number of sites with simulated data is J.x× J.y.

n.time a single numeric value indicating the number of primary time periods (denoted
T) over which sampling occurs.

weights a numeric matrix with rows corresponding to sites and columns corresponding
to primary time periods that indicates the number of Bernoulli trials at each of
the site/time period combinations.

beta a numeric vector containing the intercept and regression coefficient parameters
for the model.



simTBinom 171

sp.only a numeric vector specifying which occurrence covariates should only vary over
space and not over time. The numbers in the vector correspond to the elements in
the vector of regression coefficients (beta). By default, all simulated occurrence
covariates are assumed to vary over both space and time.

trend a logical value. If TRUE, a temporal trend will be used to simulate the detection-
nondetection data and the second element of beta is assumed to be the trend
parameter. If FALSE no trend is used to simulate the data and all elements of beta
(except the first value which is the intercept) correspond to covariate effects.

psi.RE a list used to specify the non-spatial random intercepts included in the model.
The list must have two tags: levels and sigma.sq.psi. levels is a vector of
length equal to the number of distinct random intercepts to include in the model
and contains the number of levels there are in each intercept. sigma.sq.psi is
a vector of length equal to the number of distinct random intercepts to include
in the model and contains the variances for each random effect. If not specified,
no random effects are included in the model.

sp a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE. If svc.cols has more than one value, there should be a distinct spatial
variance parameter for each spatially-varying coefficient.

phi a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE. If svc.cols has more than one value, there should be a distinct spatial
decay parameter for each spatially-varying coefficient.

nu a numeric value indicating the spatial smoothness parameter. Only used when sp
= TRUE and cov.model = "matern". If svc.cols has more than one value, there
should be a distinct spatial smoothness parameter for each spatially-varying co-
efficient.

ar1 a logical value indicating whether to simulate a temporal random effect with an
AR(1) process. By default, set to FALSE.

rho a numeric value indicating the AR(1) temporal correlation parameter. Ignored
when ar1 = FALSE.

sigma.sq.t a numeric value indicating the AR(1) temporal variance parameter. Ignored
when ar1 = FALSE.

x.positive a logical value indicating whether the simulated covariates should be simu-
lated as random standard normal covariates (x.positive = FALSE) or restricted
to positive values (x.positive = TRUE). If x.positive = TRUE, covariates are
simulated from a random normal and then the minimum value is added to each
covariate value to ensure non-negative covariate values.
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... currently no additional arguments

Value

A list comprised of:

X a J × T × p.occ numeric array containing the design matrix for the model.

coords a J × 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

w a matrix of the spatial random effect values for each site. The number of columns
is determined by the svc.cols argument (the number of spatially-varying coef-
ficients).

psi a J × T matrix of the occupancy probabilities for each site during each primary
time period.

z a J×T matrix of the binomial data at each site during each primary time period.

X.w a three dimensional array containing the covariate effects (including an inter-
cept) whose effects are assumed to be spatially-varying. Dimensions correspond
to sites, primary time periods, and covariate.

X.re a numeric matrix containing the levels of any unstructured random effect in-
cluded in the model. Only relevant when random effects are specified in psi.RE.

beta.star a numeric vector that contains the simulated random effects for each given level
of the random effects included in the model. Only relevant when random effects
are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(1000)
# Sites
J.x <- 15
J.y <- 15
J <- J.x * J.y
# Years sampled
n.time <- sample(10, J, replace = TRUE)
# Binomial weights
weights <- matrix(NA, J, max(n.time))
for (j in 1:J) {

weights[j, 1:n.time[j]] <- sample(5, n.time[j], replace = TRUE)
}
# Occurrence --------------------------
beta <- c(-2, -0.5, -0.2, 0.75)
p.occ <- length(beta)
trend <- TRUE
sp.only <- 0
psi.RE <- list()
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# Spatial parameters ------------------
sp <- TRUE
svc.cols <- c(1, 2, 3)
p.svc <- length(svc.cols)
cov.model <- "exponential"
sigma.sq <- runif(p.svc, 0.1, 1)
phi <- runif(p.svc, 3/1, 3/0.2)
# Temporal parameters -----------------
ar1 <- TRUE
rho <- 0.8
sigma.sq.t <- 1

dat <- simTBinom(J.x = J.x, J.y = J.y, n.time = n.time, weights = weights, beta = beta,
psi.RE = psi.RE, sp.only = sp.only, trend = trend,
sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
rho = rho, sigma.sq.t = sigma.sq.t, ar1 = TRUE, x.positive = FALSE)

simTMsOcc Simulate Multi-Species Multi-Season Detection-Nondetection Data

Description

The function simTMsOcc simulates multi-species multi-season detection-nondetection data for sim-
ulation studies, power assessments, or function testing. Data can be optionally simulated with a
spatial Gaussian Process in the occurrence portion of the model, as well as an option to allow for
species correlations using a factor modeling approach. Non-spatial random intercepts can also be
included in the detection or occurrence portions of the occupancy model.

Usage

simTMsOcc(J.x, J.y, n.time, n.rep, N, beta, alpha, sp.only = 0,
trend = TRUE, psi.RE = list(), p.RE = list(),

sp = FALSE, svc.cols = 1, cov.model,
sigma.sq, phi, nu, ar1 = FALSE, rho, sigma.sq.t,
factor.model = FALSE, n.factors, range.probs, grid, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate detection-
nondetection data along the horizontal axis. Total number of sites with simulated
data is J.x× J.y.

J.y a single numeric value indicating the number of sites to simulate detection-
nondetection data along the vertical axis. Total number of sites with simulated
data is J.x× J.y.

n.time a single numeric value indicating the number of primary time periods (denoted
T) over which sampling occurs.
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n.rep a numeric matrix indicating the number of replicates at each site during each
primary time period. The matrix must have J = J.x×J.y rows and T columns,
where T is the number of primary time periods (e.g., years or seasons) over
which sampling occurs.

N a single numeric value indicating the number of species to simulate detection-
nondetection data.

beta a numeric matrix with N rows containing the intercept and regression coefficient
parameters for the occurrence portion of the multi-species occupancy model.
Each row corresponds to the regression coefficients for a given species.

alpha a numeric matrix with N rows containing the intercept and regression coefficient
parameters for the detection portion of the multi-species occupancy model. Each
row corresponds to the regression coefficients for a given species.

sp.only a numeric vector specifying which occurrence covariates should only vary over
space and not over time. The numbers in the vector correspond to the elements in
the vector of regression coefficients (beta). By default, all simulated occurrence
covariates are assumed to vary over both space and time.

trend a logical value. If TRUE, a temporal trend will be used to simulate the detection-
nondetection data and the second element of beta is assumed to be the trend
parameter. If FALSE no trend is used to simulate the data and all elements of beta
(except the first value which is the intercept) correspond to covariate effects.

psi.RE a list used to specify the non-spatial random intercepts included in the occur-
rence portion of the model. The list must have two tags: levels and sigma.sq.psi.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each inter-
cept. sigma.sq.psi is a vector of length equal to the number of distinct random
intercepts to include in the model and contains the variances for each random
effect. If not specified, no random effects are included in the occurrence portion
of the model.

p.RE a list used to specify the non-spatial random intercepts included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.p is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the detection
portion of the model.

sp a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".
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sigma.sq a numeric vector of length N containing the spatial variance parameter for each
species. Ignored when sp = FALSE or when factor.model = TRUE.

phi a numeric vector of length N containing the spatial decay parameter for each
species. Ignored when sp = FALSE. If factor.model = TRUE, this should be of
length n.factors.

nu a numeric vector of length N containing the spatial smoothness parameter for
each species. Only used when sp = TRUE and cov.model = 'matern'. If factor.model
= TRUE, this should be of length n.factors.

ar1 a logical value indicating whether to simulate a temporal random effect with an
AR(1) process. By default, set to FALSE.

rho a vector of N values indicating the AR(1) temporal correlation parameter for
each species. Ignored when ar1 = FALSE.

sigma.sq.t a vector of N values indicating the AR(1) temporal variance parameter for each
species. Ignored when ar1 = FALSE.

factor.model a logical value indicating whether to simulate data following a factor modeling
approach that explicitly incoporates species correlations. If sp = TRUE, the latent
factors are simulated from independent spatial processes. If sp = FALSE, the
latent factors are simulated from standard normal distributions.

n.factors a single numeric value specifying the number of latent factors to use to simulate
the data if factor.model = TRUE.

range.probs a numeric vector of length N where each value should fall between 0 and 1, and
indicates the probability that one of the J spatial locations simulated is within the
simulated range of the given species. If set to 1, every species has the potential
of being present at each location.

grid an atomic vector used to specify the grid across which to simulate the latent spa-
tial processes. This argument is used to simulate the underlying spatial processes
at a different resolution than the coordinates (e.g., if coordinates are distributed
across a grid).

... currently no additional arguments

Value

A list comprised of:

X a J × T × p.occ numeric array containing the design matrix for the occurrence
portion of the occupancy model.

X.p a four-dimensional numeric array with dimensions corresponding to sites, pri-
mary time periods, repeat visits, and number of detection regression coefficients.
This is the design matrix used for the detection portion of the occupancy model.

coords a J × 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

w a N × J matrix of the spatial random effects for each species. Only used to
simulate data when sp = TRUE. If factor.model = TRUE, the first dimension is
n.factors.



176 simTMsOcc

psi a N × J × T array of the occurrence probabilities for each species at each site
during each primary time period.

z a N × J × T array of the latent occurrence status for each species at each site
during each primary time period.

p a N x J x T x max(n.rep) array of the detection probabilities for each species
at each site, primary time period, and secondyary replicate combination. Sites
with fewer than max(n.rep) replicates will contain NA values.

y a N x J x T x max(n.rep) array of the raw detection-nondetection data for each
species at each site, primary time period, and replicate combination. Sites with
fewer than max(n.rep) replicates will contain NA values.

X.p.re a four-dimensional numeric array containing the levels of any detection random
effect included in the model. Only relevant when detection random effects are
specified in p.RE.

X.re a numeric matrix containing the levels of any occurrence random effect included
in the model. Only relevant when occurrence random effects are specified in
psi.RE.

alpha.star a numeric matrix where each row contains the simulated detection random ef-
fects for each given level of the random effects included in the detection model.
Only relevant when detection random effects are included in the model.

beta.star a numeric matrix where each row contains the simulated occurrence random
effects for each given level of the random effects included in the occurrence
model. Only relevant when occurrence random effects are included in the model.

eta a numeric matrix with each row corresponding to species and column corre-
sponding to time period of the AR(1) temporal random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

# Simulate Data -----------------------------------------------------------
set.seed(500)
J.x <- 8
J.y <- 8
J <- J.x * J.y
# Years sampled
n.time <- sample(3:10, J, replace = TRUE)
# n.time <- rep(10, J)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(2:4, n.time[j], replace = TRUE)
# n.rep[j, 1:n.time[j]] <- rep(4, n.time[j])

}
N <- 7
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# Community-level covariate effects
# Occurrence
beta.mean <- c(-3, -0.2, 0.5)
trend <- FALSE
sp.only <- 0
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 1.4)
# Detection
alpha.mean <- c(0, 1.2, -1.5)
tau.sq.alpha <- c(1, 0.5, 2.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- TRUE
svc.cols <- c(1, 2)
p.svc <- length(svc.cols)
n.factors <- 3
phi <- runif(p.svc * n.factors, 3 / .9, 3 / .3)
factor.model <- TRUE
cov.model <- 'exponential'

dat <- simTMsOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep, N = N,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, factor.model = factor.model,

svc.cols = svc.cols, n.factors = n.factors, phi = phi, sp = sp,
cov.model = cov.model)

str(dat)

simTOcc Simulate Multi-Season Single-Species Detection-Nondetection Data

Description

The function simTOcc simulates multi-season single-species occurrence data for simulation studies,
power assessments, or function testing. Data can be optionally simulated with a spatial Gaussian
Process in the occurrence portion of the model. Non-spatial random intercepts can also be included
in the detection or occurrence portions of the occupancy model.
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Usage

simTOcc(J.x, J.y, n.time, n.rep, n.rep.max, beta, alpha, sp.only = 0, trend = TRUE,
psi.RE = list(), p.RE = list(), sp = FALSE, svc.cols = 1, cov.model,
sigma.sq, phi, nu, ar1 = FALSE, rho, sigma.sq.t, x.positive = FALSE,

mis.spec.type = 'none', scale.param = 1, avail, grid, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate detection-
nondetection data along the horizontal axis. Total number of sites with simulated
data is J.x× J.y.

J.y a single numeric value indicating the number of sites to simulate detection-
nondetection data along the vertical axis. Total number of sites with simulated
data is J.x× J.y.

n.time a single numeric value indicating the number of primary time periods (denoted
T) over which sampling occurs.

n.rep a numeric matrix indicating the number of replicates at each site during each
primary time period. The matrix must have J = J.x×J.y rows and T columns,
where T is the number of primary time periods (e.g., years or seasons) over
which sampling occurs.

n.rep.max a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

beta a numeric vector containing the intercept and regression coefficient parameters
for the occupancy portion of the single-species occupancy model. Note that
if trend = TRUE, the second value in the vector corresponds to the estimated
occurrence trend.

alpha a numeric vector containing the intercept and regression coefficient parameters
for the detection portion of the single-species occupancy model.

sp.only a numeric vector specifying which occurrence covariates should only vary over
space and not over time. The numbers in the vector correspond to the elements in
the vector of regression coefficients (beta). By default, all simulated occurrence
covariates are assumed to vary over both space and time.

trend a logical value. If TRUE, a temporal trend will be used to simulate the detection-
nondetection data and the second element of beta is assumed to be the trend
parameter. If FALSE no trend is used to simulate the data and all elements of beta
(except the first value which is the intercept) correspond to covariate effects.

psi.RE a list used to specify the unstructured random intercepts included in the occu-
pancy portion of the model. The list must have two tags: levels and sigma.sq.psi.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each in-
tercept. sigma.sq.psi is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
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random effect. An additional tag site.RE can be set to TRUE to simulate data
with a site-specific non-spatial random effect on occurrence. If not specified, no
random effects are included in the occupancy portion of the model.

p.RE a list used to specify the unstructured random intercepts included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.p is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the detection
portion of the model.

sp a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE.

phi a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE.

nu a numeric value indicating the spatial smoothness parameter. Only used when
sp = TRUE and cov.model = "matern".

ar1 a logical value indicating whether to simulate a temporal random effect with an
AR(1) process. By default, set to FALSE.

rho a numeric value indicating the AR(1) temporal correlation parameter. Ignored
when ar1 = FALSE.

sigma.sq.t a numeric value indicating the AR(1) temporal variance parameter. Ignored
when ar1 = FALSE.

x.positive a logical value indicating whether the simulated covariates should be simu-
lated as random standard normal covariates (x.positive = FALSE) or restricted
to positive values (x.positive = TRUE). If x.positive = TRUE, covariates are
simulated from a random normal and then the minimum value is added to each
covariate value to ensure non-negative covariate values.

mis.spec.type a quoted keyword indicating the type of model mis-specification to use when
simulating the data. These correspond to model mis-specification of the func-
tional relationship between occupancy/detection probability and covariates. Valid
keywords are: "none" (no model mis-specification, i.e., logit link), "scale"
(scaled logistic link), "line" (linear link), and "probit" (probit link). Defaults
to "none".
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scale.param a positive number between 0 and 1 that indicates the scale parameter for the
occupancy portion of the model when mis.spec.type = 'scale'. When speci-
fied, scale.param corresponds to the scale parameter for the occupancy portion
of the model, while the reciprocal of scale.param is used for the detection por-
tion of the model.

avail a site x primary time period x visit array indicating the availability probabil-
ity of the species during each survey simulated at the given site/primary time
period/visit combination. This can be used to assess impacts of non-constant
availability across replicate surveys in simulation studies. Values should fall
between 0 and 1. When not specified, availability is set to 1 for all surveys.

grid an atomic vector used to specify the grid across which to simulate the latent spa-
tial processes. This argument is used to simulate the underlying spatial processes
at a different resolution than the coordinates (e.g., if coordinates are distributed
across a grid).

... currently no additional arguments

Value

A list comprised of:

X a J × T × p.occ numeric array containing the design matrix for the occurrence
portion of the occupancy model.

X.p a four-dimensional numeric array with dimensions corresponding to sites, pri-
mary time periods, repeat visits, and number of detection regression coefficients.
This is the design matrix used for the detection portion of the occupancy model.

coords a J × 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

w a J × 1 matrix of the spatial random effects. Only used to simulate data when
sp = TRUE.

psi a J × T matrix of the occupancy probabilities for each site during each primary
time period.

z a J × T matrix of the latent occupancy states at each site during each primary
time period.

p a J x T x max(n.rep) array of the detection probabilities for each site, primary
time period, and replicate combination. Site/time periods with fewer than max(n.rep)
replicates will contain NA values.

y a J x T x max(n.rep) array of the raw detection-nondetection data for each sit,
primary time period, and replicate combination.

X.p.re a four-dimensional numeric array containing the levels of any detection random
effect included in the model. Only relevant when detection random effects are
specified in p.RE.

X.re a numeric matrix containing the levels of any occurrence random effect included
in the model. Only relevant when occurrence random effects are specified in
psi.RE.
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alpha.star a numeric vector that contains the simulated detection random effects for each
given level of the random effects included in the detection model. Only relevant
when detection random effects are included in the model.

beta.star a numeric vector that contains the simulated occurrence random effects for each
given level of the random effects included in the occurrence model. Only rele-
vant when occurrence random effects are included in the model.

eta a T × 1 matrix of the latent AR(1) random effects. Only included when ar1 =
TRUE.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

References

Stoudt, S., P. de Valpine, and W. Fithian. Non-parametric identifiability in species distribution and
abundance models: why it matters and how to diagnose a lack of fit using simulation. Journal of
Statistical Theory and Practice 17, 39 (2023). https://doi.org/10.1007/s42519-023-00336-5.

Examples

J.x <- 10
J.y <- 10
J <- J.x * J.y
# Number of time periods sampled
n.time <- sample(10, J, replace = TRUE)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)
}
# Occurrence --------------------------
# Fixed
beta <- c(0.4, 0.5, -0.9)
trend <- TRUE
sp.only <- 0
psi.RE <- list(levels = c(10),

sigma.sq.psi = c(1))
# Detection ---------------------------
alpha <- c(-1, 0.7, -0.5)
p.RE <- list(levels = c(10),

sigma.sq.p = c(0.5))
# Spatial parameters ------------------
sp <- TRUE
cov.model <- "exponential"
sigma.sq <- 2
phi <- 3 / .4
nu <- 1
# Temporal parameters -----------------
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ar1 <- TRUE
rho <- 0.5
sigma.sq.t <- 0.8
# Get all the data
dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,

beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE,
sp = sp, cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
ar1 = ar1, rho = rho, sigma.sq.t = sigma.sq.t)

str(dat)

spIntPGOcc Function for Fitting Single-Species Integrated Spatial Occupancy
Models Using Polya-Gamma Latent Variables

Description

The function spIntPGOcc fits single-species integrated spatial occupancy models using Polya-
Gamma latent variables. Models can be fit using either a full Gaussian process or a Nearest Neigh-
bor Gaussian Process for large data sets. Data integration is done using a joint likelihood framework,
assuming distinct detection models for each data source that are each conditional on a single latent
occupancy process.

Usage

spIntPGOcc(occ.formula, det.formula, data, inits, priors,
tuning, cov.model = "exponential", NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed, k.fold.data, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below.

det.formula a list of symbolic descriptions of the models to be fit for the detection portion
of the model using R’s model syntax for each data set. Each element in the list
is a formula for the detection model of a given data set. Only right-hand side of
formula is specified. See example below.

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, sites and coords. y is a list of matrices or data frames for each data
set used in the integrated model. Each element of the list has first dimension
equal to the number of sites with that data source and second dimension equal
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to the maximum number of replicates at a given site. occ.covs is a matrix
or data frame containing the variables used in the occurrence portion of the
model, with the number of rows being the number of sites with at least one
data source for each column (variable). det.covs is a list of variables included
in the detection portion of the model for each data source. det.covs should
have the same number of elements as y, where each element is itself a list. Each
element of the list for a given data source is a different detection covariate, which
can be site-level or observational-level. Site-level covariates are specified as a
vector with length equal to the number of observed sites of that data source,
while observation-level covariates are specified as a matrix or data frame with
the number of rows equal to the number of observed sites of that data source and
number of columns equal to the maximum number of replicates at a given site.
coords is a matrix of the observation site coordinates. Note that spOccupancy
assumes coordinates are specified in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, and nu. The value portion of all tags except alpha
is the parameter’s initial value. The tag alpha is a list comprised of the initial
values for the detection parameters for each data source. Each element of the list
should be a vector of initial values for all detection parameters in the given data
source or a single value for each data source to assign all parameters for a given
data source the same initial value. See priors description for definition of each
parameter name. Additionally, the tag fix can be set to TRUE to fix the starting
values across all chains. If fix is not specified (the default), starting values are
varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, phi.unif, sigma.sq.ig, sigma.sq.unif, and nu.unif. Oc-
currence (beta) and detection (alpha) regression coefficients are assumed to
follow a normal distribution. For beta hyperparameters of the normal distribu-
tion are passed as a list of length two with the first and second elements corre-
sponding to the mean and variance of the normal distribution, which are each
specified as vectors of length equal to the number of coefficients to be estimated
or of length one if priors are the same for all coefficients. For the detection co-
efficients alpha, the mean and variance hyperparameters are themselves passed
in as lists, with each element of the list corresponding to the specific hyperpa-
rameters for the detection parameters in a given data source. If not specified,
prior means are set to 0 and prior variances set to 2.73 for normal priors. The
spatial variance parameter, sigma.sq, is assumed to follow an inverse-Gamma
distribution or a uniform distribution (default is inverse-Gamma). sigma.sq can
also be fixed at its initial value by setting the prior value to "fixed". The spatial
decay phi and smoothness nu parameters are assumed to follow Uniform dis-
tributions. The hyperparameters of the inverse-Gamma are passed as a vector
of length two, with the first and second elements corresponding to the shape
and scale, respectively. The hyperparameters of the Uniform are also passed as
a vector of length two with the first and second elements corresponding to the
lower and upper support, respectively.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the Adaptive
sampler. See Roberts and Rosenthal (2009) for details.
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cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches to run for each chain for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.batch * batch.length samples to
discard as burn-in. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.
k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
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Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.data an integer specifying the specific data set to hold out values from. If not spec-
ified, data from all data set locations will be incorporated into the k-fold cross-
validation.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class spIntPGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occurrence regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients for
all data sources.

z.samples a coda object of posterior samples for the latent occurrence values

psi.samples a coda object of posterior samples for the latent occurrence probability values

theta.samples a coda object of posterior samples for covariance parameters.

w.samples a coda object of posterior samples for latent spatial random effects.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().
k.fold.deviance

scoring rule (deviance) from k-fold cross-validation. A separate deviance value
is returned for each data source. Only included if k.fold is specified in function
call. Only a single value is returned if k.fold.data is specified.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

https://repositories.lib.utexas.edu/handle/2152/21842
https://repositories.lib.utexas.edu/handle/2152/21842
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Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
# Number of locations in each direction. This is the total region of interest
# where some sites may or may not have a data source.
J.x <- 8
J.y <- 8
J.all <- J.x * J.y
# Number of data sources.
n.data <- 4
# Sites for each data source.
J.obs <- sample(ceiling(0.2 * J.all):ceiling(0.5 * J.all), n.data, replace = TRUE)
# Replicates for each data source.
n.rep <- list()
for (i in 1:n.data) {

n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
}
# Occupancy covariates
beta <- c(0.5, 0.5)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alpha[[1]] <- runif(2, 0, 1)
alpha[[2]] <- runif(3, 0, 1)
alpha[[3]] <- runif(2, -1, 1)

https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924
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alpha[[4]] <- runif(4, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3 / .5
sp <- TRUE

# Simulate occupancy data from multiple data sources.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,

n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
sigma.sq = sigma.sq, phi = phi, cov.model = 'exponential')

y <- dat$y
X <- dat$X.obs
X.p <- dat$X.p
sites <- dat$sites
X.0 <- dat$X.pred
psi.0 <- dat$psi.pred
coords <- as.matrix(dat$coords.obs)
coords.0 <- as.matrix(dat$coords.pred)

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(det.cov.1.1 = X.p[[1]][, , 2])
det.covs[[2]] <- list(det.cov.2.1 = X.p[[2]][, , 2],

det.cov.2.2 = X.p[[2]][, , 3])
det.covs[[3]] <- list(det.cov.3.1 = X.p[[3]][, , 2])
det.covs[[4]] <- list(det.cov.4.1 = X.p[[4]][, , 2],

det.cov.4.2 = X.p[[4]][, , 3],
det.cov.4.3 = X.p[[4]][, , 4])

data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
sites = sites,
coords = coords)

J <- length(dat$z.obs)

# Initial values
inits.list <- list(alpha = list(0, 0, 0, 0),

beta = 0,
phi = 3 / .5,
sigma.sq = 2,
w = rep(0, J),
z = rep(1, J))

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = list(0, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)),

phi.unif = c(3/1, 3/.1),
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sigma.sq.ig = c(2, 2))
# Tuning
tuning.list <- list(phi = 0.3)

# Number of batches
n.batch <- 2
# Batch length
batch.length <- 25

out <- spIntPGOcc(occ.formula = ~ occ.cov,
det.formula = list(f.1 = ~ det.cov.1.1,

f.2 = ~ det.cov.2.1 + det.cov.2.2,
f.3 = ~ det.cov.3.1,
f.4 = ~ det.cov.4.1 + det.cov.4.2 + det.cov.4.3),

data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.report = 10,
n.burn = 10,
n.thin = 1)

summary(out)

spMsPGOcc Function for Fitting Multi-Species Spatial Occupancy Models Using
Polya-Gamma Latent Variables

Description

The function spMsPGOcc fits multi-species spatial occupancy models using Polya-Gamma latent
variables. Models can be fit using either a full Gaussian process or a Nearest Neighbor Gaussian
Process for large data sets.

Usage

spMsPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, k.fold, k.fold.threads = 1, k.fold.seed,
k.fold.only = FALSE, ...)
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Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords. y is a three-dimensional array with first dimension equal to
the number of species, second dimension equal to the number of sites, and third
dimension equal to the maximum number of replicates at a given site. occ.covs
is a matrix or data frame containing the variables used in the occurrence portion
of the model, with J rows for each column (variable). det.covs is a list of
variables included in the detection portion of the model. Each list element is
a different detection covariate, which can be site-level or observational-level.
Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site. coords is a J × 2 matrix of the observation coordinates. Note
that spOccupancy assumes coordinates are specified in a projected coordinate
system.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
z, sigma.sq, phi, w, and nu. nu is only specified if cov.model = "matern",
sigma.sq.psi is only specified if there are random intercepts in occ.formula,
and sigma.sq.p is only specified if there are random intercpets in det.formula.
The value portion of each tag is the parameter’s initial value. See priors de-
scription for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, phi.unif, sigma.sq.ig,
sigma.sq.unif, nu.unif, sigma.sq.psi, sigma.sq.p. Community-level oc-
currence (beta.comm) and detection (alpha.comm) regression coefficients are
assumed to follow a normal distribution. The hyperparameters of the normal
distribution are passed as a list of length two with the first and second elements
corresponding to the mean and variance of the normal distribution, which are
each specified as vectors of length equal to the number of coefficients to be esti-
mated or of length one if priors are the same for all coefficients. If not specified,
prior means are set to 0 and prior variances set to 2.73. Community-level vari-
ance parameters for occupancy (tau.sq.beta) and detection (tau.sq.alpha)
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse gamma distribution are passed as a list of length two with the first
and second elements corresponding to the shape and scale parameters, which are
each specified as vectors of length equal to the number of coefficients to be esti-
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mated or a single value if priors are the same for all parameters. If not specified,
prior shape and scale parameters are set to 0.1. The species-specific spatial vari-
ance parameter, sigma.sq, is assumed to follow an inverse-Gamma distribution
or a uniform distribution (default is inverse-Gamma). sigma.sq of all species
can also be fixed at its initial value by setting the prior value to "fixed". The
spatial decay phi and smoothness nu parameters are assumed to follow Uni-
form distributions. The hyperparameters of the inverse-Gamma are passed as a
list of length two, with the list elements being vectors of length N correspond-
ing to the species-specific shape and scale parameters, respectively, or a single
value if the same value is assigned for all species. The hyperparameters of the
Uniform are also passed as a list with two elements, with both elements being
vectors of length N corresponding to the lower and upper support, respectively,
or as a single value if the same value is assigned for all species. sigma.sq.psi
and sigma.sq.p are the random effect variances for any occurrence or detec-
tion random effects, respectively, and are assumed to follow an inverse Gamma
distribution. The hyperparameters of the inverse-Gamma distribution are passed
as a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the adaptive
sampler. We assume the initial variance of the adaptive sampler is the same
for each species, although the adaptive sampler will adjust the tuning variances
separately for each species. See Roberts and Rosenthal (2009) for details.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.
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batch.length the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class spMsPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.



192 spMsPGOcc

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

theta.samples a coda object of posterior samples for the species level covariance parameters.
z.samples a three-dimensional array of posterior samples for the latent occurrence values

for each species.
psi.samples a three-dimensional array of posterior samples for the latent occupancy proba-

bility values for each species.
w.samples a three-dimensional array of posterior samples for the latent spatial random ef-

fects for each species.
sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time MCMC sampler execution time reported using proc.time().
k.fold.deviance

vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k.fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().
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Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.
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Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
J.x <- 7
J.y <- 7
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 5
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
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p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
phi <- runif(N, 3/1, 3/.4)
sigma.sq <- runif(N, 0.3, 3)
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential')

# Number of batches
n.batch <- 30
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length

y <- dat$y
X <- dat$X
X.p <- dat$X.p
coords <- as.matrix(dat$coords)

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1),
sigma.sq.ig = list(a = 2, b = 2))

# Initial values
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
phi = 3 / .5,
sigma.sq = 2,
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w = matrix(0, nrow = N, ncol = nrow(X)),
z = apply(y, c(1, 2), max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)

out <- spMsPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1,
n.chains = 1)

summary(out, level = 'both')

spPGOcc Function for Fitting Single-Species Spatial Occupancy Models Using
Polya-Gamma Latent Variables

Description

The function spPGOcc fits single-species spatial occupancy models using Polya-Gamma latent vari-
ables. Models can be fit using either a full Gaussian process or a Nearest Neighbor Gaussian Process
for large data sets.

Usage

spPGOcc(occ.formula, det.formula, data, inits, priors,
tuning, cov.model = "exponential", NNGP = TRUE,
n.neighbors = 15, search.type = "cb", n.batch,
batch.length, accept.rate = 0.43,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)
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Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords, and grid.index. y is the detection-nondetection data ma-
trix or data frame with first dimension equal to the number of sites (J) and
second dimension equal to the maximum number of replicates at a given site.
occ.covs is a matrix or data frame containing the variables used in the occu-
pancy portion of the model, with J rows for each column (variable). det.covs
is a list of variables included in the detection portion of the model. Each list el-
ement is a different detection covariate, which can be site-level or observational-
level. Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates at
a given site. coords is a matrix of the observation coordinates used to estimate
the spatial random effect for each site. coords has two columns for the easting
and northing coordinate, respectively. Typically, each site in the data set will
have it’s own coordinate, such that coords is a J × 2 matrix and grid.index
should not be specified. If you desire to estimate spatial random effects at some
larger spatial level, e.g., if points fall within grid cells and you want to esti-
mate a spatial random effect for each grid cell instead of each point, coords can
be specified as the coordinate for each grid cell. In such a case, grid.index
is an indexing vector of length J, where each value of grid.index indicates
the corresponding row in coords that the given site corresponds to. Note that
spOccupancy assumes coordinates are specified in a projected coordinate sys-
tem.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.p. nu is only specified
if cov.model = "matern", sigma.sq.p is only specified if there are random ef-
fects in det.formula, and sigma.sq.psi is only specified if there are random
effects in occ.formula. The value portion of each tag is the parameter’s initial
value. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, phi.unif, sigma.sq.ig, sigma.sq.unif, nu.unif, sigma.sq.psi.ig,
and sigma.sq.p.ig. Occurrence (beta) and detection (alpha) regression co-
efficients are assumed to follow a normal distribution. The hyperparameters of
the normal distribution are passed as a list of length two with the first and sec-
ond elements corresponding to the mean and variance of the normal distribution,
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which are each specified as vectors of length equal to the number of coefficients
to be estimated or of length one if priors are the same for all coefficients. If not
specified, prior means are set to 0 and prior variances set to 2.73. The spatial
variance parameter, sigma.sq, is assumed to follow an inverse-Gamma distri-
bution or a uniform distribution (default is inverse-Gamma). sigma.sq can also
be fixed at its initial value by setting the prior value to "fixed". The spatial
decay phi and smoothness nu parameters are assumed to follow Uniform distri-
butions. The hyperparameters of the inverse-Gamma for sigma.sq are passed
as a vector of length two, with the first and second elements corresponding to
the shape and scale, respectively. The hyperparameters of the Uniform are also
passed as a vector of length two with the first and second elements corresponding
to the lower and upper support, respectively. sigma.sq.psi and sigma.sq.p
are the random effect variances for any occurrence or detection random effects,
respectively, and are assumed to follow an inverse-Gamma distribution. The hy-
perparameters of the inverse-Gamma distribution are passed as a list of length
two with the first and second elements corresponding to the shape and scale
parameters, respectively, which are each specified as vectors of length equal to
the number of random intercepts or of length one if priors are the same for all
random effect variances.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the Adaptive
sampler. See Roberts and Rosenthal (2009) for details.

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.
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n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

n.burn the number of samples out of the total n.batch * batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of MCMC chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class spPGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occurrence regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

z.samples a coda object of posterior samples for the latent occurrence values

psi.samples a coda object of posterior samples for the latent occurrence probability values

theta.samples a coda object of posterior samples for covariance parameters.

w.samples a coda object of posterior samples for latent spatial random effects.
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sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

like.samples a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().
k.fold.deviance

soring rule (deviance) from k-fold cross-validation. Only included if k.fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability values are not included in the model object, but can be
extracted using fitted().

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(350)
# Simulate Data -----------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, -0.15)
p.occ <- length(beta)
alpha <- c(0.7, 0.4, -0.2)
p.det <- length(alpha)
phi <- 3 / .6
sigma.sq <- 2
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential')
y <- dat$y
X <- dat$X
X.p <- dat$X.p
coords <- as.matrix(dat$coords)

# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.iter <- n.batch * batch.length
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.ig = c(2, 2),
phi.unif = c(3/1, 3/.1))

# Initial values
inits.list <- list(alpha = 0, beta = 0,

phi = 3 / .5,
sigma.sq = 2,
w = rep(0, nrow(X)),
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z = apply(y, 1, max, na.rm = TRUE))
# Tuning
tuning.list <- list(phi = 1)

out <- spPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
NNGP = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.chains = 1)

summary(out)

stMsPGOcc Function for Fitting Multi-Species Multi-Season Spatial Occupancy
Models

Description

The function stMsPGOcc fits multi-species multi-season spatial occupancy models with species cor-
relations (i.e., a spatially-explicit joint species distribution model with imperfect detection). We use
Polya-Gamma latent variables and a spatial factor modeling approach. Models are implemented
using a Nearest Neighbor Gaussian Process.

Usage

stMsPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb',
n.factors, n.batch, batch.length,
accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Random intercepts are allowed using lme4 syn-
tax (Bates et al. 2015). Only right-hand side of formula is specified. See exam-
ple below.
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det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords, and grid.index. y is a four-dimensional array with first di-
mension equal to the number of species, second dimension equal to the number
of sites, third dimension equal to the number of primary time periods, and fourth
dimension equal to the maximum number of secondary replicates at a given site.
occ.covs is a list of variables included in the occurrence portion of the model.
Each list element is a different occurrence covariate, which can be site level or
site/primary time period level. Site-level covariates are specified as a vector of
length J while site/primary time period level covariates are specified as a matrix
with rows corresponding to sites and columns correspond to primary time peri-
ods. Similarly, det.covs is a list of variables included in the detection portion
of the model, with each list element corresponding to an individual variable.
In addition to site-level and/or site/primary time period-level, detection covari-
ates can also be observational-level. Observation-level covariates are specified
as a three-dimensional array with first dimension corresponding to sites, second
dimension corresponding to primary time period, and third dimension corre-
sponding to replicate. coords is a matrix of the observation coordinates used to
estimate the SVCs for each site. coords has two columns for the easting and
northing coordinate, respectively. Typically, each site in the data set will have
it’s own coordinate, such that coords is a J × 2 matrix and grid.index should
not be specified. If you desire to estimate SVCs at some larger spatial level, e.g.,
if points fall within grid cells and you want to estimate an SVC for each grid cell
instead of each point, coords can be specified as the coordinate for each grid
cell. In such a case, grid.index is an indexing vector of length J, where each
value of grid.index indicates the corresponding row in coords that the given
site corresponds to. Note that spOccupancy assumes coordinates are specified
in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
z, phi, lambda, nu, sigma.sq.t, and rho. nu is only specified if cov.model =
"matern", and sigma.sq.psi and sigma.sq.p are only specified if random ef-
fects are included in occ.formula or det.formula, respectively. sigma.sq.t
and rho are only relevant when ar1 = TRUE. The value portion of each tag is the
parameter’s initial value. See priors description for definition of each parame-
ter name. Additionally, the tag fix can be set to TRUE to fix the starting values
across all chains. If fix is not specified (the default), starting values are varied
randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.psi, sigma.sq.p,
phi.unif, nu.unif, sigma.sq.t.ig, and rho.unif. Community-level occur-
rence (beta.comm) and detection (alpha.comm) regression coefficients are as-
sumed to follow a normal distribution. The hyperparameters of the normal dis-
tribution are passed as a list of length two with the first and second elements
corresponding to the mean and variance of the normal distribution, which are
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each specified as vectors of length equal to the number of coefficients to be
estimated or of length one if priors are the same for all coefficients. If not
specified, prior means are set to 0 and prior variances set to 2.73. By default,
community-level variance parameters for occupancy (tau.sq.beta) and detec-
tion (tau.sq.alpha) are assumed to follow an inverse Gamma distribution. The
hyperparameters of the inverse gamma distribution are passed as a list of length
two with the first and second elements corresponding to the shape and scale pa-
rameters, which are each specified as vectors of length equal to the number of
coefficients to be estimated or a single value if priors are the same for all pa-
rameters. If not specified, prior shape and scale parameters are set to 0.1. The
spatial factor model fits n.factors independent spatial processes. The spatial
decay phi and smoothness nu parameters for each latent factor are assumed to
follow Uniform distributions. The hyperparameters of the Uniform are passed as
a list with two elements, with both elements being vectors of length n.factors
corresponding to the lower and upper support, respectively, or as a single value
if the same value is assigned for all factor combinations. The priors for the fac-
tor loadings matrix lambda are fixed following the standard spatial factor model
to ensure parameter identifiability (Christensen and Amemlya 2002). The upper
triangular elements of the N x n.factors matrix are fixed at 0 and the diagonal
elements are fixed at 1. The lower triangular elements are assigned a standard
normal prior (i.e., mean 0 and variance 1). sigma.sq.psi and sigma.sq.p
are the random effect variances for any occurrence or detection random effects,
respectively, and are assumed to follow an inverse Gamma distribution. The hy-
perparameters of the inverse-Gamma distribution are passed as a list of length
two with first and second elements corresponding to the shape and scale parame-
ters, respectively, which are each specified as vectors of length equal to the num-
ber of random intercepts or of length one if priors are the same for all random
effect variances. parameters are set to 0.1. sigma.sq.t and rho are the AR(1)
variance and correlation parameters for the AR(1) zero-mean temporal random
effects, respectively. sigma.sq.t is assumed to follow an inverse-Gamma dis-
tribution, where the hyperparameters are specified as a list of length two with the
first and second elements corresponding to the shape and scale parameters, re-
spectively, which can each be specified as vector equal to the number of species
in the model or a single value if the same prior is used for all species. rho is as-
sumed to follow a uniform distribution, where the hyperparameters are specified
similarly as a list of length two with the first and second elements corresponding
to the lower and upper bounds of the uniform prior, which can each be specified
as vector equal to the number of species in the model or a single value if the
same prior is used for all species.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi, nu,
rho. The value portion of each tag defines the initial variance of the adaptive
sampler. We assume the initial variance of the adaptive sampler is the same
for each species, although the adaptive sampler will adjust the tuning variances
separately for each species. See Roberts and Rosenthal (2009) for details.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
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See Datta et al. (2016) and Finley et al. (2019) for more information. Only NNGP
= TRUE is currently supported.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.factors the number of factors to use in the spatial factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

ar1 logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments
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Value

An object of class stMsPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

theta.samples a coda object of posterior samples for the species level correlation parameters
and the species-level temporal autocorrelation parameters.

lambda.samples a coda object of posterior samples for the latent spatial factor loadings.

z.samples a four-dimensional array of posterior samples for the latent occurrence values
for each species. Dimensions corresopnd to MCMC sample, species, site, and
primary time period.

psi.samples a four-dimensional array of posterior samples for the latent occupancy probabil-
ity values for each species. Dimensions correspond to MCMC sample, species,
site, and primary time period.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for each spatial factor. Dimensions correspond to MCMC sample, factor,
and site.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.
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like.samples a four-dimensional array of posterior samples for the likelihood value used for
calculating WAIC. Dimensions correspond to MCMC sample, species, site, and
time period.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)
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Examples

# Simulate Data -----------------------------------------------------------
set.seed(500)
J.x <- 8
J.y <- 8
J <- J.x * J.y
# Years sampled
n.time <- sample(3:10, J, replace = TRUE)
# n.time <- rep(10, J)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(2:4, n.time[j], replace = TRUE)
}
N <- 7
# Community-level covariate effects
# Occurrence
beta.mean <- c(-3, -0.2, 0.5)
trend <- FALSE
sp.only <- 0
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 1.4)
# Detection
alpha.mean <- c(0, 1.2, -1.5)
tau.sq.alpha <- c(1, 0.5, 2.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- TRUE
svc.cols <- c(1)
p.svc <- length(svc.cols)
n.factors <- 3
phi <- runif(p.svc * n.factors, 3 / .9, 3 / .3)
factor.model <- TRUE
cov.model <- 'exponential'
ar1 <- TRUE
sigma.sq.t <- runif(N, 0.05, 1)
rho <- runif(N, 0.1, 1)

dat <- simTMsOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep, N = N,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
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psi.RE = psi.RE, p.RE = p.RE, factor.model = factor.model,
svc.cols = svc.cols, n.factors = n.factors, phi = phi, sp = sp,
cov.model = cov.model, ar1 = ar1, sigma.sq.t = sigma.sq.t, rho = rho)

y <- dat$y
X <- dat$X
X.p <- dat$X.p
coords <- dat$coords
X.re <- dat$X.re
X.p.re <- dat$X.p.re

occ.covs <- list(occ.cov.1 = X[, , 2],
occ.cov.2 = X[, , 3])

det.covs <- list(det.cov.1 = X.p[, , , 2],
det.cov.2 = X.p[, , , 3])

data.list <- list(y = y, occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
rho.unif = list(a = -1, b = 1),
sigma.sq.t.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3 / .9, b = 3 / .1))

z.init <- apply(y, c(1, 2, 3), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, tau.sq.beta = 1, tau.sq.alpha = 1,
rho = 0.5, sigma.sq.t = 0.5,
phi = 3 / .5, z = z.init)

# Tuning
tuning.list <- list(phi = 1, rho = 0.5)

# Number of batches
n.batch <- 5
# Batch length
batch.length <- 25
n.burn <- 25
n.thin <- 1
n.samples <- n.batch * batch.length

out <- stMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
ar1 = TRUE,
NNGP = TRUE,
n.neighbors = 5,



stPGOcc 209

n.factors = n.factors,
cov.model = 'exponential',
priors = prior.list,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary(out)

stPGOcc Function for Fitting Multi-Season Single-Species Spatial Occupancy
Models Using Polya-Gamma Latent Variables

Description

Function for fitting multi-season single-species spatial occupancy models using Polya-Gamma la-
tent variables.

Usage

stPGOcc(occ.formula, det.formula, data, inits, priors,
tuning, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords, and grid.index. y is a three-dimensional array with first
dimension equal to the number of sites (J), second dimension equal to the max-
imum number of primary time periods (i.e., years or seasons), and third dimen-
sion equal to the maximum number of replicates at a given site. occ.covs is a
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list of variables included in the occurrence portion of the model. Each list ele-
ment is a different occurrence covariate, which can be site level or site/primary
timer period level. Site-level covariates are specified as a vector of length J
while site/primary time period level covariates are specified as a matrix with
rows corresponding to sites and columns correspond to primary time periods.
Similarly, det.covs is a list of variables included in the detection portion of
the model, with each list element corresponding to an individual variable. In
addition to site-level and/or site/primary time period-level, detection covariates
can also be observational-level. Observation-level covariates are specified as
a three-dimensional array with first dimension corresponding to sites, second
dimension corresponding to primary time period, and third dimension corre-
sponding to replicate. coords is a matrix of the observation coordinates used
to estimate the spatial random effect for each site. coords has two columns
for the easting and northing coordinate, respectively. Typically, each site in the
data set will have it’s own coordinate, such that coords is a J × 2 matrix and
grid.index should not be specified. If you desire to estimate spatial random
effects at some larger spatial level, e.g., if points fall within grid cells and you
want to estimate a spatial random effect for each grid cell instead of each point,
coords can be specified as the coordinate for each grid cell. In such a case,
grid.index is an indexing vector of length J, where each value of grid.index
indicates the corresponding row in coords that the given site corresponds to.
Note that spOccupancy assumes coordinates are specified in a projected coordi-
nate system.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.p, sigma.sq.t, rho.
The value portion of each tag is the parameter’s initial value. sigma.sq.psi and
sigma.sq.p are only relevant when including random effects in the occurrence
and detection portion of the occupancy model, respectively. nu is only specified
if cov.model = "matern". sigma.sq.t and rho are only relevant when ar1 =
TRUE. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, sigma.sq.psi.ig, sigma.sq.p.ig, phi.unif, sigma.sq.ig,
nu.unif, sigma.sq.t.ig, and rho.unif. Occupancy (beta) and detection
(alpha) regression coefficients are assumed to follow a normal distribution. The
hyperparameters of the normal distribution are passed as a list of length two with
the first and second elements corresponding to the mean and variance of the
normal distribution, which are each specified as vectors of length equal to the
number of coefficients to be estimated or of length one if priors are the same for
all coefficients. If not specified, prior means are set to 0 and prior variances set
to 2.72. sigma.sq.psi and sigma.sq.p are the random effect variances for any
occurrence or detection random effects, respectively, and are assumed to follow
an inverse Gamma distribution. The hyperparameters of the inverse-Gamma
distribution are passed as a list of length two with first and second elements
corresponding to the shape and scale parameters, respectively, which are each
specified as vectors of length equal to the number of random intercepts or of
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length one if priors are the same for all random effect variances. The spatial
variance parameter, sigma.sq, is assumed to follow an inverse-Gamma distri-
bution. The spatial decay phi and smoothness nu parameters are assumed to
follow Uniform distributions. The hyperparameters of the inverse-Gamma for
sigma.sq.ig are passed as a vector of length two, with the first and second
elements corresponding to the shape and scale parameters, respectively. The hy-
perparameters of the uniform are also passed as a vector of length two with the
first and second elements corresponding to the lower and upper support, respec-
tively. sigma.sq.t and rho are the AR(1) variance and correlation parameters
for the AR(1) zero-mean temporal random effects, respectively. sigma.sq.t is
assumed to follow an inverse-Gamma distribution, where the hyperparameters
are specified as a vector with elements corresponding to the shape and scale pa-
rameters, respectively. rho is assumed to follow a uniform distribution, where
the hyperparameters are specified in a vector of length two with elements corre-
sponding to the lower and upper bounds of the uniform prior.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name. Valid tags are phi,
nu, and rho. The value portion of each tag defines the initial variance of the
Adaptive sampler. See Roberts and Rosenthal (2009) for details.

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. Currently
only NNGP = TRUE is supported for multi-season single-species trend occupancy
models.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.
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n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

ar1 logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scoring
rule, we use the model deviance as described in Hooten and Hobbs (2015). For
cross-validation in multi-season models, the data are split along the site dimen-
sion, such that each hold-out data set consists of a J / k.fold sites sampled
over all primary time periods during which data are available at each given site.
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class stPGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occupancy regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.
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z.samples a three-dimensional array of posterior samples for the latent occupancy values,
with dimensions corresponding to posterior sample, site, and primary time pe-
riod.

psi.samples a three-dimensional array of posterior samples for the latent occupancy probabil-
ity values, with dimensions corresponding to posterior sample, site, and primary
time period.

theta.samples a coda object of posterior samples for spatial covariance parameters and tempo-
ral covariance parameters if ar1 = TRUE.

w.samples a coda object of posterior samples for latent spatial random effects.
sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

eta.samples a coda object of posterior samples for the AR(1) random effects for each primary
time period. Only included if ar1 = TRUE

.

like.samples a three-dimensional array of posterior samples for the likelihood values associ-
ated with each site and primary time period. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time execution time reported using proc.time().
k.fold.deviance

scoring rule (deviance) from k-fold cross-validation. Only included if k.fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted(). Note that if k.fold.only = TRUE, the return list object will
only contain run.time and k.fold.deviance.

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

https://repositories.lib.utexas.edu/handle/2152/21842
https://repositories.lib.utexas.edu/handle/2152/21842
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Examples

set.seed(500)
# Sites
J.x <- 10
J.y <- 10
J <- J.x * J.y
# Primary time periods
n.time <- sample(10, J, replace = TRUE)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)
}
# Occurrence --------------------------
beta <- c(0.4, 0.5, -0.9)
trend <- TRUE
sp.only <- 0
psi.RE <- list()
# Detection ---------------------------
alpha <- c(-1, 0.7, -0.5)
p.RE <- list()
# Spatial -----------------------------
sp <- TRUE
cov.model <- "exponential"
sigma.sq <- 2
phi <- 3 / .4
# Temporal ----------------------------
rho <- 0.5

https://doi.org/10.18637/jss.v067.i01
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sigma.sq.t <- 1

# Get all the data
dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,

beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, cov.model = cov.model, ar1 = TRUE,
sigma.sq.t = sigma.sq.t, rho = rho)

# Package all data into a list
# Occurrence
occ.covs <- list(int = dat$X[, , 1],

trend = dat$X[, , 2],
occ.cov.1 = dat$X[, , 3])

# Detection
det.covs <- list(det.cov.1 = dat$X.p[, , , 2],

det.cov.2 = dat$X.p[, , , 3])
# Data list bundle
data.list <- list(y = dat$y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = dat$coords)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.ig = c(2, 2),
phi.unif = c(3 / 1, 3 / 0.1),
rho.unif = c(-1, 1),
sigma.sq.t.ig = c(2, 1))

# Initial values
z.init <- apply(dat$y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(beta = 0, alpha = 0, z = z.init, phi = 3 / .5, sigma.sq = 2,

w = rep(0, J), rho = 0, sigma.sq.t = 0.5)
# Tuning
tuning.list <- list(phi = 1, rho = 1)
# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.iter <- n.batch * batch.length

# Run the model
out <- stPGOcc(occ.formula = ~ trend + occ.cov.1,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
NNGP = TRUE,
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ar1 = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.chains = 1)

summary(out)

summary.intMsPGOcc Methods for intMsPGOcc Object

Description

Methods for extracting information from fitted integrated multi-species occupancy (intMsPGOcc)
models.

Usage

## S3 method for class 'intMsPGOcc'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'intMsPGOcc'
print(x, ...)
## S3 method for class 'intMsPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class intMsPGOcc.
level a quoted keyword that indicates the level to summarize the model results. Valid

key words are: "community", "species", or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
param parameter name for which to generate a traceplot. Valid names are "beta",

"beta.comm", "tau.sq.beta", "alpha", "tau.sq.alpha".
density logical value indicating whether to also generate a density plot for each param-

eter in addition to the MCMC traceplot.
... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class intMsPGOcc, including meth-
ods to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a intMsPGOcc object.
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summary.intPGOcc Methods for intPGOcc Object

Description

Methods for extracting information from fitted single species integrated occupancy (intPGOcc)
model.

Usage

## S3 method for class 'intPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'intPGOcc'
print(x, ...)
## S3 method for class 'intPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class intPGOcc.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"alpha".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class intPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a intPGOcc object.
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summary.lfJSDM Methods for lfJSDM Object

Description

Methods for extracting information from a fitted latent factor joint species distribution model (lfJSDM).

Usage

## S3 method for class 'lfJSDM'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'lfJSDM'
print(x, ...)
## S3 method for class 'lfJSDM'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class lfJSDM.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "lambda".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class lfJSDM, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a lfJSDM object.
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summary.lfMsPGOcc Methods for lfMsPGOcc Object

Description

Methods for extracting information from a fitted latent factor multi-species occupancy model (lfMsPGOcc).

Usage

## S3 method for class 'lfMsPGOcc'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'lfMsPGOcc'
print(x, ...)
## S3 method for class 'lfMsPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class lfMsPGOcc.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "lambda".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class lfMsPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a lfMsPGOcc object.
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summary.msPGOcc Methods for msPGOcc Object

Description

Methods for extracting information from fitted multi-species occupancy (msPGOcc) model.

Usage

## S3 method for class 'msPGOcc'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'msPGOcc'
print(x, ...)
## S3 method for class 'msPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class msPGOcc.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class msPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a msPGOcc object.
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summary.PGOcc Methods for PGOcc Object

Description

Methods for extracting information from fitted single-species occupancy (PGOcc) model.

Usage

## S3 method for class 'PGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'PGOcc'
print(x, ...)
## S3 method for class 'PGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class PGOcc.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "alpha", "alpha.star", "sigma.sq.p".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class PGOcc, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a PGOcc object.
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summary.postHocLM Methods for postHocLM Object

Description

Methods for extracting information from fitted posthoc linear models (postHocLM).

Usage

## S3 method for class 'postHocLM'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'postHocLM'
print(x, ...)

Arguments

object, x object of class postHocLM.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class postHocLM, including methods
to the generic functions print and summary.

Value

No return value, called to display summary information of a postHocLM object.

summary.ppcOcc Methods for ppcOcc Object

Description

Methods for extracting information from posterior predictive check objects of class ppcOcc.

Usage

## S3 method for class 'ppcOcc'
summary(object, level, digits = max(3L, getOption("digits") - 3L), ...)
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Arguments

object object of class ppcOcc.
level a quoted keyword for multi-species models that indicates the level to summarize

the posterior predictive check. Valid key words are: "community", "species",
or "both".

digits number of digits to report.
... currently no additional arguments

Details

A set of standard extractor functions for fitted posterior predictive check objects of class ppcOcc,
including methods to the generic function summary.

Value

No return value, called to display summary information of a ppcOcc object.

summary.sfJSDM Methods for sfJSDM Object

Description

Methods for extracting information from fitted spatial factor joint species distribution models (sfJSDM).

Usage

## S3 method for class 'sfJSDM'
summary(object, level, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'sfJSDM'
print(x, ...)
## S3 method for class 'sfJSDM'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class sfJSDM.
level a quoted keyword that indicates the level to summarize the model results. Valid

key words are: "community", "species", or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
param parameter name for which to generate a traceplot. Valid names are "beta",

"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "theta", "lambda".
density logical value indicating whether to also generate a density plot for each param-

eter in addition to the MCMC traceplot.
... currently no additional arguments
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Details

A set of standard extractor functions for fitted model objects of class sfJSDM, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a sfJSDM object.

summary.sfMsPGOcc Methods for sfMsPGOcc Object

Description

Methods for extracting information from fitted spatial factor multi-species occupancy model.

Usage

## S3 method for class 'sfMsPGOcc'
summary(object, level, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'sfMsPGOcc'
print(x, ...)
## S3 method for class 'sfMsPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class sfMsPGOcc.
level a quoted keyword that indicates the level to summarize the model results. Valid

key words are: "community", "species", or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
param parameter name for which to generate a traceplot. Valid names are "beta",

"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "lambda", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class sfMsPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a sfMsPGOcc object.
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summary.spIntPGOcc Methods for spIntPGOcc Object

Description

Methods for extracting information from fitted single-species spatial integrated occupancy (spIntPGOcc)
model.

Usage

## S3 method for class 'spIntPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'spIntPGOcc'
print(x, ...)
## S3 method for class 'spIntPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class spIntPGOcc.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"alpha", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class spIntPGOcc, including meth-
ods to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a spIntPGOcc object.
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summary.spMsPGOcc Methods for spMsPGOcc Object

Description

Methods for extracting information from fitted multi-species spatial occupancy (spMsPGOcc) model.

Usage

## S3 method for class 'spMsPGOcc'
summary(object, level, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'spMsPGOcc'
print(x, ...)
## S3 method for class 'spMsPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class spMsPGOcc.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class spMsPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a spMsPGOcc object.
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summary.spPGOcc Methods for spPGOcc Object

Description

Methods for extracting information from fitted single-species spatial occupancy (spPGOcc) model.

Usage

## S3 method for class 'spPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'spPGOcc'
print(x, ...)
## S3 method for class 'spPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class spPGOcc.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "alpha", "alpha.star", "sigma.sq.p", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class spPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a spPGOcc object.
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summary.stMsPGOcc Methods for stMsPGOcc Object

Description

Methods for extracting information from fitted multi-species, multi-season spatial occupancy (stMsPGOcc)
model.

Usage

## S3 method for class 'stMsPGOcc'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'stMsPGOcc'
print(x, ...)
## S3 method for class 'stMsPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class stMsPGOcc.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "lambda", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class stMsPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a stMsPGOcc object.
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summary.stPGOcc Methods for stPGOcc Object

Description

Methods for extracting information from fitted multi-season single-species spatial occupancy (stPGOcc)
model.

Usage

## S3 method for class 'stPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'stPGOcc'
print(x, ...)
## S3 method for class 'stPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class stPGOcc.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "alpha", "alpha.star", "sigma.sq.p", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class stPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a stPGOcc object.
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summary.svcMsPGOcc Methods for svcMsPGOcc Object

Description

Methods for extracting information from fitted multi-species spatially-varying coefficient occu-
pancy model.

Usage

## S3 method for class 'svcMsPGOcc'
summary(object, level, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'svcMsPGOcc'
print(x, ...)
## S3 method for class 'svcMsPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class svcMsPGOcc.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "lambda", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class svcMsPGOcc, including meth-
ods to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a svcMsPGOcc object.
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summary.svcPGBinom Methods for svcPGBinom Object

Description

Methods for extracting information from fitted single-species spatially-varying coefficient binomial
model (svcPGBinom).

Usage

## S3 method for class 'svcPGBinom'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'svcPGBinom'
print(x, ...)
## S3 method for class 'svcPGBinom'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class svcPGBinom.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class svcPGBinom, including meth-
ods to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a svcPGBinom object.
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summary.svcPGOcc Methods for svcPGOcc Object

Description

Methods for extracting information from fitted single-species spatially-varying coefficient occu-
pancy (svcPGOcc) model.

Usage

## S3 method for class 'svcPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'svcPGOcc'
print(x, ...)
## S3 method for class 'svcPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class svcPGOcc.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "alpha", "alpha.star", "sigma.sq.p", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class svcPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a svcPGOcc object.
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summary.svcTMsPGOcc Methods for svcTMsPGOcc Object

Description

Methods for extracting information from fitted multi-species, multi-season spatially-varying coeffi-
cient occupancy (svcTMsPGOcc) model.

Usage

## S3 method for class 'svcTMsPGOcc'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'svcTMsPGOcc'
print(x, ...)
## S3 method for class 'svcTMsPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class svcTMsPGOcc.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "lambda", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class svcTMsPGOcc, including meth-
ods to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a svcTMsPGOcc object.
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summary.svcTPGBinom Methods for svcTPGBinom Object

Description

Methods for extracting information from fitted multi-season single-species spatially-varying coeffi-
cient binomial model (svcTPGBinom).

Usage

## S3 method for class 'svcTPGBinom'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'svcTPGBinom'
print(x, ...)
## S3 method for class 'svcTPGBinom'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class svcTPGBinom.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class svcTPGBinom, including meth-
ods to the generic functions print, summary, plot.

Value

No return value, called to display summary information of a svcTPGBinom object.
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summary.svcTPGOcc Methods for svcTPGOcc Object

Description

Methods for extracting information from fitted multi-season single-species spatially-varying coeffi-
cient occupancy (svcTPGOcc) model.

Usage

## S3 method for class 'svcTPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'svcTPGOcc'
print(x, ...)
## S3 method for class 'svcTPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class svcTPGOcc.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "alpha", "alpha.star", "sigma.sq.p", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class svcTPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a svcTPGOcc object.
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summary.tMsPGOcc Methods for tMsPGOcc Object

Description

Methods for extracting information from fitted multi-species, multi-season occupancy (tMsPGOcc)
model.

Usage

## S3 method for class 'tMsPGOcc'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'tMsPGOcc'
print(x, ...)
## S3 method for class 'tMsPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class tMsPGOcc.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class tMsPGOcc, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a tMsPGOcc object.
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summary.tPGOcc Methods for tPGOcc Object

Description

Methods for extracting information from fitted multi-season single-species occupancy (tPGOcc)
model.

Usage

## S3 method for class 'tPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'tPGOcc'
print(x, ...)
## S3 method for class 'tPGOcc'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class tPGOcc.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.psi", "alpha", "alpha.star", "sigma.sq.p", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class tPGOcc, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a tPGOcc object.
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svcMsPGOcc Function for Fitting Multi-Species Spatially-Varying Coefficient Oc-
cupancy Models

Description

The function svcMsPGOcc fits multi-species spatially-varying coefficient occupancy models with
species correlations (i.e., a spatially-explicit joint species distribution model with imperfect detec-
tion). We use Polya-Gamma latent variables and a spatial factor modeling approach. Models are
implemented using a Nearest Neighbor Gaussian Process.

Usage

svcMsPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
svc.cols = 1, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', std.by.sp = FALSE,
n.factors, n.batch, batch.length,
accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Random intercepts are allowed using lme4 syn-
tax (Bates et al. 2015). Only right-hand side of formula is specified. See exam-
ple below.

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords, and range.ind. y is a three-dimensional array with first di-
mension equal to the number of species, second dimension equal to the number
of sites, and third dimension equal to the maximum number of replicates at a
given site. occ.covs is a matrix or data frame containing the variables used in
the occurrence portion of the model, with J rows for each column (variable).
det.covs is a list of variables included in the detection portion of the model.
Each list element is a different detection covariate, which can be site-level or
observational-level. Site-level covariates are specified as a vector of length J
while observation-level covariates are specified as a matrix or data frame with
the number of rows equal to J and number of columns equal to the maximum
number of replicates at a given site. coords is a J × 2 matrix of the observa-
tion coordinates. Note that spOccupancy assumes coordinates are specified in a
projected coordinate system. range.ind is a matrix with rows corresponding to
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species and columns corresponding to sites, with each element taking value 1 if
that site is within the range of the corresponding species and 0 if it is outside of
the range. This matrix is not required, but it can be helpful to restrict the mod-
eled area for each individual species to be within the realistic range of locations
for that species when estimating the model parameters. This is applicable when
auxiliary data sources are available on the realistic range of the species.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
z, phi, lambda, and nu. nu is only specified if cov.model = "matern", and
sigma.sq.psi and sigma.sq.p are only specified if random effects are in-
cluded in occ.formula or det.formula, respectively. The value portion of
each tag is the parameter’s initial value. See priors description for definition
of each parameter name. Additionally, the tag fix can be set to TRUE to fix the
starting values across all chains. If fix is not specified (the default), starting
values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.psi, sigma.sq.p,
phi.unif, and nu.unif. Community-level occurrence (beta.comm) and detec-
tion (alpha.comm) regression coefficients are assumed to follow a normal dis-
tribution. The hyperparameters of the normal distribution are passed as a list
of length two with the first and second elements corresponding to the mean and
variance of the normal distribution, which are each specified as vectors of length
equal to the number of coefficients to be estimated or of length one if priors are
the same for all coefficients. If not specified, prior means are set to 0 and prior
variances set to 2.72. By default, community-level variance parameters for oc-
cupancy (tau.sq.beta) and detection (tau.sq.alpha) are assumed to follow
an inverse Gamma distribution. The hyperparameters of the inverse gamma dis-
tribution are passed as a list of length two with the first and second elements
corresponding to the shape and scale parameters, which are each specified as
vectors of length equal to the number of coefficients to be estimated or a sin-
gle value if priors are the same for all parameters. If not specified, prior shape
and scale parameters are set to 0.1. The spatial factor model fits n.factors
independent spatial processes for each spatially-varying coefficient specified in
svc.cols. The spatial decay phi and smoothness nu parameters for each latent
factor are assumed to follow Uniform distributions. The hyperparameters of the
Uniform are passed as a list with two elements, with both elements being vec-
tors of length n.factors * length(svc.cols) corresponding to the lower and
upper support, respectively, or as a single value if the same value is assigned for
all factor/SVC combinations. The priors for the factor loadings matrix lambda
for each SVC are fixed following the standard spatial factor model to ensure pa-
rameter identifiability (Christensen and Amemlya 2002). The upper triangular
elements of the N x n.factors matrix are fixed at 0 and the diagonal elements
are fixed at 1 for each SVC. The lower triangular elements are assigned a stan-
dard normal prior (i.e., mean 0 and variance 1). sigma.sq.psi and sigma.sq.p
are the random effect variances for any occurrence or detection random effects,
respectively, and are assumed to follow an inverse Gamma distribution. The hy-
perparameters of the inverse-Gamma distribution are passed as a list of length
two with first and second elements corresponding to the shape and scale pa-
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rameters, respectively, which are each specified as vectors of length equal to
the number of random intercepts or of length one if priors are the same for all
random effect variances.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the adaptive
sampler. We assume the initial variance of the adaptive sampler is the same
for each species, although the adaptive sampler will adjust the tuning variances
separately for each species. See Roberts and Rosenthal (2009) for details.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the inter-
cept if specified), or it can be specified as a character vector with names corre-
sponding to variable names in occ.covs (for the intercept, use '(Intercept)').
svc.cols default argument of 1 results in a spatial occupancy model analogous
to sfMsPGOcc (assuming an intercept is included in the model).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. Only NNGP
= TRUE is currently supported.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

std.by.sp a logical value indicating whether the covariates are standardized separately
for each species within the corresponding range for each species (TRUE) or not
(FALSE). Note that if range.ind is specified in data.list, this will result in
the covariates being standardized differently for each species based on the sites
where range.ind == 1 for that given species. If range.ind is not specified and
std.by.sp = TRUE, this will simply be equivalent to standardizing the covari-
ates across all locations prior to fitting the model. Note that the covariates in
occ.formula should still be standardized across all locations. This can be done
either outside the function, or can be done by specifying scale() in the model
formula around the continuous covariates.

n.factors the number of factors to use in the spatial factor model approach. Note this
corresponds to the number of factors used for each spatially-varying coefficient
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that is estimated in the model. Typically, the number of factors is set to be small
(e.g., 4-5) relative to the total number of species in the community, which will
lead to substantial decreases in computation time. However, the value can be
anywhere between 1 and N (the number of species in the community).

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class svcMsPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.
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theta.samples a coda object of posterior samples for the species level correlation parameters
for each spatially-varying coefficient.

lambda.samples a coda object of posterior samples for the latent spatial factor loadings for each
spatially-varying coefficient.

z.samples a three-dimensional array of posterior samples for the latent occurrence values
for each species.

psi.samples a three-dimensional array of posterior samples for the latent occupancy proba-
bility values for each species.

w.samples a four-dimensional array of posterior samples for the latent spatial random ef-
fects for each spatial factor within each spatially-varying coefficient. Dimen-
sions correspond to MCMC sample, factor, site, and spatially-varying coeffi-
cient.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)

# Simulate Data -----------------------------------------------------------
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- sample(5, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.2, 0.3, -0.1, 0.4)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 0.4, 0.5, 0.3)
# Detection
alpha.mean <- c(0, 1.2, -0.5)
tau.sq.alpha <- c(1, 0.5, 1.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list(levels = 15,

sigma.sq.psi = 0.7)
p.RE <- list(levels = 20,

sigma.sq.p = 0.5)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924
https://doi.org/10.18637/jss.v067.i01


244 svcMsPGOcc

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
# Number of spatial factors for each SVC
n.factors <- 2
# The intercept and first two covariates have spatially-varying effects
svc.cols <- c(1, 2, 3)
p.svc <- length(svc.cols)
q.p.svc <- n.factors * p.svc
# Spatial decay parameters
phi <- runif(q.p.svc, 3 / 0.9, 3 / 0.1)
# A length N vector indicating the proportion of simulated locations
# that are within the range for a given species.
range.probs <- runif(N, 0.4, 1)
factor.model <- TRUE
cov.model <- 'spherical'
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, phi = phi, sp = sp, svc.cols = svc.cols,
cov.model = cov.model, n.factors = n.factors,
factor.model = factor.model, range.probs = range.probs)

y <- dat$y
X <- dat$X
X.re <- dat$X.re
X.p <- dat$X.p
X.p.re <- dat$X.p.re
coords <- dat$coords
range.ind <- dat$range.ind

# Prep data for spOccupancy -----------------------------------------------
# Occurrence covariates
occ.covs <- cbind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2', 'occ.cov.3',

'occ.cov.4', 'occ.factor.1')
# Detection covariates
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3],
det.factor.1 = X.p.re[, , 1])

# Data list
data.list <- list(y = y, coords = coords, occ.covs = occ.covs,

det.covs = det.covs, range.ind = range.ind)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3 / 1, b = 3 / .1))

inits.list <- list(alpha.comm = 0,
beta.comm = 0,
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beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
z = apply(y, c(1, 2), max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)

# Number of batches
n.batch <- 2
# Batch length
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.samples <- n.batch * batch.length

out <- svcMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2 + occ.cov.3 +
occ.cov.4 + (1 | occ.factor.1),

det.formula = ~ det.cov.1 + det.cov.2 + (1 | det.factor.1),
data = data.list,
inits = inits.list,
n.batch = n.batch,
n.factors = n.factors,
batch.length = batch.length,
std.by.sp = TRUE,
accept.rate = 0.43,
priors = prior.list,
svc.cols = svc.cols,
cov.model = "spherical",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary(out)

svcPGBinom Function for Fitting Single-Species Spatially-Varying Coefficient Bi-
nomial Models Using Polya-Gamma Latent Variables

Description

The function svcPGBinom fits single-species spatially-varying coefficient binomial models using
Polya-Gamma latent variables. Models are fit using Nearest Neighbor Gaussian Processes.
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Usage

svcPGBinom(formula, data, inits, priors, tuning, svc.cols = 1,
cov.model = "exponential", NNGP = TRUE,
n.neighbors = 15, search.type = "cb", n.batch,
batch.length, accept.rate = 0.43,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)

Arguments

formula a symbolic description of the model to be fit using R’s model syntax. Only right-
hand side of formula is specified. See example below. Random intercepts are
allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, weights,
and coords. y is a numeric vector containing the binomial data with length equal
to the total number of sites (J). covs is a matrix or data frame containing the
covariates used in the model, with J rows for each column (variable). weights
is a numeric vector containing the binomial weights (i.e., the total number of
Bernoulli trials) at each site. If weights is not specified, svcPGBinom assumes 1
trial at each site (i.e., presence/absence). coords is a J × 2 matrix of the obser-
vation coordinates. Note that spOccupancy assumes coordinates are specified
in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are beta,
sigma.sq, phi, w, nu, and sigma.sq.psi. nu is only specified if cov.model
= "matern", and sigma.sq.psi is only specified if there are random effects in
formula. The value portion of each tag is the parameter’s initial value. See
priors description for definition of each parameter name. Additionally, the tag
fix can be set to TRUE to fix the starting values across all chains. If fix is not
specified (the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
phi.unif, sigma.sq.ig, sigma.sq.unif, nu.unif, and sigma.sq.psi.ig.
Regression coefficients (beta) are assumed to follow a normal distribution. The
hyperparameters of the normal distribution are passed as a list of length two
with the first and second elements corresponding to the mean and variance of
the normal distribution, which are each specified as vectors of length equal to
the number of coefficients to be estimated or of length one if priors are the same
for all coefficients. If not specified, prior means are set to 0 and prior variances
set to 2.73. The spatial variance parameter, sigma.sq, for each spatially-varying
coefficient is assumed to follow an inverse-Gamma distribution or a uniform dis-
tribution (default is inverse-Gamma). The spatial decay phi and smoothness nu
parameters are assumed to follow Uniform distributions. The hyperparameters
of the inverse-Gamma for sigma.sq are passed as a list with two elements cor-
responding to the shape and scale parametters, respetively, with each element
comprised of a vector equal to the number of spatially-varying coefficients to
be estimated or of length one if priors are the same for all coefficients. The
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hyperparameters of any uniform priors are also passed as a list of length two
with the first and second elements corresponding to the lower and upper sup-
port, respectively, which can be passed as a vector equal to the total number of
spatially-varying coefficients to be estimated or of length one if priors are the
same for all coefficients. sigma.sq.psi are the random effect variances for any
random effects, respectively, and are assumed to follow an inverse-Gamma dis-
tribution. The hyperparameters of the inverse-Gamma distribution are passed as
a list of length two with the first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the intercept
if specified), or it can be specified as a character vector with names correspond-
ing to variable names in covs (for the intercept, use '(Intercept)').

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name. Valid tags are phi,
sigma.sq, and nu. The value portion of each tag defines the initial variance of
the Adaptive sampler. See Roberts and Rosenthal (2009) for details.

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
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hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

n.burn the number of samples out of the total n.batch * batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of MCMC chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class svcPGBinom that is a list comprised of:

beta.samples a coda object of posterior samples for the regression coefficients.

y.rep.samples a coda object of posterior samples for the fitted data values

psi.samples a coda object of posterior samples for the occurrence probability values

theta.samples a coda object of posterior samples for spatial covariance parameters.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for all spatially-varying coefficients. Dimensions correspond to MCMC
sample, coefficient, and sites.

sigma.sq.psi.samples

a coda object of posterior samples for variances of unstructured random inter-
cepts included in the model. Only included if random intercepts are specified in
formula.
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beta.star.samples

a coda object of posterior samples for the unstructured random effects. Only
included if random intercepts are specified in formula.

like.samples a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().
k.fold.deviance

soring rule (deviance) from k-fold cross-validation. Only included if k.fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(1000)
# Sites
J.x <- 10
J.y <- 10
J <- J.x * J.y
# Binomial weights
weights <- sample(10, J, replace = TRUE)
beta <- c(0, 0.5, -0.2, 0.75)

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924
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p <- length(beta)
# No unstructured random effects
psi.RE <- list()
# Spatial parameters
sp <- TRUE
# Two spatially-varying covariates.
svc.cols <- c(1, 2)
p.svc <- length(svc.cols)
cov.model <- "exponential"
sigma.sq <- runif(p.svc, 0.4, 1.5)
phi <- runif(p.svc, 3/1, 3/0.2)

# Simulate the data
dat <- simBinom(J.x = J.x, J.y = J.y, weights = weights, beta = beta,

psi.RE = psi.RE, sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi)

# Binomial data
y <- dat$y
# Covariates
X <- dat$X
# Spatial coordinates
coords <- dat$coords

# Package all data into a list
# Covariates
covs <- cbind(X)
colnames(covs) <- c('int', 'cov.1', 'cov.2', 'cov.3')

# Data list bundle
data.list <- list(y = y,

covs = covs,
coords = coords,
weights = weights)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

sigma.sq.ig = list(a = 2, b = 1),
phi.unif = list(a = 3 / 1, b = 3 / 0.1))

# Starting values
inits.list <- list(beta = 0, alpha = 0,

sigma.sq = 1, phi = phi)
# Tuning
tuning.list <- list(phi = 1)

n.batch <- 10
batch.length <- 25
n.burn <- 100
n.thin <- 1

out <- svcPGBinom(formula = ~ cov.1 + cov.2 + cov.3,
svc.cols = c(1, 2),
data = data.list,
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n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.report = 2,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary(out)

svcPGOcc Function for Fitting Single-Species Spatially-Varying Coefficient Oc-
cupancy Models Using Polya-Gamma Latent Variables

Description

The function svcPGOcc fits single-species spatially-varying coefficient occupancy models using
Polya-Gamma latent variables. Models are fit using Nearest Neighbor Gaussian Processes.

Usage

svcPGOcc(occ.formula, det.formula, data, inits, priors,
tuning, svc.cols = 1, cov.model = "exponential", NNGP = TRUE,
n.neighbors = 15, search.type = "cb", n.batch,
batch.length, accept.rate = 0.43,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).
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data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords, and grid.index. y is the detection-nondetection data ma-
trix or data frame with first dimension equal to the number of sites (J) and
second dimension equal to the maximum number of replicates at a given site.
occ.covs is a matrix or data frame containing the variables used in the occu-
pancy portion of the model, with J rows for each column (variable). det.covs
is a list of variables included in the detection portion of the model. Each list el-
ement is a different detection covariate, which can be site-level or observational-
level. Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates at
a given site. coords is a matrix of the observation coordinates used to estimate
the spatial random effect for each site. coords has two columns for the easting
and northing coordinate, respectively. Typically, each site in the data set will
have it’s own coordinate, such that coords is a J × 2 matrix and grid.index
should not be specified. If you desire to estimate the SVCs at some larger spa-
tial level, e.g., if points fall within grid cells and you want to estimate SVCs for
each grid cell instead of each point, coords can be specified as the coordinate
for each grid cell. In such a case, grid.index is an indexing vector of length
J, where each value of grid.index indicates the corresponding row in coords
that the given site corresponds to. Note that spOccupancy assumes coordinates
are specified in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.p. nu is only specified
if cov.model = "matern", sigma.sq.p is only specified if there are random ef-
fects in det.formula, and sigma.sq.psi is only specified if there are random
effects in occ.formula. The value portion of each tag is the parameter’s initial
value. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, phi.unif, sigma.sq.ig, sigma.sq.unif, nu.unif, sigma.sq.psi.ig,
and sigma.sq.p.ig. Occurrence (beta) and detection (alpha) regression coef-
ficients are assumed to follow a normal distribution. The hyperparameters of the
normal distribution are passed as a list of length two with the first and second ele-
ments corresponding to the mean and variance of the normal distribution, which
are each specified as vectors of length equal to the number of coefficients to be
estimated or of length one if priors are the same for all coefficients. If not speci-
fied, prior means are set to 0 and prior variances set to 2.73. The spatial variance
parameter, sigma.sq, is assumed to follow an inverse-Gamma distribution or
a uniform distribution (default is inverse-Gamma). The spatial decay phi and
smoothness nu parameters are assumed to follow Uniform distributions. The hy-
perparameters of the inverse-Gamma for sigma.sq are passed as a list with two
elements corresponding to the shape and scale parameters, respetively, with each
element comprised of a vector equal to the number of spatially-varying coeffi-
cients to be estimated or of length one if priors are the same for all coefficients.
The hyperparameters of any uniform priors are also passed as a list of length
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two with the first and second elements corresponding to the lower and upper
support, respectively, which can be passed as a vector equal to the total number
of spatially-varying coefficients to be estimated or of length one if priors are the
same for all coefficients. sigma.sq.psi and sigma.sq.p are the random effect
variances for any occurrence or detection random effects, respectively, and are
assumed to follow an inverse-Gamma distribution. The hyperparameters of the
inverse-Gamma distribution are passed as a list of length two with the first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the inter-
cept if specified), or it can be specified as a character vector with names corre-
sponding to variable names in occ.covs (for the intercept, use '(Intercept)').
svc.cols default argument of 1 results in a spatial occupancy model analogous
to spPGOcc (assuming an intercept is included in the model).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name. Valid tags are phi, nu,
and sigma.sq. The value portion of each tag defines the initial variance of the
Adaptive sampler. See Roberts and Rosenthal (2009) for details.

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. Only NNGP
= TRUE is currently supported for spatially-varying coefficient models.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.
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n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

n.burn the number of samples out of the total n.batch * batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of MCMC chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class svcPGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occurrence regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

z.samples a coda object of posterior samples for the latent occurrence values

psi.samples a coda object of posterior samples for the latent occurrence probability values

theta.samples a coda object of posterior samples for spatial covariance parameters.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for all spatially-varying coefficients. Dimensions correspond to MCMC
sample, coefficient, and sites.



svcPGOcc 255

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

like.samples a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().
k.fold.deviance

soring rule (deviance) from k-fold cross-validation. Only included if k.fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability values are not included in the model object, but can be
extracted using fitted().

Author(s)
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Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Examples

set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, 2)
p.occ <- length(beta)
alpha <- c(0, 1)
p.det <- length(alpha)
phi <- c(3 / .6, 3 / .8)
sigma.sq <- c(1.2, 0.7)
svc.cols <- c(1, 2)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential',
svc.cols = svc.cols)

# Detection-nondetection data
y <- dat$y
# Occupancy covariates
X <- dat$X
# Detection covarites
X.p <- dat$X.p
# Spatial coordinates
coords <- dat$coords

# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2])
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.iter <- n.batch * batch.length
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.ig = list(a = 2, b = 1),
phi.unif = list(a = 3/1, b = 3/.1))

# Initial values
inits.list <- list(alpha = 0, beta = 0,

phi = 3 / .5,
sigma.sq = 2,



svcTMsPGOcc 257

w = matrix(0, nrow = length(svc.cols), ncol = nrow(X)),
z = apply(y, 1, max, na.rm = TRUE))

# Tuning
tuning.list <- list(phi = 1)

out <- svcPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = 'exponential',
svc.cols = c(1, 2),
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1)

summary(out)

svcTMsPGOcc Function for Fitting Multi-Species Multi-Season Spatially-Varying
Coefficient Occupancy Models

Description

The function svcTMsPGOcc fits multi-species multi-season spatially-varying coefficient occupancy
models with species correlations (i.e., a spatially-explicit joint species distribution model with im-
perfect detection). We use Polya-Gamma latent variables and a spatial factor modeling approach.
Models are implemented using a Nearest Neighbor Gaussian Process.

Usage

svcTMsPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
svc.cols = 1, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', std.by.sp = FALSE,
n.factors, svc.by.sp, n.batch, batch.length,
accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)
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Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Random intercepts are allowed using lme4 syn-
tax (Bates et al. 2015). Only right-hand side of formula is specified. See exam-
ple below.

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords, range.ind, and grid.index. y is a four-dimensional array
with first dimension equal to the number of species, second dimension equal to
the number of sites, third dimension equal to the number of primary time peri-
ods, and fourth dimension equal to the maximum number of secondary replicates
at a given site. occ.covs is a list of variables included in the occurrence portion
of the model. Each list element is a different occurrence covariate, which can be
site level or site/primary time period level. Site-level covariates are specified as
a vector of length J while site/primary time period level covariates are specified
as a matrix with rows corresponding to sites and columns correspond to primary
time periods. Similarly, det.covs is a list of variables included in the detection
portion of the model, with each list element corresponding to an individual vari-
able. In addition to site-level and/or site/primary time period-level, detection co-
variates can also be observational-level. Observation-level covariates are spec-
ified as a three-dimensional array with first dimension corresponding to sites,
second dimension corresponding to primary time period, and third dimension
corresponding to replicate. coords is a matrix of the observation coordinates
used to estimate the SVCs for each site. coords has two columns for the easting
and northing coordinate, respectively. Typically, each site in the data set will
have it’s own coordinate, such that coords is a J × 2 matrix and grid.index
should not be specified. If you desire to estimate SVCs at some larger spatial
level, e.g., if points fall within grid cells and you want to estimate an SVC for
each grid cell instead of each point, coords can be specified as the coordinate
for each grid cell. In such a case, grid.index is an indexing vector of length
J, where each value of grid.index indicates the corresponding row in coords
that the given site corresponds to. Note that spOccupancy assumes coordinates
are specified in a projected coordinate system. range.ind is a matrix with rows
corresponding to species and columns corresponding to sites, with each element
taking value 1 if that site is within the range of the corresponding species and
0 if it is outside of the range. This matrix is not required, but it can be helpful
to restrict the modeled area for each individual species to be within the realistic
range of locations for that species when estimating the model parameters. This
is applicable when auxiliary data sources are available on the realistic range of
the species.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
z, phi, lambda, nu, sigma.sq.t, and rho. nu is only specified if cov.model =
"matern", sigma.sq.t and rho are only specified if ar1 = TRUE, and sigma.sq.psi
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and sigma.sq.p are only specified if random effects are included in occ.formula
or det.formula, respectively. The value portion of each tag is the parameter’s
initial value. See priors description for definition of each parameter name.
Additionally, the tag fix can be set to TRUE to fix the starting values across all
chains. If fix is not specified (the default), starting values are varied randomly
across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.psi, sigma.sq.p,
phi.unif, nu.unif, sigma.sq.t.ig, and rho.unif. Community-level occur-
rence (beta.comm) and detection (alpha.comm) regression coefficients are as-
sumed to follow a normal distribution. The hyperparameters of the normal dis-
tribution are passed as a list of length two with the first and second elements
corresponding to the mean and variance of the normal distribution, which are
each specified as vectors of length equal to the number of coefficients to be
estimated or of length one if priors are the same for all coefficients. If not
specified, prior means are set to 0 and prior variances set to 2.73. By default,
community-level variance parameters for occupancy (tau.sq.beta) and detec-
tion (tau.sq.alpha) are assumed to follow an inverse Gamma distribution. The
hyperparameters of the inverse gamma distribution are passed as a list of length
two with the first and second elements corresponding to the shape and scale
parameters, which are each specified as vectors of length equal to the number
of coefficients to be estimated or a single value if priors are the same for all
parameters. If not specified, prior shape and scale parameters are set to 0.1.
If desired, the species-specific occupancy coefficients (beta) and/or detection
coefficients (alpha) can also be estimated indepdendently by specifying the
tag independent.betas = TRUE and/or independent.alphas = TRUE, respec-
tively. If specified, this will not estimate species-specific coefficients as random
effects from a common-community-level distribution, and rather the values of
beta.comm/alpha.comm and tau.sq.beta/tau.sq.alpha will be fixed at the
specified initial values. This is equivalent to specifying a Gaussian, indepen-
dent prior for each of the species-specific effects. The spatial factor model fits
n.factors independent spatial processes for each spatially-varying coefficient
specified in svc.cols. The spatial decay phi and smoothness nu parameters
for each latent factor are assumed to follow Uniform distributions. The hyper-
parameters of the Uniform are passed as a list with two elements, with both
elements being vectors of length n.factors * length(svc.cols) correspond-
ing to the lower and upper support, respectively, or as a single value if the same
value is assigned for all factor/SVC combinations. The priors for the factor load-
ings matrix lambda for each SVC are fixed following the standard spatial factor
model to ensure parameter identifiability (Christensen and Amemlya 2002). The
upper triangular elements of the N x n.factors matrix are fixed at 0 and the di-
agonal elements are fixed at 1 for each SVC. The lower triangular elements are
assigned a standard normal prior (i.e., mean 0 and variance 1). sigma.sq.psi
and sigma.sq.p are the random effect variances for any occurrence or detec-
tion random effects, respectively, and are assumed to follow an inverse Gamma
distribution. The hyperparameters of the inverse-Gamma distribution are passed
as a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
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equal to the number of random intercepts or of length one if priors are the same
for all random effect variances. sigma.sq.t and rho are the AR(1) variance
and correlation parameters for the AR(1) zero-mean temporal random effects,
respectively. sigma.sq.t is assumed to follow an inverse-Gamma distribution,
where the hyperparameters are specified as a list of length two with the first and
second elements corresponding to the shape and scale parameters, respectively,
which can each be specified as vector equal to the number of species in the
model or a single value if the same prior is used for all species. rho is assumed
to follow a uniform distribution, where the hyperparameters are specified simi-
larly as a list of length two with the first and second elements corresponding to
the lower and upper bounds of the uniform prior, which can each be specified as
vector equal to the number of species in the model or a single value if the same
prior is used for all species.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi, nu,
and rho. The value portion of each tag defines the initial variance of the adaptive
sampler. We assume the initial variance of the adaptive sampler is the same
for each species, although the adaptive sampler will adjust the tuning variances
separately for each species. See Roberts and Rosenthal (2009) for details.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the inter-
cept if specified), or it can be specified as a character vector with names cor-
responding to variable names in occ.covs (for the intercept, use ’(Intercept)’).
svc.cols default argument of 1 results in a spatial occupancy model analogous
to sfMsPGOcc (assuming an intercept is included in the model).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. Only NNGP
= TRUE is currently supported.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

std.by.sp a logical value indicating whether the covariates are standardized separately
for each species within the corresponding range for each species (TRUE) or not
(FALSE). Note that if range.ind is specified in data.list, this will result in
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the covariates being standardized differently for each species based on the sites
where range.ind == 1 for that given species. If range.ind is not specified and
std.by.sp = TRUE, this will simply be equivalent to standardizing the covari-
ates across all locations prior to fitting the model. Note that the covariates in
occ.formula should still be standardized across all locations. This can be done
either outside the function, or can be done by specifying scale() in the model
formula around the continuous covariates.

n.factors the number of factors to use in the spatial factor model approach. Note this
corresponds to the number of factors used for each spatially-varying coefficient
that is estimated in the model. Typically, the number of factors is set to be small
(e.g., 4-5) relative to the total number of species in the community, which will
lead to substantial decreases in computation time. However, the value can be
anywhere between 1 and N (the number of species in the community).

svc.by.sp an optional list with length equal to length(svc.cols). Each element of the list
should be a logical vector of length N (number of species) where each element
is TRUE, which indicates the SVC should be estimated for that species, or 0,
which indicates the SVC should be set to 0 and no SVC for that parameter will be
estimated. Note the first n.factors SVCs for all spatially-varying coefficients
must be set to TRUE. By default, SVCs are modeled for all species.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

ar1 logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments
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Value

An object of class svcTMsPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

theta.samples a coda object of posterior samples for the species level correlation parameters
for each spatially-varying coefficient and the temporal autocorrelation parame-
ters for each species when ar1 = TRUE.

lambda.samples a coda object of posterior samples for the latent spatial factor loadings for each
spatially-varying coefficient.

z.samples a four-dimensional array of posterior samples for the latent occurrence values
for each species. Dimensions corresopnd to MCMC sample, species, site, and
primary time period.

psi.samples a four-dimensional array of posterior samples for the latent occupancy probabil-
ity values for each species. Dimensions correspond to MCMC sample, species,
site, and primary time period.

w.samples a four-dimensional array of posterior samples for the latent spatial random ef-
fects for each spatial factor within each spatially-varying coefficient. Dimen-
sions correspond to MCMC sample, factor, site, and spatially-varying coeffi-
cient.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.
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alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

like.samples a four-dimensional array of posterior samples for the likelihood value used for
calculating WAIC. Dimensions correspond to MCMC sample, species, site, and
time period.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, doi:10.1080/01621459.2015.1044091.

Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Effi-
cient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational
and Graphical Statistics, doi:10.1080/10618600.2018.1537924.

Finley, A. O., Datta, A., and Banerjee, S. (2020). spNNGP R package for nearest neighbor Gaussian
process models. arXiv preprint arXiv:2001.09111.

Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using
Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.

Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists.
Ecological Monographs, 85(1), 3-28.

Christensen, W. F., and Amemiya, Y. (2002). Latent variable analysis of multivariate spatial data.
Journal of the American Statistical Association, 97(457), 302-317.

https://repositories.lib.utexas.edu/handle/2152/21842
https://repositories.lib.utexas.edu/handle/2152/21842
https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924
https://doi.org/10.18637/jss.v067.i01


264 svcTMsPGOcc

Examples

# Simulate Data -----------------------------------------------------------
set.seed(500)
J.x <- 8
J.y <- 8
J <- J.x * J.y
# Years sampled
n.time <- sample(3:10, J, replace = TRUE)
# n.time <- rep(10, J)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(2:4, n.time[j], replace = TRUE)
}
N <- 7
# Community-level covariate effects
# Occurrence
beta.mean <- c(-3, -0.2, 0.5)
trend <- FALSE
sp.only <- 0
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 1.4)
# Detection
alpha.mean <- c(0, 1.2, -1.5)
tau.sq.alpha <- c(1, 0.5, 2.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- TRUE
svc.cols <- c(1, 2)
p.svc <- length(svc.cols)
n.factors <- 3
phi <- runif(p.svc * n.factors, 3 / .9, 3 / .3)
factor.model <- TRUE
cov.model <- 'exponential'

dat <- simTMsOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep, N = N,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, factor.model = factor.model,
svc.cols = svc.cols, n.factors = n.factors, phi = phi, sp = sp,
cov.model = cov.model)
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y <- dat$y
X <- dat$X
X.p <- dat$X.p
coords <- dat$coords
X.re <- dat$X.re
X.p.re <- dat$X.p.re

occ.covs <- list(occ.cov.1 = X[, , 2],
occ.cov.2 = X[, , 3])

det.covs <- list(det.cov.1 = X.p[, , , 2],
det.cov.2 = X.p[, , , 3])

data.list <- list(y = y, occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3 / .9, b = 3 / .1))

z.init <- apply(y, c(1, 2, 3), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, tau.sq.beta = 1, tau.sq.alpha = 1,
phi = 3 / .5, z = z.init)

# Tuning
tuning.list <- list(phi = 1)

# Number of batches
n.batch <- 5
# Batch length
batch.length <- 25
n.burn <- 25
n.thin <- 1
n.samples <- n.batch * batch.length

out <- svcTMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
NNGP = TRUE,
n.neighbors = 5,
n.factors = n.factors,
svc.cols = svc.cols,
cov.model = 'exponential',
priors = prior.list,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
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n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary(out)

svcTPGBinom Function for Fitting Multi-Season Single-Species Spatially-Varying
Coefficient Binomial Models Using Polya-Gamma Latent Variables

Description

The function svcTPGBinom fits multi-season single-species spatially-varying coefficient binomial
models using Polya-Gamma latent variables. Models are fit using Nearest Neighbor Gaussian Pro-
cesses.

Usage

svcTPGBinom(formula, data, inits, priors,
tuning, svc.cols = 1, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)

Arguments

formula a symbolic description of the model to be fit using R’s model syntax. Only right-
hand side of formula is specified. See example below. Random intercepts are
allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, weights,
and coords. y is a two-dimensional array with the rows corresponding to the
number of sites (J) and columns corresponding to the maximum number of pri-
mary time periods (i.e., years or seasons). covs is a list of variables included in
the occurrence portion of the model. Each list element is a different occurrence
covariate, which can be site level or site/primary time period level. Site-level
covariates are specified as a vector of length J while site/primary time period
level covariates are specified as a matrix with rows corresponding to sites and
columns correspond to primary time periods. weights is a site by time period
matrix containing the binomial weights (i.e., the total number of Bernoulli trials)
at each site/time period combination. Note that missing values are allowed and
should be specified as NA. coords is a J × 2 matrix of the observation coordi-
nates. Note that spOccupancy assumes coordinates are specified in a projected
coordinate system.
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inits a list with each tag corresponding to a parameter name. Valid tags are beta,
sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.t, and rho. nu is only speci-
fied if cov.model = "matern", and sigma.sq.psi is only specified if there are
random effects in formula. sigma.sq.t and rho are only relevant when ar1 =
TRUE. The value portion of each tag is the parameter’s initial value. See priors
description for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
phi.unif, sigma.sq.ig, sigma.sq.unif, nu.unif, sigma.sq.psi.ig, sigma.sq.t.ig,
and rho.unif. Regression coefficients (beta) are assumed to follow a normal
distribution. The hyperparameters of the normal distribution are passed as a
list of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if
priors are the same for all coefficients. If not specified, prior means are set to
0 and prior variances set to 2.73. The spatial variance parameter, sigma.sq,
for each spatially-varying coefficient is assumed to follow an inverse-Gamma
distribution or a uniform distribution (default is inverse-Gamma). The spatial
decay phi and smoothness nu parameters are assumed to follow Uniform distri-
butions. The hyperparameters of the inverse-Gamma for sigma.sq are passed
as a list with two elements corresponding to the shape and scale parametters,
respetively, with each element comprised of a vector equal to the number of
spatially-varying coefficients to be estimated or of length one if priors are the
same for all coefficients. The hyperparameters of any uniform priors are also
passed as a list of length two with the first and second elements corresponding to
the lower and upper support, respectively, which can be passed as a vector equal
to the total number of spatially-varying coefficients to be estimated or of length
one if priors are the same for all coefficients. sigma.sq.psi are the random
effect variances for any random effects, respectively, and are assumed to follow
an inverse-Gamma distribution. The hyperparameters of the inverse-Gamma
distribution are passed as a list of length two with the first and second elements
corresponding to the shape and scale parameters, respectively, which are each
specified as vectors of length equal to the number of random intercepts or of
length one if priors are the same for all random effect variances. sigma.sq.t
and rho are the AR(1) variance and correlation parameters for the AR(1) zero-
mean temporal random effects, respectively. sigma.sq.t is assumed to follow
an inverse-Gamma distribution, where the hyperparameters are specified as a
vector with elements corresponding to the shape and scale parameters, respec-
tively. rho is assumed to follow a uniform distribution, where the hyperparam-
eters are specified in a vector of length two with elements corresponding to the
lower and upper bounds of the uniform prior.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the intercept
if specified), or it can be specified as a character vector with names correspond-
ing to variable names in covs (for the intercept, use ’(Intercept)’).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
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dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name. Valid tags are phi,
sigma.sq, nu, and rho. The value portion of each tag defines the initial variance
of the Adaptive sampler. See Roberts and Rosenthal (2009) for details.

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. Currently,
only NNGP = TRUE is supported for multi-season occupancy models.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

ar1 logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

n.burn the number of samples out of the total n.batch * batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.
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n.chains the number of MCMC chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scoring
rule, we use the model deviance as described in Hooten and Hobbs (2015). For
cross-validation in multi-season models, the data are split along the site dimen-
sion, such that each hold-out data set consists of a J / k.fold sites sampled
over all primary time periods during which data are available at each given site.
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class svcTPGBinom that is a list comprised of:

beta.samples a coda object of posterior samples for the regression coefficients.

y.rep.samples a three-dimensional array of posterior samples for the fitted data values, with
dimensions corresponding to posterior sample, site, and primary time period.

psi.samples a three-dimensional array of posterior samples for the occurrence probability
values, with dimensions corresponding to posterior sample, site, and primary
time period.

theta.samples a coda object of posterior samples for spatial covariance parameters and tempo-
ral covariance parameters if ar1 = TRUE.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for all spatially-varying coefficients. Dimensions correspond to MCMC
sample, coefficient, and sites.

sigma.sq.psi.samples

a coda object of posterior samples for variances of unstructured random inter-
cepts included in the model. Only included if random intercepts are specified in
formula.

beta.star.samples

a coda object of posterior samples for the unstructured random effects. Only
included if random intercepts are specified in formula.
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eta.samples a coda object of posterior samples for the AR(1) random effects for each primary
time period. Only included if ar1 = TRUE.

like.samples a three-dimensional array of posterior samples for the likelihood values associ-
ated with each site and primary time period. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().
k.fold.deviance

soring rule (deviance) from k-fold cross-validation. Only included if k.fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that if k.fold.only = TRUE, the return list object will only contain run.time and
k.fold.deviance

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(1000)
# Sites
J.x <- 15
J.y <- 15
J <- J.x * J.y
# Years sampled
n.time <- sample(10, J, replace = TRUE)
# Binomial weights

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1080/01621459.2015.1044091
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weights <- matrix(NA, J, max(n.time))
for (j in 1:J) {

weights[j, 1:n.time[j]] <- sample(5, n.time[j], replace = TRUE)
}
# Occurrence --------------------------
beta <- c(-2, -0.5, -0.2, 0.75)
p.occ <- length(beta)
trend <- TRUE
sp.only <- 0
psi.RE <- list()
# Spatial parameters ------------------
sp <- TRUE
svc.cols <- c(1, 2, 3)
p.svc <- length(svc.cols)
cov.model <- "exponential"
sigma.sq <- runif(p.svc, 0.1, 1)
phi <- runif(p.svc, 3/1, 3/0.2)
# Temporal parameters -----------------
ar1 <- TRUE
rho <- 0.8
sigma.sq.t <- 1

# Get all the data
dat <- simTBinom(J.x = J.x, J.y = J.y, n.time = n.time, weights = weights, beta = beta,

psi.RE = psi.RE, sp.only = sp.only, trend = trend,
sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
rho = rho, sigma.sq.t = sigma.sq.t, ar1 = TRUE, x.positive = FALSE)

# Prep the data for spOccupancy -------------------------------------------
y <- dat$y
X <- dat$X
X.re <- dat$X.re
coords <- dat$coords

# Package all data into a list
covs <- list(int = X[, , 1],

trend = X[, , 2],
cov.1 = X[, , 3],
cov.2 = X[, , 4])

# Data list bundle
data.list <- list(y = y,

covs = covs,
weights = weights,
coords = coords)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

sigma.sq.ig = list(a = 2, b = 1),
phi.unif = list(a = 3/1, b = 3/.1),
sigma.sq.t.ig = c(2, 0.5),
rho.unif = c(-1, 1))

# Starting values
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inits.list <- list(beta = beta, alpha = 0,
sigma.sq = 1, phi = 3 / 0.5,
sigma.sq.t = 0.5, rho = 0)

# Tuning
tuning.list <- list(phi = 0.4, nu = 0.3, rho = 0.2)

# MCMC settings
n.batch <- 2
n.burn <- 0
n.thin <- 1

out <- svcTPGBinom(formula = ~ trend + cov.1 + cov.2,
svc.cols = svc.cols,
data = data.list,
n.batch = n.batch,
batch.length = 25,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
cov.model = "exponential",
ar1 = TRUE,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

svcTPGOcc Function for Fitting Multi-Season Single-Species Spatially-Varying
Coefficient Occupancy Models Using Polya-Gamma Latent Variables

Description

Function for fitting multi-season single-species spatially-varying coefficient occupancy models us-
ing Polya-Gamma latent variables. Models are fit using Nearest Neighbor Gaussian Processes.

Usage

svcTPGOcc(occ.formula, det.formula, data, inits, priors,
tuning, svc.cols = 1, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)
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Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords, and grid.index. y is a three-dimensional array with first
dimension equal to the number of sites (J), second dimension equal to the max-
imum number of primary time periods (i.e., years or seasons), and third dimen-
sion equal to the maximum number of replicates at a given site. occ.covs is a
list of variables included in the occurrence portion of the model. Each list ele-
ment is a different occurrence covariate, which can be site level or site/primary
time period level. Site-level covariates are specified as a vector of length J
while site/primary time period level covariates are specified as a matrix with
rows corresponding to sites and columns correspond to primary time periods.
Similarly, det.covs is a list of variables included in the detection portion of
the model, with each list element corresponding to an individual variable. In
addition to site-level and/or site/primary time period-level, detection covariates
can also be observational-level. Observation-level covariates are specified as
a three-dimensional array with first dimension corresponding to sites, second
dimension corresponding to primary time period, and third dimension corre-
sponding to replicate. coords is a matrix of the observation coordinates used to
estimate the SVCs for each site. coords has two columns for the easting and
northing coordinate, respectively. Typically, each site in the data set will have
it’s own coordinate, such that coords is a J × 2 matrix and grid.index should
not be specified. If you desire to estimate SVCs at some larger spatial level, e.g.,
if points fall within grid cells and you want to estimate an SVC for each grid cell
instead of each point, coords can be specified as the coordinate for each grid
cell. In such a case, grid.index is an indexing vector of length J, where each
value of grid.index indicates the corresponding row in coords that the given
site corresponds to. Note that spOccupancy assumes coordinates are specified
in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.p, sigma.sq.t, rho.
The value portion of each tag is the parameter’s initial value. sigma.sq.psi and
sigma.sq.p are only relevant when including random effects in the occurrence
and detection portion of the occupancy model, respectively. nu is only specified
if cov.model = "matern". sigma.sq.t and rho are only relevant when ar1 =
TRUE. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
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alpha.normal, sigma.sq.psi.ig, sigma.sq.p.ig, phi.unif, sigma.sq.ig,
nu.unif, sigma.sq.t.ig, and rho.unif. Occupancy (beta) and detection
(alpha) regression coefficients are assumed to follow a normal distribution. The
hyperparameters of the normal distribution are passed as a list of length two
with the first and second elements corresponding to the mean and variance of
the normal distribution, which are each specified as vectors of length equal to
the number of coefficients to be estimated or of length one if priors are the same
for all coefficients. If not specified, prior means are set to 0 and prior variances
set to 2.72. sigma.sq.psi and sigma.sq.p are the random effect variances for
any occurrence or detection random effects, respectively, and are assumed to fol-
low an inverse Gamma distribution. The hyperparameters of the inverse-Gamma
distribution are passed as a list of length two with first and second elements cor-
responding to the shape and scale parameters, respectively, which are each spec-
ified as vectors of length equal to the number of random intercepts or of length
one if priors are the same for all random effect variances. The spatial variance
parameter, sigma.sq, is assumed to follow an inverse-Gamma distribution. The
spatial decay phi and smoothness nu parameters are assumed to follow Uniform
distributions. The hyperparameters of the inverse-Gamma for sigma.sq.ig are
passed as a list of length two, with the first and second elements corresponding
to the shape and scale parameters, respectively, with each element comprised of
a vector equal to the number of spatially-varying coefficients to be estimated or
of length one if priors are the same for all coefficients. The hyperparameters
of the uniform are also passed as a list of length two with the first and second
elements corresponding to the lower and upper support, respectively, which can
be passed as a vector equal to the number of spatially-varying coefficients to be
estimated or of length one if priors are the same for all coefficients. sigma.sq.t
and rho are the AR(1) variance and correlation parameters for the AR(1) zero-
mean temporal random effects, respectively. sigma.sq.t is assumed to follow
an inverse-Gamma distribution, where the hyperparameters are specified as a
vector with elements corresponding to the shape and scale parameters, respec-
tively. rho is assumed to follow a uniform distribution, where the hyperparam-
eters are specified in a vector of length two with elements corresponding to the
lower and upper bounds of the uniform prior.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi,
sigma.sq, nu, and rho. The value portion of each tag defines the initial variance
of the Adaptive sampler. See Roberts and Rosenthal (2009) for details.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the inter-
cept if specified), or it can be specified as a character vector with names corre-
sponding to variable names in occ.covs (for the intercept, use '(Intercept)').
svc.cols default argument of 1 results in a spatial occupancy model analogous
to stPGOcc (assuming an intercept is included in the model).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used. See
Datta et al. (2016) and Finley et al. (2019) for more information. Currently only
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NNGP = TRUE is supported for multi-season single-species occupancy models.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

ar1 logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scoring
rule, we use the model deviance as described in Hooten and Hobbs (2015). For
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cross-validation in multi-season models, the data are split along the site dimen-
sion, such that each hold-out data set consists of a J / k.fold sites sampled
over all primary time periods during which data are available at each given site.
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class svcTPGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occupancy regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

z.samples a three-dimensional array of posterior samples for the latent occupancy values,
with dimensions corresponding to posterior sample, site, and primary time pe-
riod.

psi.samples a three-dimensional array of posterior samples for the latent occupancy probabil-
ity values, with dimensions corresponding to posterior sample, site, and primary
time period.

theta.samples a coda object of posterior samples for spatial covariance parameters and tempo-
ral covariance parameters if ar1 = TRUE.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for all spatially-varying coefficients. Dimensions correspond to MCMC
sample, coefficient, and sites.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.
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eta.samples a coda object of posterior samples for the AR(1) random effects for each primary
time period. Only included if ar1 = TRUE.

like.samples a three-dimensional array of posterior samples for the likelihood values associ-
ated with each site and primary time period. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

k.fold.deviance

scoring rule (deviance) from k-fold cross-validation. Only included if k.fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted(). Note that if k.fold.only = TRUE, the return list object will
only contain run.time and k.fold.deviance.

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(1000)
# Sites
J.x <- 15
J.y <- 15
J <- J.x * J.y
# Years sampled
n.time <- sample(10, J, replace = TRUE)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(4, n.time[j], replace = TRUE)
}
# Occurrence --------------------------
beta <- c(-2, -0.5, -0.2, 0.75)
trend <- TRUE
sp.only <- 0
psi.RE <- list()
# Detection ---------------------------
alpha <- c(1, 0.7, -0.5)
p.RE <- list()
# Spatial parameters ------------------
sp <- TRUE
svc.cols <- c(1, 2, 3)
p.svc <- length(svc.cols)
cov.model <- "exponential"
sigma.sq <- runif(p.svc, 0.1, 1)
phi <- runif(p.svc, 3 / 1, 3 / 0.2)
rho <- 0.8
sigma.sq.t <- 1
ar1 <- TRUE
x.positive <- FALSE

# Get all the data
dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,

beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE,
sp = sp, cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
svc.cols = svc.cols, ar1 = ar1, rho = rho, sigma.sq.t = sigma.sq.t,
x.positive = x.positive)

# Prep the data for svcTPGOcc ---------------------------------------------
# Full data set
y <- dat$y
X <- dat$X
X.re <- dat$X.re
X.p <- dat$X.p
X.p.re <- dat$X.p.re
coords <- dat$coords

# Package all data into a list
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occ.covs <- list(int = X[, , 1],
trend = X[, , 2],
occ.cov.1 = X[, , 3],
occ.cov.2 = X[, , 4])

# Detection
det.covs <- list(det.cov.1 = X.p[, , , 2],

det.cov.2 = X.p[, , , 3])
# Data list bundle
data.list <- list(y = y,

occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
phi.unif = list(a = 3/1, b = 3/.1))

# Starting values
z.init <- apply(y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(beta = 0, alpha = 0,

sigma.sq = 1, phi = 3 / 0.5,
z = z.init, nu = 1)

# Tuning
tuning.list <- list(phi = 0.4, nu = 0.3, rho = 0.5, sigma.sq = 0.5)

# MCMC settings
n.batch <- 2
n.burn <- 0
n.thin <- 1

# Run the model
out <- svcTPGOcc(occ.formula = ~ trend + occ.cov.1 + occ.cov.2,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
tuning = tuning.list,
priors = prior.list,
cov.model = "exponential",
svc.cols = svc.cols,
NNGP = TRUE,
ar1 = TRUE,
n.neighbors = 5,
n.batch = n.batch,
batch.length = 25,
verbose = TRUE,
n.report = 25,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

tMsPGOcc Function for Fitting Multi-Species Multi-Season Occupancy Models
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Description

The function tMsPGOcc fits multi-species multi-season occupancy models using Polya-Gamma data
augmentation.

Usage

tMsPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
n.batch, batch.length,
accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Random intercepts are allowed using lme4 syn-
tax (Bates et al. 2015). Only right-hand side of formula is specified. See exam-
ple below.

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
and det.covs. y is a four-dimensional array with first dimension equal to the
number of species, second dimension equal to the number of sites, third dimen-
sion equal to the number of primary time periods, and fourth dimension equal
to the maximum number of secondary replicates at a given site. occ.covs is a
list of variables included in the occurrence portion of the model. Each list ele-
ment is a different occurrence covariate, which can be site level or site/primary
time period level. Site-level covariates are specified as a vector of length J
while site/primary time period level covariates are specified as a matrix with
rows corresponding to sites and columns correspond to primary time periods.
Similarly, det.covs is a list of variables included in the detection portion of
the model, with each list element corresponding to an individual variable. In
addition to site-level and/or site/primary time period-level, detection covariates
can also be observational-level. Observation-level covariates are specified as
a three-dimensional array with first dimension corresponding to sites, second
dimension corresponding to primary time period, and third dimension corre-
sponding to replicate.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
z, sigma.sq.t, and rho. sigma.sq.t and rho are only relevant when ar1 =
TRUE, and sigma.sq.psi and sigma.sq.p are only specified if random effects
are included in occ.formula or det.formula, respectively. The value portion
of each tag is the parameter’s initial value. See priors description for definition
of each parameter name. Additionally, the tag fix can be set to TRUE to fix the
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starting values across all chains. If fix is not specified (the default), starting
values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.psi, sigma.sq.p,
sigma.sq.t.ig, and rho.unif. Community-level occurrence (beta.comm) and
detection (alpha.comm) regression coefficients are assumed to follow a normal
distribution. The hyperparameters of the normal distribution are passed as a list
of length two with the first and second elements corresponding to the mean and
variance of the normal distribution, which are each specified as vectors of length
equal to the number of coefficients to be estimated or of length one if priors are
the same for all coefficients. If not specified, prior means are set to 0 and prior
variances set to 2.72. By default, community-level variance parameters for oc-
cupancy (tau.sq.beta) and detection (tau.sq.alpha) are assumed to follow
an inverse Gamma distribution. The hyperparameters of the inverse gamma dis-
tribution are passed as a list of length two with the first and second elements
corresponding to the shape and scale parameters, which are each specified as
vectors of length equal to the number of coefficients to be estimated or a single
value if priors are the same for all parameters. If not specified, prior shape and
scale parameters are set to 0.1. sigma.sq.t and rho are the AR(1) variance
and correlation parameters for the AR(1) zero-mean temporal random effects,
respectively. sigma.sq.t is assumed to follow an inverse-Gamma distribution,
where the hyperparameters are specified as a list of length two with the first and
second elements corresponding to the shape and scale parameters, respectively,
which can each be specified as vector equal to the number of species in the
model or a single value if the same prior is used for all species. rho is assumed
to follow a uniform distribution, where the hyperparameters are specified simi-
larly as a list of length two with the first and second elements corresponding to
the lower and upper bounds of the uniform prior, which can each be specified as
vector equal to the number of species in the model or a single value if the same
prior is used for all species. sigma.sq.psi and sigma.sq.p are the random ef-
fect variances for any occurrence or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

tuning a list with each tag corresponding to a parameter name. Valid tags are rho.
The value portion of each tag defines the initial tuning variance of the Adaptive
sampler. See Roberts and Rosenthal (2009) for details.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
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based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

ar1 logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model for each species. If FALSE, the model is fit without
an AR(1) temporal autocovariance structure. If TRUE, a species-specific AR(1)
random effect is included in the model to account for temporal autocorrelation
across the primary time periods.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class tMsPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

theta.samples a coda object of posterior samples for the species level AR(1) variance (sigma.sq.t)
and correlation (rho) parameters. Only included if ar1 = TRUE.

eta.samples a three-dimensional array of posterior samples for the species-specific AR(1)
random effects for each primary time period. Dimensions correspond to MCMC
sample, species, and primary time period.
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z.samples a four-dimensional array of posterior samples for the latent occurrence values
for each species. Dimensions corresopnd to MCMC sample, species, site, and
primary time period.

psi.samples a four-dimensional array of posterior samples for the latent occupancy probabil-
ity values for each species. Dimensions correspond to MCMC sample, species,
site, and primary time period.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

like.samples a four-dimensional array of posterior samples for the likelihood value used for
calculating WAIC. Dimensions correspond to MCMC sample, species, site, and
time period.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

# Simulate Data -----------------------------------------------------------
set.seed(500)
J.x <- 8
J.y <- 8
J <- J.x * J.y
# Years sampled
n.time <- sample(3:10, J, replace = TRUE)
# n.time <- rep(10, J)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(2:4, n.time[j], replace = TRUE)
}
N <- 7
# Community-level covariate effects
# Occurrence
beta.mean <- c(-3, -0.2, 0.5)
trend <- FALSE
sp.only <- 0
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.5, 1.4)
# Detection
alpha.mean <- c(0, 1.2, -1.5)
tau.sq.alpha <- c(1, 0.5, 2.3)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- FALSE

dat <- simTMsOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep, N = N,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,

https://doi.org/10.18637/jss.v067.i01
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psi.RE = psi.RE, p.RE = p.RE, sp = sp)

y <- dat$y
X <- dat$X
X.p <- dat$X.p
X.re <- dat$X.re
X.p.re <- dat$X.p.re

occ.covs <- list(occ.cov.1 = X[, , 2],
occ.cov.2 = X[, , 3])

det.covs <- list(det.cov.1 = X.p[, , , 2],
det.cov.2 = X.p[, , , 3])

data.list <- list(y = y, occ.covs = occ.covs,
det.covs = det.covs)

# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

z.init <- apply(y, c(1, 2, 3), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, tau.sq.beta = 1, tau.sq.alpha = 1,
z = z.init)

# Tuning
tuning.list <- list(phi = 1)

# Number of batches
n.batch <- 5
# Batch length
batch.length <- 25
n.burn <- 25
n.thin <- 1
n.samples <- n.batch * batch.length

out <- tMsPGOcc(occ.formula = ~ occ.cov.1 + occ.cov.2,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary(out)
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tPGOcc Function for Fitting Multi-Season Single-Species Occupancy Models
Using Polya-Gamma Latent Variables

Description

Function for fitting multi-season single-species occupancy models using Polya-Gamma latent vari-
ables.

Usage

tPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
n.batch, batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed = 100, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
and det.covs. y is a three-dimensional array with first dimension equal to
the number of sites (J), second dimension equal to the maximum number of
primary time periods (i.e., years or seasons), and third dimension equal to the
maximum number of replicates at a given site. occ.covs is a list of variables
included in the occurrence portion of the model. Each list element is a different
occurrence covariate, which can be site level or site/primary time period level.
Site-level covariates are specified as a vector of length J while site/primary time
period level covariates are specified as a matrix with rows corresponding to sites
and columns correspond to primary time periods. Similarly, det.covs is a list
of variables included in the detection portion of the model, with each list ele-
ment corresponding to an individual variable. In addition to site-level and/or
site/primary time period-level, detection covariates can also be observational-
level. Observation-level covariates are specified as a three-dimensional array
with first dimension corresponding to sites, second dimension corresponding to
primary time period, and third dimension corresponding to replicate.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq.psi, sigma.sq.p, sigma.sq.t, and rho. The value portion
of each tag is the parameter’s initial value. sigma.sq.psi and sigma.sq.p are
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only relevant when including random effects in the occurrence and detection
portion of the occupancy model, respectively. sigma.sq.t and rho are only
relevant when ar1 = TRUE. See priors description for definition of each param-
eter name. Additionally, the tag fix can be set to TRUE to fix the starting values
across all chains. If fix is not specified (the default), starting values are varied
randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, sigma.sq.psi.ig, sigma.sq.p.ig, sigma.sq.t.ig, and rho.unif.
Occupancy (beta) and detection (alpha) regression coefficients are assumed to
follow a normal distribution. The hyperparameters of the normal distribution are
passed as a list of length two with the first and second elements corresponding
to the mean and variance of the normal distribution, which are each specified as
vectors of length equal to the number of coefficients to be estimated or of length
one if priors are the same for all coefficients. If not specified, prior means are
set to 0 and prior variances set to 2.72. sigma.sq.psi and sigma.sq.p are the
random effect variances for any unstructured occurrence or detection random
effects, respectively, and are assumed to follow an inverse Gamma distribution.
The hyperparameters of the inverse-Gamma distribution are passed as a list of
length two with first and second elements corresponding to the shape and scale
parameters, respectively, which are each specified as vectors of length equal
to the number of random intercepts or of length one if priors are the same for
all random effect variances. sigma.sq.t and rho are the AR(1) variance and
correlation parameters for the AR(1) zero-mean temporal random effects, re-
spectively. sigma.sq.t is assumed to follow an inverse-Gamma distribution,
where the hyperparameters are specified as a vector with elements correspond-
ing to the shape and scale parameters, respectively. rho is assumed to follow
a uniform distribution, where the hyperparameters are specified in a vector of
length two with elements corresponding to the lower and upper bounds of the
uniform prior.

tuning a list with each tag corresponding to a parameter name. Valid tags are rho.
The value portion of each tag defines the initial tuning variance of the Adaptive
sampler. See Roberts and Rosenthal (2009) for details.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

ar1 logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
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autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report MCMC progress. Note this is specified in terms of batches,
not MCMC samples.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k.fold.threads and k.fold.seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
For cross-validation in multi-season models, the data are split along the site di-
mension, such that each hold-out data set consists of J / k.fold sites sampled
over all primary time periods during which data are available at each given site.
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k.fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k.fold is not specified.

k.fold.seed seed used to split data set into k.fold parts for k-fold cross-validation. Ignored
if k.fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

... currently no additional arguments

Value

An object of class tPGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occupancy regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

z.samples a three-dimensional array of posterior samples for the latent occupancy values,
with dimensions corresponding to posterior sample, site, and primary time pe-
riod. Note this object will contain predicted occupancy values for sites/primary
time periods that were not sampled.

psi.samples a three-dimensional array of posterior samples for the latent occupancy probabil-
ity values, with dimensions corresponding to posterior sample, site, and primary
time period. Note this object will contain predicted occupancy probabilities for
sites/primary time periods that were not sampled.
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sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det.formula.

beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.

theta.samples a coda object of posterior samples for the AR(1) variance (sigma.sq.t) and
correlation (rho) parameters. Only included if ar1 = TRUE.

eta.samples a coda object of posterior samples for the AR(1) random effects for each primary
time period. Only included if ar1 = TRUE.

like.samples a three-dimensional array of posterior samples for the likelihood values associ-
ated with each site and primary time period. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

k.fold.deviance

scoring rule (deviance) from k-fold cross-validation. Only included if k.fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted(). Note that if k.fold.only = TRUE, the return list object will
only contain run.time and k.fold.deviance.

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(500)
# Sites
J.x <- 10
J.y <- 10
J <- J.x * J.y
# Primary time periods
n.time <- sample(5:10, J, replace = TRUE)
n.time.max <- max(n.time)
# Replicates
n.rep <- matrix(NA, J, max(n.time))
for (j in 1:J) {

n.rep[j, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)
}
# Occurrence --------------------------
beta <- c(0.4, 0.5, -0.9)
trend <- TRUE
sp.only <- 0
psi.RE <- list()
# Detection ---------------------------
alpha <- c(-1, 0.7, -0.5)
p.RE <- list()
# Temporal parameters -----------------
rho <- 0.7
sigma.sq.t <- 0.6

# Get all the data
dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,

beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = FALSE, ar1 = TRUE,
sigma.sq.t = sigma.sq.t, rho = rho)

# Package all data into a list
# Occurrence
occ.covs <- list(int = dat$X[, , 1],

https://doi.org/10.18637/jss.v067.i01
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trend = dat$X[, , 2],
occ.cov.1 = dat$X[, , 3])

# Detection
det.covs <- list(det.cov.1 = dat$X.p[, , , 2],

det.cov.2 = dat$X.p[, , , 3])
# Data list bundle
data.list <- list(y = dat$y,

occ.covs = occ.covs,
det.covs = det.covs)

# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),

alpha.normal = list(mean = 0, var = 2.72),
rho.unif = c(-1, 1),
sigma.sq.t.ig = c(2, 0.5))

# Starting values
z.init <- apply(dat$y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(beta = 0, alpha = 0, z = z.init)

# Tuning
tuning.list <- list(rho = 0.5)

n.batch <- 20
batch.length <- 25
n.samples <- n.batch * batch.length
n.burn <- 100
n.thin <- 1

# Run the model
out <- tPGOcc(occ.formula = ~ trend + occ.cov.1,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
n.batch = n.batch,
batch.length = batch.length,
verbose = TRUE,
ar1 = TRUE,
n.report = 25,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary(out)

updateMCMC Update a spOccupancy or spAbundance model run with more MCMC
iterations
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Description

Function for updating a previously run spOccupancy or spAbundance model with additional MCMC
iterations. This function is useful for situations where a model is run for a long time but conver-
gence/adequate mixing of the MCMC chains is not reached. Instead of re-running the entire model
again, this function allows you to pick up where you left off. This function is currently in develop-
ment, and only currently works with the following spOccupancy and spAbundance model objects:
msAbund and sfJSDM. Note that cross-validation is not possible when updating the model.

Usage

updateMCMC(object, n.batch, n.samples, n.burn = 0, n.thin,
keep.orig = TRUE, verbose = TRUE, n.report = 100, ...)

Arguments

object a spOccupancy or spAbundance model object. Currently supports objects of
class msAbund and sfJSDM.

n.batch the number of additional MCMC batches in each chain to run for the adaptive
MCMC sampler. Only valid for model types fit with an adaptive MCMC sampler

n.samples the number of posterior samples to collect in each chain. Only valid for model
types that are run with a fully Gibbs sampler and have n.samples as an argu-
ment in the original model fitting function.

n.burn the number of samples out of the total n.batch * batchlength to discard as
burn-in for each chain from the updated samples. Note this argument does not
discard samples from the previous model run, and rather only applies to the
samples in the updated run of the model. Defaults to 0

n.thin the thinning interval for collection of MCMC samples in the updated model run.
The thinning occurs after the n.burn samples are discarded. Default value is set
to 1.

keep.orig A logical value indicating whether or not the samples from the original run of
the model should be kept or discarded.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

... currently no additional arguments

Value

An object of the same class as the original model fit provided in the argument object. See the
manual page for the original model type for complete details.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
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Examples

J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6)
# Detection
alpha.mean <- c(0)
tau.sq.alpha <- c(1)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
n.factors <- 3
phi <- rep(3 / .7, n.factors)
sigma.sq <- rep(2, n.factors)
nu <- rep(2, n.factors)

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, nu = nu, cov.model = 'matern', factor.model = TRUE,
n.factors = n.factors)

pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
# Occupancy covariates
X <- dat$X[-pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx, , drop = FALSE])
# Prediction covariates
X.0 <- dat$X[pred.indx, , drop = FALSE]
coords.0 <- as.matrix(dat$coords[pred.indx, , drop = FALSE])
# Detection covariates
X.p <- dat$X.p[-pred.indx, , , drop = FALSE]

y <- apply(y, c(1, 2), max, na.rm = TRUE)
data.list <- list(y = y, coords = coords)
# Priors
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prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
nu.unif = list(0.5, 2.5))

# Starting values
inits.list <- list(beta.comm = 0,

beta = 0,
fix = TRUE,
tau.sq.beta = 1)

# Tuning
tuning.list <- list(phi = 1, nu = 0.25)

batch.length <- 25
n.batch <- 2
n.report <- 100
formula <- ~ 1

out <- sfJSDM(formula = formula,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern",
tuning = tuning.list,
n.factors = 3,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 0,
n.thin = 1,
n.chains = 2)

summary(out)

# Update the initial model fit
out.new <- updateMCMC(out, n.batch = 1, keep.orig = TRUE,

verbose = TRUE, n.report = 1)
summary(out.new)

waicOcc Compute Widely Applicable Information Criterion for spOccupancy
Model Objects

Description

Function for computing the Widely Applicable Information Criterion (WAIC; Watanabe 2010) for
spOccupancy model objects.



waicOcc 295

Usage

waicOcc(object, by.sp = FALSE, ...)

Arguments

object an object of class PGOcc, spPGOcc, msPGOcc, spMsPGOcc, intPGOcc, spIntPGOcc,
lfJSDM, sfJSDM, lfMsPGOcc, sfMsPGOcc, tPGOcc, stPGOcc, svcPGBinom, svcPGOcc,
svcTPGBinom, svcTPGOcc, or intMsPGOcc, svcMsPGOcc, tMsPGOcc, stMsPGOcc,
svcTMsPGOcc.

by.sp a logical value indicating whether to return a separate WAIC value for each
species in a multi-species occupancy model or a single value for all species.

... currently no additional arguments

Details

The effective number of parameters is calculated following the recommendations of Gelman et al.
(2014). Note that when fitting multi-species occupancy models with the range.ind tag, it is not
valid to use WAIC to compare a model that uses range.ind (i.e., restricts certain species to a subset
of the locations) with a model that does not use range.ind (i.e., assumes all species can occur at
all locations in the data set) or that uses different range.ind values.

Value

When object is of class PGOcc, spPGOcc, msPGOcc, spMsPGOcc, lfJSDM, sfJSDM, lfMsPGOcc,
sfMsPGOcc, tPGOcc, stPGOcc, svcPGBinom, svcPGOcc, svcTPGOcc, svcTPGBinom, svcMsPGOcc,
tMsPGOcc, stMsPGOcc, svcTMsPGOcc returns a vector with three elements corresponding to esti-
mates of the expected log pointwise predictive density (elpd), the effective number of parameters
(pD), and the WAIC. When by.sp = TRUE for multi-species models, object is a data frame with each
row corresponding to a different species. When object is of class intPGOcc or spIntPGOcc, re-
turns a data frame with columns elpd, pD, and WAIC, with each row corresponding to the estimated
values for each data source in the integrated model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. Journal of Machine Learning Research, 11:3571-
3594.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. (2013). Bayesian
Data Analysis. 3rd edition. CRC Press, Taylor and Francis Group
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Examples

set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, -0.15)
p.occ <- length(beta)
alpha <- c(0.7, 0.4)
p.det <- length(alpha)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sp = FALSE)
occ.covs <- dat$X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov = dat$X.p[, , 2])
# Data bundle
data.list <- list(y = dat$y,

occ.covs = occ.covs,
det.covs = det.covs)

# Priors
prior.list <- list(beta.normal = list(mean = rep(0, p.occ),

var = rep(2.72, p.occ)),
alpha.normal = list(mean = rep(0, p.det),

var = rep(2.72, p.det)))
# Initial values
inits.list <- list(alpha = rep(0, p.det),

beta = rep(0, p.occ),
z = apply(data.list$y, 1, max, na.rm = TRUE))

n.samples <- 5000
n.report <- 1000

out <- PGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = n.report,
n.burn = 4000,
n.thin = 1)

# Calculate WAIC
waicOcc(out)



Index

∗ datasets
hbef2015, 23
hbefElev, 24
hbefTrends, 25
neon2015, 52

∗ model
fitted.intPGOcc, 6
fitted.lfJSDM, 7
fitted.lfMsPGOcc, 7
fitted.msPGOcc, 8
fitted.PGOcc, 9
fitted.sfJSDM, 10
fitted.sfMsPGOcc, 10
fitted.spIntPGOcc, 11
fitted.spMsPGOcc, 12
fitted.spPGOcc, 13
fitted.stMsPGOcc, 13
fitted.stPGOcc, 14
fitted.svcMsPGOcc, 15
fitted.svcPGBinom, 16
fitted.svcPGOcc, 16
fitted.svcTMsPGOcc, 17
fitted.svcTPGBinom, 18
fitted.svcTPGOcc, 18
fitted.tMsPGOcc, 19
fitted.tPGOcc, 20
summary.intMsPGOcc, 216
summary.intPGOcc, 217
summary.lfJSDM, 218
summary.lfMsPGOcc, 219
summary.msPGOcc, 220
summary.PGOcc, 221
summary.postHocLM, 222
summary.sfJSDM, 223
summary.sfMsPGOcc, 224
summary.spIntPGOcc, 225
summary.spMsPGOcc, 226
summary.spPGOcc, 227
summary.stMsPGOcc, 228

summary.stPGOcc, 229
summary.svcMsPGOcc, 230
summary.svcPGBinom, 231
summary.svcPGOcc, 232
summary.svcTMsPGOcc, 233
summary.svcTPGBinom, 234
summary.svcTPGOcc, 235
summary.tMsPGOcc, 236
summary.tPGOcc, 237

∗ package
spOccupancy-package, 4

fitted, 6–20
fitted.intPGOcc, 6
fitted.lfJSDM, 7
fitted.lfMsPGOcc, 7
fitted.msPGOcc, 8
fitted.PGOcc, 9
fitted.sfJSDM, 10
fitted.sfMsPGOcc, 10
fitted.spIntPGOcc, 11
fitted.spMsPGOcc, 12
fitted.spPGOcc, 13
fitted.stMsPGOcc, 13
fitted.stPGOcc, 14
fitted.svcMsPGOcc, 15
fitted.svcPGBinom, 16
fitted.svcPGOcc, 16
fitted.svcTMsPGOcc, 17
fitted.svcTPGBinom, 18
fitted.svcTPGOcc, 18
fitted.tMsPGOcc, 19
fitted.tPGOcc, 20

getSVCSamples, 5, 20

hbef2015, 23
hbefElev, 24
hbefTrends, 25

intMsPGOcc, 26

297



298 INDEX

intPGOcc, 4, 31

lfJSDM, 5, 36
lfMsPGOcc, 5, 41

msPGOcc, 5, 46

neon2015, 52

PGOcc, 4, 53
plot, 216–221, 224–237
plot.intMsPGOcc (summary.intMsPGOcc),

216
plot.intPGOcc (summary.intPGOcc), 217
plot.lfJSDM (summary.lfJSDM), 218
plot.lfMsPGOcc (summary.lfMsPGOcc), 219
plot.msPGOcc (summary.msPGOcc), 220
plot.PGOcc (summary.PGOcc), 221
plot.sfJSDM (summary.sfJSDM), 223
plot.sfMsPGOcc (summary.sfMsPGOcc), 224
plot.spIntPGOcc (summary.spIntPGOcc),

225
plot.spMsPGOcc (summary.spMsPGOcc), 226
plot.spPGOcc (summary.spPGOcc), 227
plot.stMsPGOcc (summary.stMsPGOcc), 228
plot.stPGOcc (summary.stPGOcc), 229
plot.svcMsPGOcc (summary.svcMsPGOcc),

230
plot.svcPGBinom (summary.svcPGBinom),

231
plot.svcPGOcc (summary.svcPGOcc), 232
plot.svcTMsPGOcc (summary.svcTMsPGOcc),

233
plot.svcTPGBinom (summary.svcTPGBinom),

234
plot.svcTPGOcc (summary.svcTPGOcc), 235
plot.tMsPGOcc (summary.tMsPGOcc), 236
plot.tPGOcc (summary.tPGOcc), 237
postHocLM, 5, 57
ppcOcc, 5, 60
predict.intMsPGOcc, 62
predict.intPGOcc, 66
predict.lfJSDM, 69
predict.lfMsPGOcc, 71
predict.msPGOcc, 75
predict.PGOcc, 77
predict.sfJSDM, 80
predict.sfMsPGOcc, 84
predict.spIntPGOcc, 88

predict.spMsPGOcc, 91
predict.spPGOcc, 95
predict.stMsPGOcc, 98
predict.stPGOcc, 103
predict.svcMsPGOcc, 107
predict.svcPGBinom, 112
predict.svcPGOcc, 115
predict.svcTMsPGOcc, 119
predict.svcTPGBinom, 124
predict.svcTPGOcc, 128
predict.tMsPGOcc, 132
predict.tPGOcc, 136
print, 216–222, 224–237
print.intMsPGOcc (summary.intMsPGOcc),

216
print.intPGOcc (summary.intPGOcc), 217
print.lfJSDM (summary.lfJSDM), 218
print.lfMsPGOcc (summary.lfMsPGOcc), 219
print.msPGOcc (summary.msPGOcc), 220
print.PGOcc (summary.PGOcc), 221
print.postHocLM (summary.postHocLM), 222
print.sfJSDM (summary.sfJSDM), 223
print.sfMsPGOcc (summary.sfMsPGOcc), 224
print.spIntPGOcc (summary.spIntPGOcc),

225
print.spMsPGOcc (summary.spMsPGOcc), 226
print.spPGOcc (summary.spPGOcc), 227
print.stMsPGOcc (summary.stMsPGOcc), 228
print.stPGOcc (summary.stPGOcc), 229
print.svcMsPGOcc (summary.svcMsPGOcc),

230
print.svcPGBinom (summary.svcPGBinom),

231
print.svcPGOcc (summary.svcPGOcc), 232
print.svcTMsPGOcc

(summary.svcTMsPGOcc), 233
print.svcTPGBinom

(summary.svcTPGBinom), 234
print.svcTPGOcc (summary.svcTPGOcc), 235
print.tMsPGOcc (summary.tMsPGOcc), 236
print.tPGOcc (summary.tPGOcc), 237

sfJSDM, 5, 139
sfMsPGOcc, 5, 147
simBinom, 5, 155
simIntMsOcc, 157
simIntOcc, 5, 161
simMsOcc, 5, 163
simOcc, 5, 167



INDEX 299

simTBinom, 5, 170
simTMsOcc, 5, 173
simTOcc, 5, 177
spIntPGOcc, 4, 182
spMsPGOcc, 5, 188
spOccupancy (spOccupancy-package), 4
spOccupancy-package, 4
spPGOcc, 4, 195
stMsPGOcc, 5, 201
stPGOcc, 4, 209
summary, 216–237
summary.intMsPGOcc, 216
summary.intPGOcc, 217
summary.lfJSDM, 218
summary.lfMsPGOcc, 219
summary.msPGOcc, 220
summary.PGOcc, 221
summary.postHocLM, 222
summary.ppcOcc, 222
summary.sfJSDM, 223
summary.sfMsPGOcc, 224
summary.spIntPGOcc, 225
summary.spMsPGOcc, 226
summary.spPGOcc, 227
summary.stMsPGOcc, 228
summary.stPGOcc, 229
summary.svcMsPGOcc, 230
summary.svcPGBinom, 231
summary.svcPGOcc, 232
summary.svcTMsPGOcc, 233
summary.svcTPGBinom, 234
summary.svcTPGOcc, 235
summary.tMsPGOcc, 236
summary.tPGOcc, 237
svcMsPGOcc, 5, 238
svcPGBinom, 4, 245
svcPGOcc, 4, 251
svcTMsPGOcc, 5, 257
svcTPGBinom, 4, 266
svcTPGOcc, 5, 272

tMsPGOcc, 5, 279
tPGOcc, 4, 286

updateMCMC, 5, 291

waicOcc, 5, 294


	spOccupancy-package
	fitted.intPGOcc
	fitted.lfJSDM
	fitted.lfMsPGOcc
	fitted.msPGOcc
	fitted.PGOcc
	fitted.sfJSDM
	fitted.sfMsPGOcc
	fitted.spIntPGOcc
	fitted.spMsPGOcc
	fitted.spPGOcc
	fitted.stMsPGOcc
	fitted.stPGOcc
	fitted.svcMsPGOcc
	fitted.svcPGBinom
	fitted.svcPGOcc
	fitted.svcTMsPGOcc
	fitted.svcTPGBinom
	fitted.svcTPGOcc
	fitted.tMsPGOcc
	fitted.tPGOcc
	getSVCSamples
	hbef2015
	hbefElev
	hbefTrends
	intMsPGOcc
	intPGOcc
	lfJSDM
	lfMsPGOcc
	msPGOcc
	neon2015
	PGOcc
	postHocLM
	ppcOcc
	predict.intMsPGOcc
	predict.intPGOcc
	predict.lfJSDM
	predict.lfMsPGOcc
	predict.msPGOcc
	predict.PGOcc
	predict.sfJSDM
	predict.sfMsPGOcc
	predict.spIntPGOcc
	predict.spMsPGOcc
	predict.spPGOcc
	predict.stMsPGOcc
	predict.stPGOcc
	predict.svcMsPGOcc
	predict.svcPGBinom
	predict.svcPGOcc
	predict.svcTMsPGOcc
	predict.svcTPGBinom
	predict.svcTPGOcc
	predict.tMsPGOcc
	predict.tPGOcc
	sfJSDM
	sfMsPGOcc
	simBinom
	simIntMsOcc
	simIntOcc
	simMsOcc
	simOcc
	simTBinom
	simTMsOcc
	simTOcc
	spIntPGOcc
	spMsPGOcc
	spPGOcc
	stMsPGOcc
	stPGOcc
	summary.intMsPGOcc
	summary.intPGOcc
	summary.lfJSDM
	summary.lfMsPGOcc
	summary.msPGOcc
	summary.PGOcc
	summary.postHocLM
	summary.ppcOcc
	summary.sfJSDM
	summary.sfMsPGOcc
	summary.spIntPGOcc
	summary.spMsPGOcc
	summary.spPGOcc
	summary.stMsPGOcc
	summary.stPGOcc
	summary.svcMsPGOcc
	summary.svcPGBinom
	summary.svcPGOcc
	summary.svcTMsPGOcc
	summary.svcTPGBinom
	summary.svcTPGOcc
	summary.tMsPGOcc
	summary.tPGOcc
	svcMsPGOcc
	svcPGBinom
	svcPGOcc
	svcTMsPGOcc
	svcTPGBinom
	svcTPGOcc
	tMsPGOcc
	tPGOcc
	updateMCMC
	waicOcc
	Index

